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GALOIS GROUPS AND QUADRATIC FORMS

Tara L. Smith*

Abstract

These notes represent the material for a five-lecture mini-course, given
at the Brazilian Algebra Meeting in Diamantina, Brazil, in August 1992.
The lectures explore the connections between the Galois groups arising
over a given field and the behavior of quadratic forms over that field. No
particular background is assumed beyond that of a good graduate-level
understanding of abstract algebra including Galois theory.

1 Algebraic Theory of Quadratic Forms; The Witt Ring
of a Field

The algebraic theory of quadratic forms (i.e. homogeneous polynomials of de-
gree 2) over fields of characteristic not 2 originated with the work of E. Witt,
in his classical paper of 1937 [Wi:1937]. Instead of considering individual forms
over the given field, Witt looked at the entire collection of all forms over a fixed
ground field F' (of characteristic not 2). From this collection Witt constructed
an algebraic object, specifically a commutative ring, the Witt ring of the field
F. One is then naturally led to the question of how the structure of the Witt
ring reflects the behavior of quadratic forms over F' and vice-versa.

In this section we present the basic background material necessary for study-
ing the algebraic theory of quadratic forms. This includes the major theorems of
Witt (cancellation, decomposition, and chain equivalence), invariants of forms
(dimension, determinant, and Witt index), and the construction of the Witt ring
W(F). The presentation of the material in this section and the next borrows
heavily from [La:1973].
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Throughout these notes, all fields will be assumed to have characteristic not
2. The algebraic theory of quadratic forms over fields of characteristic = 2 has
also been developed, but it requires different methods, and it would take us too
far afield to consider this case. Then let F' be a field of characteristic not 2.
An n-ary quadratic form over F is a homogeneous polynomial of degree 2 in n

variables over F'. It will have the general form

f(X) = f(z1,...,2,) = Z aijz;zj, for a;; € F.

i,j=1
It is customary to render the coefficients symmetric by rewriting f as
1 1
f(X) = z E(a;,- + a,',-):r:;:c,' = Z b,’j:l:;:cj, where b.'_.,' = E(a,'j + aj;).
i, i,
Thus f determines a unique n X n symmetric matrix My = (b;;), and viewing

X = (21,...,2,) as a column vector, we have f(X) = X*M;X. The number n
is the dimension of the form f, denoted dim(f).

Definition 1.1 The determinant det(f) of the quadratic form f is defined to be

the determinant of the symmetric matrizc M determined by the quadratic form

f.

Two quadratic forms f and g will be called equivalent if there exists a
nonsingular homogeneous linear change of variable taking g to f, i.e. if there
exists C € GL,(F') such that f(X) = g(CX), or such that M; = C*M,C (the
corresponding symmetric matrices are congruent). One can easily check that
this defines an equivalence relation. Notice that dim(f) is invariant under this
equivalence relation, and that det(f), when viewed as an element of the square
class group F/ F?,is also an invariant of the equivalence class of f. (Here and
in what follows, F' denotes the multiplicative group of nonzero elements of F.)
Example. Consider the linear change of variable z; — ; + x5, 3 — z; — z3.

1

The corresponding matrix C is given by _1 ) Then if g(X) = z,2,, we

1
1
have f(X) = g(CX) = (21 + z3)(z1 — z3) = @2 — z2. Thus the quadratic form
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123 is equivalent to the form 22 — zZ. This particular (equivalence class of)

quadratic form is actually quite important, as we shall see.

Definition 1.2 The (equivalence class of the) quadratic form described in the
ezample above is called the hyperbolic plane, and will be denoted H. It has the
nice property that it represents every element of F. (A form is said to represent
a .G F' if there ezists a nonzero vector v € F™ such that v'"Mspv = a, ie if
f(v) = a. Here we may take v = (("zil),(E;—l)) € F%.) A form with the
property that it represents all nonzero elements of F' is said to be universal.

To any quadratic form f we associate a “quadratic map” Q; : F" — F
by letting ey, ..., e, be the standard basis of F", and for X = Y z;e; € F™,
defining Q@¢(X) = X*M;X. This map has the properties

(1) Qy(az) = a’Qy(z), Va€ Fyz € F"

(2) Bs(z,y) := }[Qs(z +y) — Q4(z) — Q(y)] is a symmetric bilinear pairing.

We can also take a coordinate-free approach: Let V be a finite-dimensional
F-vector space, B: VxV — Fa symmetric bilinear pairing on V. Associate
a quadratic map gg : V — F by gp(z) = B(z,z) € Fforz € V. If we
coordinatize V (choose a basis e, .. .€n) then the “quadratic space”(V, B, q)
gives rise to a quadratic form (determined up to equivalence class, depending
on choice of basis). If (V, B), (V', B') are quadratic spaces, we say they are
isometric (denoted ~) if there exists a linear isomorphism o : V — V' such
that B'(o(z),o(y)) = B(z,y) Vz,y € V. There exists a one-to-one correspon-
dence between equivalence classes of n-ary qudaratic forms over F and isometry
classes of n-dimensional quadratic spaces over F', Specifically we now have three

different ways of looking at quadratic forms:

equivalence classes isometry classes

congruence classes g

of homogeneous g of symmetric

olynomials of el eymmetsic .9 bilinear pairings
=0 matrices over F

degree 2 over F on F-vector spaces
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Given two quadratic spaces (V;, B;) and (V;, B;) of dimensions n and m
respectively, we can form a new quadratic space (V, B) of dimension m + n
where V. = Vi@ Vo and B : V x V = F is defined by B((z1,z2), (¥1,¥2)) =
Bi(z1,91) + Ba(2,y2) for z; € Vi,i = 1,2. This gives rise to a new quadratic
form ¢ = ¢q; L q;. The associated matrix M, is the direct sum of the matrices
of the forms gq; and g;. (We remark here for future reference that the direct
sum of hyperbolic planes is called a hyperbolic space.) We can also define a
binary operation ® to get a new quadratic space (V', B") of dimension mn,
where V' =V} ® V3, and B': V' x V' — F is defined by B'(z1® 2,1 ®y2) =
Bi(21,91)Ba(2,y2) € F. We then have a new form ¢’, which is denoted @1 ®qs,
or simply gi1g;. The matrix My is the Kronecker product of the matrices for Q
and q,.

We want to focus our attention on so-called “regular” quadratic forms,
ie. those forms f such that M; is nonsingular, or equivalently such that
Vz € V,B(z,y) =0 Yy € V = z = 0. From now on we will assume all
quadratic forms are regular unless otherwise stated. We now state several of the
fundamental results in the algebraic theory of quadratic forms, mostly without
proof. Proofs can be found in any standard text on algebraic theory of quadratic
forms, such as [La:1973] or [Sc:1985].

Theorem 1.3 (First Representation Theorem) Let d € F,d # 0 be represented
by q (i.e. Jv € V,v # 0 such that q(v) = d). Then there ezists another quadratic
space (V',q'), together with an isometry V ~ dz? 1 V',

Corollary 1.4 Any n-ary quadratic form over a field F of characteristic not 2

is equivalent to some diagonal form dyz? + ... 4 d,22.

Remarks. The diagonalizability of a quadratic form (in such a way that any
one nonzero represented element can be chosen to appear in the diagonaliza-
tion) is equivalent to the existence of an orthogonal basis for the quadratic
space (V, B) (with a prescribed vector of “nonzero length” as one of the basis
vectors). The isometry class of the diagonal form d; z3+...+d,z2 will be abbre-
viated by (dy, ..., dn). For diagonal forms we have (ay, ..., an) L (by,...,by) ~
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LT T AT TEORRG S 0 and (@) ieyan)  ® (b1y. .., bm) ~
(albl,...,anbl,...,albm,...,a,.b,,.). Notice also that det((ay,...,a,)) = a1a,. ..

F/F?,

Definition 1.5 The form q is isotropic if Jv € V,v # 0, such that q(v) =0,

t.e. if g represents 0. The form q is said to be anisotropic otherwise.

Proposition 1.6 For a regular binary (2-dimensional) quadratic form q, the

following are equivalent.
1. q 13 isotropic.
2. ¢~ (1,-1), i.e. q is a hyperbolic plane.

3. The determinant det(q) of = —1 € F/F?,

Proof. The equivalence of (2) and (3) follows directly from the Representation
Theorem above. That (2) implies (1) is clear. Finally, for (1) implies (3), notice
that for a binary form (a, b) to represent 0, there must exist nonzero elements z
and y in F such that az® + by? = 0. Then az? = —by?, so det(q) =ab= —1¢
F/F?, O

Theorem 1.7 (Witt’s Cancellation Theorem) If q,q1,9, are quadratic forms
over F', and ¢ | qy ~ q L gy, then g, ~ qa.

Proof.(Sketch) It suffices to consider the case g = (a),a € F. We may view
the isometry as an identification of the respective quadratic spaces, so that we
are working in one space (V, @),Q ~q L g ~q L g, Then since both forms
represent a, there are vectors  and v in V such that Q(u) = a,q; = vt and
Q(v) = a,q; = v'. To prove the theorem we need only find an isometry of
V taking u to v. Without loss of generality we may assume that the vector
w = u — v is anisotropic. Let T be the “hyperplane reflection with respect to

w” ie 7(z) =z — 2—';—((%)10. Then one can check that 7 is the desired isometry.
a
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Theorem 1.8 (Witt’s Decomposition Theorem) Any regular quadratic space
(V, q) splits into an orthogonal sum (Vh,qn) L (Va,qa), where Vi is a hyperbolic
space and V, is anisotropic. The isometry types of Vi and V, are uniquely

determined. V 1is isotropic if and only if Vj, is nonzero.

Proof. (Sketch) We prove the last statement first. Clearly if V, is nonzero then
V is isotropic. Then assume V is isotropic, and let z be an isotropic vector, so
g(z) = 0. Since V is regular, there is a vector y which is not orthogonal to z,
and since z is orthogonal to itself, we see that = and y are linearly independent.
Let H, be the subspace spanned by z and y. It is easy to check that H; has
determinant —1 € F/Fz, so by the Proposition above we see H; ~ H. Then
V, is nonzero. Moreover, V ~ H; 1| Hj, where Hyi is regular, and by Witt’s
Cancellation Theorem, Hyi" is uniquely determined up to isometry. One proceeds

by induction on dim(V'). o

Definition 1.9 The Witt index of the quadratic space (V,q) is defined to be
%dith. This is an invariant of the equivalence class of . We may occasionally
write g, and gy to denote the subforms of q corresponding to the spaces V, and

Vi respectively.

Definition 1.10 We denote the set of nonzero elements represented by the form

q as Dp(q), t.e.

Dr(q) = {d € F|there exists v € Vsuch that q(v) = d}

Corollary 1.11 (Second Representation Theorem) Let q be a regular quadratic
form, d € F. Thend € D(q) <= q L (—d) is isotropic.

Proof. The forward implication is clear. For the reverse direction, let (z1,...Zn41)
be an isoptropic vector for ¢ L (—d). Then a;2? + ... + anz? — dzZ,, = 0. If
Tpy1 # 0, then d = al(ih)’ + ...+ a,.(;fﬁ?)2 € D(q). If zp41 = 0, then

(=1, ...2,) is an isotropic vector for . Thus g contains a hyperbolic plane, and

therefore is universal. Hence ¢ must represent d. ]
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We are now in a position to define the Witt ring W(F') of F. The construction
itself is somewhat technical, but we will soon develop a more intuitive under-
standing of this ring. Let M(F) denote the set of all isometry classes of regular
quadratic forms on F. On this set we have defined two binary operations,
L, which acts like addition, and ®, which acts like commutative multiplica-
tion. These operations make M(F) into a commutative semiring, and under L,
M(F) is a “cancellation semigroup”-it would be a group (and in fact a ring)
if only every element in M(F) had an additive inverse. There is a canonical
construction to remedy this deficiency, the so-called Grothendieck construction.

Let M be any commutative cancellation semigroup. Define an equivalence
relation ~ on M x M by (z,y) ~ (2',y') <= z+7vy = 2’ +y. Define
the Grothendieck group of M to be Groth(M) = (M x M)/ ~, with addition
induced by (z,y) + (¢',3') = (z + 2',y + ¥'). Then Groth(M) is a group with
(z,y) and (y,z) as additive inverses. Furthermore, M embeds naturally in
Groth(M) under the map i : M — Groth(M) given by i(z) = (z,0). Now
(z,9) = i(z) — i(y), so Groth(M) is the additive group generated by M. If
M has a commutative multiplication making it into a semiring, then defining
(z,y) - (z,¥') = (z2’ + yy',2'y + 2y’) induces a multiplication on Groth(M)

making it into a commutative ring.
Definition 1.12 W(F) = Groth(M(F)) is the Witt-Grothendieck ring of

quadratic forms over F. Elements in W(F) are of the form q; — qa, where qy, q,

are (isometry classes of ) nonsingular quadratic forms over F.

Observe that ZH, consisting of all hyperbolic spaces and their inverses,
forms an ideal of W(F) Indeed, for any regular form g, we have g@ H = n-H,
where n = dim(q). (For any positive integer n, and any form ¢, we have

n-p=¢L... Lo, an orthogonal sum of n copies of ¢.)
Definition 1.13 The quotient ring W(F) = W(F)/ZH is the Witt ring of F.
We have the following facts about the elements in the Witt ring:

1. The elements of W(F') are in one-to-one correspondence with the 1sometry

classes of anisotropic forms over F'.
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2. Two forms q and q' represent the same element in W(F) <= q, ~ q..

3. If dim(q) = dim(q'), then the two forms q and q' represent the same
element in W(F) < gq~¢'.

We can then see that the problem of classifying all isometry classes of
quadratic forms over the field F is really that of determining the Witt ring
W(F'). Note also that the 0-element of W(F) is given by any hyperbolic space,
that the multiplicative identity of W(F) is the one-dimensional form (1), and
that the additive inverse of any form (ay,...a,) € W(F)is (—ay,... — an).

We can translate the invariants dim(q) and det(q) so that they are
well-defined on elements of the Witt ring. To do this we must modify them in
such a way that H will be in the kernel of each of the maps. Thus we make the

following definitions.

Definition 1.14 The mod 2 dimension dimo(q) of the quadratic form q is de-
fined to be dim(q) viewed as an element of Z/2Z. If q = q¢' € W(F), then
dimo(q) = dimo(q'). The map dimg: W(F) — Z/2Z is a well-defined ring epi-
morphism. The kernel of this homorphism is denoted I F, and consists precisely
of (images of) even-dimensional forms in W(F). IF is called the fundamental
ideal of the Witt ring W(F).

Definition 1.15 The signed determinant dy(q) is given by di(q) =
(—l)ﬂuz__lldet(q) € F/F?. This map is well defined on W(F), and gives a group
epimorphism IF — F/F?, with kernel I*)F = (IF)2. (This last statement
requires proof; see [La:1973].)

Before concluding this introductory section, we want to specify how one
accounts for isometries between (diagonal) quadratic forms. The following the-
orem of Witt, which we will state without proof (see [La:1973] or [Sc:1985]), says
that to understand isometries between diagonal forms in general, it suffices to

understand isometries between binary diagonal forms.
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Theorem 1.16 (Witt’s Chain Equivalence Theorem) If (ay,a,...,a,) ~
(b1,bs,...,b,), then it is possible to get from the first diagonal form to the
second diagonal form by a finite sequence of intermediate isometries involving

only two of the diagonal entries of the form, i.e. isometries of the type

(cl,...,c,-,...,c,-,...,cn)—»(cl,...,c:-,...,c;-,...,c,,),

where (c;, cj) ~ (¢}, c}).

Understanding isometries between binary diagonal forms is in theory quite
simple. Two binary forms are isometric if and only if they have the same
determinant and represent a common value. This follows immediately from the
First Representation Theorem and the fact that the determinant of a form is

an invariant of its isometry class.

We conclude this section by actually determining the Witt ring for the fields
C,R, and F,, the finite field with q = p* elements.

1. Let F = C. Then F = F?, j.e. every element is a square. The unique
nonzero anisotropic form is (1), since (a) = (ab?) Va,b€ F. Therefore
W(F) = Z/2Z. This generalizes to “quadratically closed fields”, i.e. those
field with F' = F2,

2. Let F' = R. Then F has two square classes: F/F2 = +1. We have

~ ] @ if a€F?

= { ] if e —F?

Thus a nonzero anisotropic form is either r(1) (positive definite) or r(—1)
(negative definite) for some positive integer r, and W(R) = Z. This
generalizes to “Euclidean fields” , i.e. fields F' with F/F? = {1, —1} for

which —1 is not a sum of squares.

3. Let F = F,. There are two cases to consider. First, assume g=1(4). In

this case we have —1 € F2. Fix s ¢ F?. The four anisotropic forms in
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W(F) are given by 0, (1), (s), (1, ), and we have W (F) = Z/2Z[F|F?) =~
Z/2Z[Z/2Z]. In the case ¢ = 3(4), we have —1 ¢ F2, and the four
anisotropic forms are 0, (1), ( — 1), (1,1). Then W(F) = Z/42Z, generated
by (1).

2 Witt Rings and Quaternion Algebras

In the preceding section we have seen how to construct the Witt ring of a
field, and have observed that we have isomorphisms W(F)/IF = Z/2Z and
IF/I?F = F/F? In this section we will try to understand the quotient
I*F/I®F, which will be very important for our study of the connections be-
tween Witt rings and Galois groups. This quotient is closely related to the
behavior of quaternion algebras over the field F, and we will need to exam-
ine the connections between splitting of quaternion algebras and behavior of
quadratic forms over F. The splitting of these algebras is in turn related to the
Galois-theoretic properties of the field. We embark now, therefore, on an inves-
tigation of quaternion algebras and their connections to quadratic forms. We
will end this section by finding some simple quadratic form theoretic criteria for
the realization of certain small 2-groups as Galois groups over a field. We will
give characterizations of Witt rings of fields with more sophisticated quadratic
form structures in subsequent sections. These characterizations will often hinge
on the study of the splitting of certain products of quaternion algebras over the

field in question.

Definition 2.1 Let F be a field of characteristic not 2, a,b € F. Consider the
F-algebra with generators i, j and relations i* = a, j? = b,ij = —ji, t.e. i and j
are anticommuting generators with squares a and b respectively. This F-algebra
is called an F-quaternion algebra, and is denoted (""). When the field F is

understood we may sometimes denote this algebra simply by (a,b).

The motivation for the definition is the classical case F = R,a = b = —1.

This algebra, ( —1) is the skew field of classical quaternions (Hamiltonians).
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Given a quaternion algebra A = (EF',E), define k = 5. Among 1, j, k, any pair will
anticommute. As an F-vector space, A= F ® Fi1® Fj & Fk, so dimpA = 4.
This is easily seen by representing A as a matrix algebra, and showing that the
four elements 1,1, j, k are independent in this representation. For example, let

K be any field containing F§/~an/b). Set
01 01
""““(-1 0)’ y“/’;(lo)'

Then sending ¢ — z,j — y gives an algebra homomorphism A — M,(K)
in which the images'of 1,4,7,k are F-linearly independent. Moreover, this

construction clearly shows that (:%!1) = M,y(F).

Observations 2.2 We have the following facts about quaternion algebras, which

we present without proof. (See [Pi:1982].)
1. If K is any eztension field of F, then K QF (“—F'.—b) = (9;‘?)

2. A= (5;.9) 18 a central simple F-algebra.

3. The algebra (9;,9) 18 symmetric in a and b; i.e. (‘%’3) = (é;,—)

4. (“—};ﬁ)g(i}i) foranyz,y#0€ F.

5. Any F-quaternion algebra (“7?) ts either a skew field (division algebra) or

is isomorphic to My(F') (split quaternion algebra).

Definition 2.3 Observe that anyv € A = (“—'Fé) can be written asv = a+ fi+

73 +6k. We define Ao = {Bi+~j+ 6k} to be the pure quaternions. Aq forms a
three-dimensional subspace of A. For 0 # v € A, we havev € Ay <= v* € F

but v ¢ F. Ay is invariant under F-algebra automorphisms of A.

Definition 2.4 For any v = a + (i + vj + §k € A, we define the conjugate
U ofvitobev =a—Bi—vj— 8k Wethen havev =7 < veEF, v=
—U <= v € Ao. This operation obeys the usual properties of conjugation,

namelyz +y==T+y, 7T =rz,r€F, TY=7YZ. Define the trace of z € A



140 T.L. SMITH

tobe T(z) =z +7% € F, and the norm of z € A to be N(z)=zz € F. We
can associate a symmetric bilinear form to A by defining B(z,y) = 1T(23) =
3(=Y + yz) € F for 2,y € A. The associated §-dimensional quadratic form is
just N(z); this is called the norm form of A.

Observations 2.5 The set {1,1, j, k} forms an orthogonal basis for the quadratic
space (A, N). The diagonahzation of N with respect to this basis is given by

(1,—a,—b,ab). We abbreviate this form by ({ — a, —b)). (In general, we may

write ((a1,0,...a,)) to denote the n-fold tensor product (1,a,) ® (1,2,) ®...®

(1,a,). Such a form is called an n-fold Pfister form.)

Proposition 2.6 N is a group form; i.e. Dp(N) forms a multiplicative group.
Proof. N(zy) = zy -2y = 2N(y)z = 2zZN(y) = N(z)N(y). O

Corollary 2.7 z € A is invertible <> N(z) # 0 <= < is anisotropic.

Thus A is a division algebra if and only if N is anisotropic.

Proof. If z has an inverse 7', then N(z)N(z~) = N(1) = 1 so N(z) # 0. If
N(z) = a #0, then 27 = a -1, so 27! = Za~'. The final statement is obvious.

O

Theorem 2.8 Let A = (5[3,5), A = (%{f’—') The following statements are equiva-

lent:

(i) A= A’ as F-algebras.

(i) A= A’ as quadratic spaces.
(i) Ao = Ay as quadratic spaces.

Proof. The equivalence of (ii) and (iii) follows from Witt’s Cancellation The-
orem. For (i) implies (ii), let ¢ : A — A’ be an algebra isomorphism. Then
©(Ao) = Ay. Takez = a+ 2o € F @ Ap. Then o(z) = a + w(zo) € F @ Ap.

9(Z) = p(a—zo) = a—p(zo) = p(z). (So algebra isomorphisms commute with
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the conjugation operation.) To confirm that (i) implies (ii), we need only check
that ¢ is an isometry: N'(p(z)) = ¢(z) - ¢(Z) = ¢(2Z) = ¢(N(z)) = N(z),
as desired. It remains to show that (iii) implies (i). Let o : Ao — A}, be an
isometry. Since 4 is orthogonal to j, we must have o(i) orthogonal to o(j), and
hence o(i) and o(j) anticommute. Furthemore, —o(i)? = o(i)o(i) = N(o(1)) =
N(i) = —a, and therefore o(i)? = a. Similarly, o(j)* = b, s0 A'= (3)=A. O
Example. The algebras (%) and (5';—1) are always isomorphic, since their cor-
responding norm forms are (1, —a, —a,a?) and (1, —a, 1, —a), which are clearly

isometric. We will use this fact repeatedly later.
Theorem 2.9 N is isotropic <= N is hyperbolic <= A = M,(F).

Proof. A four dimensional isotropic form of determinant 1 (such as N) must
be hyperbolic by determinant considerations. Then the algebra A’ = () =
M,(F) has N’ ~ 2H ~ N, so A = M,(F). (Note also that (N, A) is hyperbolic

<= (N, Ap) is isotropic, <> ( — a, —b, ab) represents 0.) O

Theorem 2.10 (Splitting Criteria) Let A = (°—1§3) The f ollowing are equiva-

lent.
1) A is split. (A= M,(F); A is not a division algebra.)
2) (a,b) represents 1.
3) a is a norm from F(/b).
3’) b is a norm from F(/a).

Proof. Ais split < ((—a,-b)) ~ 2H, <= (l,—a,—b,ab) = 0 €
W(F), < (a,b) ~ (1,ab), <> (a,b) represents 1. This proves (1) <«
(2). Notice also that (1, —a, —b,ab) = 0 € W(F) <= (1,-b) ~ (a,—ab), =
(1, —b) represents a. If b = 1, then all conditions are vacuously true. If b#£1€
F/F?, then the “norm form” for the (proper) field extension F/b) is (1,-b),
so (a,b) represents 1 <= (1, —b) represents a, <= a € N(F/b)/F), giving
(2) < (3). (3') follows by symmetry. m)
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Examples
1. (%) is split Va € F.
2. (22°) is split Va € F.
3. (252)is split Va € F,a # 1.

4. Over F, (or any field over which binary forms are universal), all quaternion

algebras split.

Corollary 2.11 (Classification of Binary Forms) Given two nonsingular forms
q = (a,b) and ¢’ = (a',V), we have ¢ ~ ¢ <= d(q) = d(¢') € F/F? and

() = (=),

We will want to work with quaternion algebras viewed as elements in the
Brauer group Br(F) of the field F. Recall that the Brauer group Br(F') con-
sists of equivalence classes of central simple F-algebras, under the equivalence
relation A ~ B <= 3r,s such that M,(A) = M,(B) as F-algebras. The
set of equivalence classes is made into a commutative group under the opera-
tion ®r. We will be concerned solely with the subgroup of the Brauer group
generated by the quaternion algebras. We will use the same notation to denote
either a quaternion algebra or its equivalence class in the Brauer group. This
should not cause any confusion in practice, as it should always be clear from the
context what is intended. We will denote the product of two equivalence classes
of quaternion algebras (a,b), (c,d) € Br(F) by (a,b)(c,d), and the identity ele-
ment (i.e. the class of F') will be denoted by 1. We will need the following facts
about quaternion algebras, or their equivalence classes in the Brauer group,

which we state without proof. (See [La:1973] or (Pi:1982].)
Theorem 2.12 Let a,b,c,d € F. We have the following results.
1. (a,b)(a,c) = (asbc) € Br(F) (weak bilinearity).

2. (a,b)(a,b) = 1 € Br(F); and thus (a,6) = (c,d) <= (a,b)(c,d)=1€¢
Br(F).
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3. (a,b)(c,d) = 1 € Br(F) < 3z € F such that (a,b) = (a,z),(c,d) =
(¢, z), and (ac, z) is split; < bN(F{/a)/F)NdN(F(/c)/F)NN(F{/ac)/F) #

0 (common slot property, or linkage).

Next we wish to understand the connections between splitting of (products
of) quaternion algebras and structure of the Witt ring. Let Bry(F') denote the
“9.part of the Brauer group”, i.e. Bry(F) = {z € Br(F) : @* = 1}. Then
in fact Bry(F) is the subgroup of Br(F') generated by the (classes of) quater-
nion algebras. (This is a celebrated result of Merkurjev, [Me:1981], see also
[Wd:1986].) It can then further be shown that Bry(F) = I?F/I*F. The iso-
morphism is realized through the so-called Hasse-Witt invariant of a quadratic

form.

Definition 2.13 For a quadratic form q ~ (a1,...a,) over F, define the Hasse
invariant of q to be s(q) = [lic;(*f*) € Bry(F) This is an invariant of the
isometry class of q (see [La:1978]). Let q € I*F, and set dim(q) = n = 2m.
Then define the Hasse-Witt invariant 3(q) of g by 3(q) = s(q)-(==2)m(m-1/2 ¢
Bry(F).

Theorem 2.14 The Hasse-Witt invariant determines a well-defined isomor-
phism I*F[I®F — Bry(F).(For a proof, see [Me:1981] and [Wd:1986], and
also [La:1978].)

Note that the Hasse-Witt invariant of the form (( — a,—b)) is precisely
the (Brauer group class of) the quaternion algebra (“—,{3), so that quaternion
algebras correspond under this isomorphism precisely to their associated norm
forms. (I%F is generated by these 2-fold Pfister forms, so in some sense this
completely determines 3.) Then a sum of 2-fold Pfister forms will be in I°*F
precisely when the product of their corresponding quaternion algebras splits.

The close connection between I2F/I*F and Bry(F) is the linchpin of the
proof for many of the results in the fourth and fifth sections of these notes, as
this is critical to the understanding of the structure of the so-called “W-group”of

F, which is a particular 2-Galois group of F. However, before we get to that
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point, we want to understand the connections among the appearance of small
2-groups as Galois groups over F, the splitting of quaternion algebras over F,
and the behavior of quadratic forms over F.

First let us consider the rather trivial case of the realizability of Z/2Z as
an F-Galois group. Extensions of F with Z/2Z as Galois group look like
FW/a), a € F,a ¢ F2. Thus Z/2Z is not realizable as an F-Galois group
precisely when F' is quadratically closed, i.e. when F? = F. We determined
the Witt ring of such a field at the end of the first section. We thus have the

following.

Proposition 2.15 The group Z/2Z is not realizable as a Galois group over the
field F if and only if W(F) = Z/2Z.

Recall from Galois theory that if L and K are Galois extensions of F with
Gal(L/F) = G,Gal(K/F) = H,and LN K = F, then LK (the compositum
of L and K) is Galois over F, and Gal(LK/F) = G x H. Thus if there exists
an extension L with Gal(L/F) = G for a given G, then there will also exist an
extension M with Gal(M/F) = G x Z/2Z provided that F'/F? is “big enough”,
ie. as long as it is possible to find a € F/F?, /a ¢ L. This is for the most
part not too interesting, so from here on we will restrict our attention to the
realizability of groups which do not have Z/2Z as a direct factor.

We consider next groups of order 4. Of course there is only one that does
not have Z/2Z as a direct factor, namely Z/4Z, or C (for “cyclic”) as we will
denote it from here on. The realizability of this group turns out to be quite

interesting. We have the following theorem, whose proof is “folklore”.

Theorem 2.16 Let F' be a field of characteristic not 2, and a € F,a ¢ F2.

The following are equivalent.

(i) 3 an estension L/F with Gal(L/F) = C, such that F{/a) is the (unique)
quadratic intermediate field between L and F.

(1) (%) = My(F).
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(111) a is a sum of two squares in F.

(v) The quadratic form (a,a) represents 1 over F.
Any such eztension looks like F(/x + w/a), =,y € F,z?> —y*a = 2%,3z¢€ F.

Proof. (i) <= (iv) is an elementary Galois theory exercise: Let K = F'(/a) C
L. Then since L is necessarily a quadratic extension of K, we may write L =

F(a), where a =y/z + y/a for some z,y € F, y # 0. Then « satisfies the
fourth degree polynomial t* — 2zt? + z? — y%a over F. It is easy to verify that

the other roots of this polynomial are —a, & =y/z — /a, and —&. Then L/F is
Galois <= &€ L <> ada=yz?—yla€ L < z?—ya € L?. Moreover,
L’NK = K*U (¢ + wa)K?, and z? — y%a € F. Thus 22 — y%a € [? <
2 —y’a € K? < a?—y2a € F2UaF? If 22 — y%a € F?, then one can show
Gal(L/F) = Z,/2Z x Z/2Z. Thus Gal(L/F) = Z/AZ = L = F{/z + w/a),
where Np¢zy/r)(z +wa) = a2’ € aF?. In other words, 2> = ay® + az? has
a solution over F. Conversely, if L = F(a) is such an extension of F, then
it is not hard to see that L/F is Galois of degree 4, with cyclic Galois group
generated by o, where o(a) = &. For (ii)) <= (iv) <= (iii), observe that
(a,a) = My(F) <= az?+ay? =1 has a solution over F.. Multiplying through
by a, we see that a®z? + a’y? = (az)? + (ay)? = a for some z,y € F,ie. aisa
sum of two squares in F. o
If F does not have C as a Galois group, then any sum of squares in F' must in
fact already be a square in F,i.e.3" F2 = F. Such a field is called pythagorean.
Then either F' is quadratically closed, or —1 ¢ ¥ F'2, since if —1 € 3 F2, then
Y F? = F? = F (any element can always be expressed as a difference of two
squares), and F would be quadratically closed. If —1 ¢ 3" F?, we say F is a real
field. Pythagorean real fields have some interesting quadratic form theoretic

properties.

Corollary 2.17 Let F be a field of characteristic not 2. The following are

equivalent.

!
1. F is pythagorean.
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2. C is not a Galois group over F.
8. W(F') is torsion free or W(F) = Z/2Z.

Proof. The equivalence of (1) and (2) follows directly from the preceding
theorem, since if F' is not pythagorean, there exists a € F which is a sum of two
squares, but which is not itself a square, and hence there exists a C-extension
of F' containing F'(/a) as its unique quadratic intermediate field. Conversely, if
F has a C-extension, then the unique quadratic intermediate field is F(/a) for
some a € F, and by the theorem a must be a sum of two squares which is not a
square. Then F' cannot be pythagorean. Next consider (1) = (3). From the
remarks preceding the corollary we may assume F is real. Let g=(ay...,an)
be an anisotropic form over F. Then for any positive integer k,kg=q L ... L q
is anisotropic. Indeed, Dr(g) = Dp(kq). (Notice that if 0 is a sum of non-zero
squares, then -1 is also a sum of squares.) To see (3) = (1), let @ € F be a sum
of two squares but not a square. Then (1,1) ~ (a,a),50 2(1,—a) =0 € W(F),
but det((1,—a)) # —1,50 (1,—a) #0 € W(F). Thus there exists an element
of additive order 2 in W(F), and W(F) is not torsion free. m]

Before concluding this section we give the following theorem without proof,
which says the realizability of any cyclic 2-group, of order bigger than 2, as
a Galois group over F, hinges on the realizability of C'. See [KLe:1975] for a

proof.

Theorem 2.18 For a field F' of characteristic not 2, the following are equiva-

lent.
1. F admits a C-eztension.
2. F admits a Z/2"Z-eztension for some n > 2.

3. F admits a Z /2" Z-extension for every n.

Combining this with our result above, we get the following criteria for the

“nonrealizability” of cyclic 2-extensions over a field F.
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Corollary 2.19 For a field F of characteristic not 2, the following are equiv-

alent.
1. F admits no C-eztension.
2. F admits no Z/2"Z-extension for some n > 2.
3. F admits no Z/2"Z-eztension for any n > 2.

4. F 1s pythagorean

In the next section, we will examine criteria for the realizability of other
small 2-groups as Galois groups over F in terms of the behavior of quadratic
forms over F. Our study will be aided by a powerful theorem of Frohlich, which
relates the realizability of certain groups as Galois groups to the splitting of

products of certain quaternion algebras over F'.

3 Galois Groups and Quaternion Algebras

In the preceding section we developed criteria for the realizability of groups of
order 4 as Galois groups over F. We begin here with a study of the realizability
of groups of order 8. There are exactly five such groups, three of which are
abelian, and which have essentially been handled in the preceding section. The
remaining two groups are D, the dihedral group of order 8, and Q, the quater-
nion group of order 8. Let us recall presentations of these two groups in terms
of generators and relations:
D = (z,y|z? = y* = 1 = [z,y]?, [z, y] central)
Q = (i,jli* = j* = 1,4 = j% = [1,5])

Thus D is generated by two anticommuting reflections z and y, while @ is
generated by two anticommuting elements i and j, each of order 4. The following
theorem on the realizability of D as a Galois group over F is “folklore”; this
result, along with the result on the realizability of C, is fundamental to the
understanding of the W-group of F', which will be constructed in section 4 of

these notes.
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Theorem 3.1 Leta,be F, independent mod F2. There ezists a Galois ezten-
sion L/F with Gal(L/F) = D, F C F{/ay/b) C L, and with Gal(L/F(/ab)) =
C, if and only if the equation az? + by® = 2? has a nontrivial solution over F.
Any such eztension can be written as F(\/E,\/I;,m), where 2% — az? =
by?,3y € F. Equivalently, there ezists such an eztension if and only if(“—i','—’) 18

sphit.

Proof. Suppose first that L is such an extension. Then there are five interme-
diate subfields of codimension 2 in L; let K be one of them such that/b ¢ K.
Then K = F(/ay/t) for some t € F(/a), and it follows that L = K(/b) =
F(/a/by/t). Since L is a C-extension of F@/ab) containing F(/aby/b) as its
quadratic intermediate field, we see from the result in section 2 that ¢ = z+wh,
for some z,y, € F{/ab), where Ni/anoy ry/as)(t) = 2% — by? = ba? € F(/ab).
Since also t € Fy/a), we have Nryabmy ry/an)(t) = Negay p(t), so Negayr(t) €
b- F(/ab)> N F = bF2U aF2 If Nryayr(t) € aF?, we would have F{/ap/t)
being a C-extension of F' inside L, which is impossible since C is not a quotient
of D. Thus we must have Npz)/r(t) = b € F/F? and thus b € N(F/a)/F),
so az’ + by® = 2% has a nontrivial solution in F, as desired.

Conversely, suppose t € F(/a) is such that Neyayr(t) = by’,y € F.
Let L = F(\/E,\/I;,\/Z). One can verify that L is indeed Galois over F, that
Gal(L/F@/ab)) = C, and letting T be a generator of Gal(L/F{/ab)) and o the
generator of Gal(L/F(/ay\/t), one can check that o and T together generate
Gal(L/F), and that (o,7) = D. O

Observations 3.2 We can make the following observations concerning the re-

alizability of D as Galois group over the field F.

1) If -1 ¢ F? and IF/FZI > 4, then D 1s always realizable as an F-Galois
group, since fora € F,a ¢ F2 a and —a are independent mod F?, and

(a,—a)=1 VaeF.

2) If-1¢ F"’, D appears as a Galois group over FF < 3 an element a €
F,a ¢ F?, such that (1,a) represents some element outside of F2 U aF?2.
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Definition 3.3 A field F which has the property z* + ay® € F2UaF? VYa¢
+F? is called rigid.

R. Ware has shown that a field is rigid <= W(F) = Z/nZ[G] for some
n € Z and some group G. (In fact, it is not hard to show that either n = 2, and
G = F/F? orn € {0,4} and G is isomorphic to a subgroup of index 2 in F/F?
not containing —1.) (See [Wa:1978]) Thus we have the following criterion for

the nonrealizability of D as Galois group over F'.

Proposition 3.4 D does not appear as a Galois group over ' <= one of

the following three conditions holds:
1. —1€ F? and F is rigid (< W(F) = Z/2Z[F|F?)).

2. F/F? = {1,-1},-1 ¢ F?, but—1 is a sum of two squares in F ( <
W(F) = Z/AZ).

8. F/F? = {1,—1} and —1 is not a sum of squares in F' (i.e. F is Euclidean)
(<= W(F)=1Z)

Definition 3.5 The least positive integer n such that —1 can be written as a
sum of n squares in F is called the level of the field F, and is denoted s(F). If
F is real (—1 is not a sum of squares in F), then we define s(F) = co. (Thus
from the remarks preceding the proposition above, we see that the level of a rigid
field is 1, 2, or co. This is quite easy to prove, and is left as an ezercise for the

reader.)

The other nonabelian group of order 8 is Q. The study of the realizability
of Q as a Galois group began over a century ago. The first example of a field ¥
realizing Q as a Galois group over Q was constructed by Dedekind [De:1886].
Bucht [Bu:1910] characterized quaternion extensions for fields where —1 is not a
sum of two squares, and Witt [Wi:1936] solved the general case. More recently,
Jensen and Yui [JeY:1987], R. Ware [Wa:1990] and I. Kiming [Ki:1990] have

given treatments of such extensions. The following theorem (given without
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proof) describes the realization of the quaternion group as a Galois group over
a field F.

Theorem 3.6 Let F' be a field of characteristic not 2, and let a,b € F, inde-

pendent mod F2. The following conditions are equivalent.

1. There ezists a Galois extension L of F, with Gal(L/F) = Q, and such
that F(/a,/b) is the unique biquadratic intermediate field between F and
L.
2. (F)F)¥) = 1€ Br(F).
3. (a,b,ab) ~ (1,1,1).
Moreover, if az} + bz} + Lol ~ y? + y2 + y2, where the isometry is given
by z; = Z?=1 Pijy;, det(pi;) = 1, then the quaternion eztensions containing

F(/a;/b) are given by L = F(\/r(l + p1v/a + pa/b + pas/ab)),r € F.

Remark. The equivalence of the first and third statements is Witt’s crite-
rion for the realizability of Q. To see the equivalence of the second and third

statements, notice that in Br(F') we have

(av b)(a” a)(b, b) (a" b)(aw _1)(b1 —1) = (a” —b)(b’ —1)

(a, —b)(b, -1)(-1,-1)(-1,-1)
(a,=b)(—b,—-1)(-1,-1) = (—a, —b)(-1, —1), and
1€ Br(F) <= (—a,—-b)=(-1,-1), <= (a,b,ab)
1,1,1).

(—a,-b)(-1,-1)

(Pl

We can make some additional observations concerning the realizability of Q

as an F-Galois group, based on the level s(F') of the field F.

Proposition 3.7 Leta,be F, independent mod F2.

1. If s(F) = 1, then F(/a/b) embeds in a Q-extension of F <> it embeds

i a D-eztension of F.

2. If s(F') = 2, then Q is realizable as a Galois group over F as long as F has

at least four square classes (i.e. as long as F has a biquadratic extension).
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3. Ifs(F) > 4, then if Q is realizable, so are D and C. Moreover ([Wa:1990]),
Q is realizable <= sums of 2 squares in F' are not all “rigid”. (That is,
Ja € D((1,1)),a # 1, such that D((1,a)) 2 F?UaF?.)

Proof. For (1), notice that when s(F) = 1, then (a,a) = (b)) = 1 €
Br(F) Va,b€ F. Thus the condition for F(/a,/b) to embed in a Q-extension
implies (a,b) =1, andso F{/ay/b) embedsin a D-extension L with
Gal(L/F{/ab)) = C. Conversely, if F(/a;/b) embeds in a D-extension L of
F, then the realizability criterion for D implies that one, and hence all, of
(a,b),(a,ab),(b,ab) = 1 € Br(F), and we see (a,b)(a,a)(b,d) = 1 € Br(F) as
desired.

For (2), let a € F such that —1 and a are independent mod F2. We al-
ways have (a,—a) = 1 € Br(F), and if —1 is a sum of two squares then also
(=1,-1) =1 € Br(F). Then we have (a,—1)(a,a)(-1,-1) = (a, —a)(-1,-1) =
1, so @ is realizable as the Galois group of a quadratic extension of Fi/a,,/—1).

For (3), we have Q realizable = 3Ja,b € F, independent mod F2, such
that (a,b,ab) ~ (1,1,1). Since —1 ¢ Dp((1,1)), we must have {a,b, —1}
independent, so |F/F2| > 8. Then by our earlier proposition, D occurs as
an F-Galois group. Now a is a sum of three squares, so if a is not a sum
of two squares, then sums of two squares cannot all be rigid. If a is a sum
of two squares, then (1,a,a) ~ (1,1,1) ~ (a,b,ab) and by Witt’s Cancella-
tion Theorem , we have (b,ab) ~ (1,a) so a is a sum of two squares which
is not rigid. Then there exists an element ¢ which is a sum of two squares
but not a square, and thus a C-extension of F' containing F(/c). Conversely,
if @ is not realizable, then a € Dp((1,1)) must be rigid (which in and of it-
self implies either —1 € F? or F is real and |F/F?| > 4), or else we have
(b,ab) ~ (1,a) = (a,b,ad) ~ (1,a,a) ~ (1,1,1), where a,b are independent
mod F2, and Q is realizable. O

This completes the analysis of the realizability of groups of order 8 as Galois
groups over the field F', in terms of the behavior of quadratic forms over F.

Notice that in fact the realizability of the groups C, D, and Q could all be
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framed in terms of the splitting of quaternion algebras or products of quaternion
algebras. These are really just special cases of a much more general result given
by Frohlich, describing the realizability of certain Galois groups over F' in terms
of the splitting of products of certain quaternion algebras, determined by the
presentation of the group [Fr:1985]. We will state a special case of this result
here, and make use of it to analyze the realizability of a few more small 2-
groups in terms of the behavior of quadratic forms, although the groups we
will be considering are sufficiently small that one could give direct proofs of

Frohlich’s result on a case-by-case basis.

Theorem 3.8 (Embedding Criterion) Let K = F(/ay,...,/a,), where
ay,...,a, are independent mod F? Let G = Gal(K/F) = (Z/2Z)". Consider
a (nonsplit) central extension G of Z/2Z by G:

1~ Zfo% - G —+G—+1

Let (01,...,0,) = G, where 0;(/a;) = (—1)% /a;, and let y,..., 7, be a lifting
of o1,...,0, to G. Let cij € {0,1} be defined by c;; =0 <= [m,13]=1, i#]
and c;; =0 <= 712 = 1. There ezists a Galois extension L/F,L O K, with
Gal(L/F) = G, and such that G — G is the natural surjection of Galois groups,
> Ilicj(ai, a5)% = 1€ Br(F).

Notice that for G = C, D, or @, this gives exactly the results we have al-
ready obtained, concerning the realizability of these groups in terms of splitting
of quaternion algebras. The groups whose realizability can be analyzed through
this Embedding Criterion can all be realized as central products of the groups
C,D,Q and the Klein 4-group Z/2Z x Z/2Z, amalgamating the unique non-
trivial central involutions in D and @ and an element of order two in C and
the Klein 4-group. Since central products with the Klein 4-group are equivalent
to direct products with Z/2Z, from our standpoint such groups are uninter-
esting. The Embedding Criterion will be most useful in investigating central
products of D, @, and C. These groups have been studied by many people; one
rather thorough treatment is given in [LaSm:1989]. Central products of D and
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@ are precisely the “extra-special” 2-groups, and as such are quite well-known.
Each factor of C, D, or @ will contribute factors of (ai,a:), (ai,a;) i # j,
or (a;,a;)(ai,a:)(aj,a;), i # j, respectively, to the product of quaternion al-
gebras. Of course, most 2-groups are not one of these central products, and
hence can not be analyzed by our version of the Embedding Theorem. For the
remainder of this section, however, we will concentrate on two more of those
that can be analyzed in this way, specifically the central products DC of order
16 and DD of order 32. These are all the groups that can be expressed by
relations involving no more than two quaternion algebras. It is also possible
to analyze groups which require more than two quaternion algebras to express
(see, e.g. [Sm:1993a)] for a study of the realizability of DQ); however, the non-
realizability of larger groups is of course more common, and gives predictably
less information about the quadratic form structure of the field.

Groups of order 16 are small enough that it is in fact possible to study each
of them in terms of realizability. Five of the fourteen groups of order 16 are
abelian, and hence we already know something about their realizability. Of the
remaining nine, two are direct products of nonabelian groups of order 8 with
Z/2Z. Among the other seven, only one is covered by the Embedding Criterion
given above. Several of the remaining six, however, have been analyzed by other
methods, including Fréhlich’s more general version of the Embedding Criterion.
See, for example [C:1990], [Ki:1990] and [Sch:1989]. The group that is handled
by our Embedding Criterion is DC, the central product obtained from the direct
product D x C by identifying the unique central element of order 2 in D with

the unique element of order 2 in C. This group has the following presentation.
DC = (z,y,z|2* = y* = z* = 1, [z, y] = 2%, z central)

By the Embedding Criterion we see that F' has a Galois extension L with
Gal(L/F) = DC <= 3a,b,c, independent mod F?, such that (a,b)(c,c) =
1 € Br(F). It turns out that the realizability of DC is related in a particularly
nice way to the quadratic form structure of the field. We have the following
theorem, combining results in [MiSm:1991] and [Wa:1978].
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Theorem 3.9 Let F be a field with |F'/F?| > 8. The following statements are

equivalent.
1. DC does not appear as a Galois _1‘;roup over F.
2. F is a rigid field (i.e. for a ¢ £F? Dp((1,a)) = F2 U aF?).
8. W(F) is isomorphic to a group ring Z/nZ[G).

If F is a rigid field with at least 8 square classes, then s(F)=1 < D is
not a Galois group over F,s(F) =2 <= C and D are Galois groups over F,
and 5(F) = co <= C is not a Galois group over F. If s(F) # 2, then also Q

cannot be realized as a Galois group over F when F is a rigid field.

Proof. The proof of (1) <= (2) can be found in [MiSm:1991], and the proof
of (2) <= (3) in [Wa:1978]. We have already remarked that a rigid field
has level 1, 2, or co. Moreover, we have observed that D is not an F-Galois
group <= Fis rigid and s(F) = 1. If s(F) = 2, then (—1,—1) = 1 and
(a,—a) = 1 guarantee the realizability of C and D. If, however, 3c € F,c ¢
:th,(c, ¢) = 1 € Br(F), then choosing a independent from c,—1 in F/F'2
gives (a,—a)(c,c) = 1 € Br(F), which implies DC can be realized over F.
Thus if s(F') = co and C is realizable over F, so is DC. Conversely, if C is
not realizable, then s(F) # 1,2, and so s(F) = oo by default. If F is rigid
and 3(F') = oo, then of course all sums of squares in F are rigid, and by the
proposition concerning the realizability of @, we have that Q is also not an
F-Galois group. If s(F) = 1 and F is rigid, then D is not realizable, and by
the same proposition @ is not realizable. ]

Let us summarize the connections we have thus far observed concerning the
realizability of small 2-groups as Galois groups over F and the quadratic form

structure of F'.
1. Z/2Z is realizable over F' <= |F/F?| > 2.

2. Z/4Z is realizable over F <=> F is not pythagorean, <= Z/2"Z is

realizable over I Vn.
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3. D is realizable over F <= either |F'/F2| > 4 and s(F) > 2, or s(F) =1
and F is not rigid.

4. Q is realizable over F <= |F/F?| > 4 and either s(F) = 2 or s(F) # 2

and sums of squares (other than +F?) are not all rigid.

5. DC is realizable over F <= |F/F?| > 8 and F is not rigid, <> W(F)
is not a group ring Z/nZ|[G|.

We conclude this study of small 2-groups and quadratic forms by examining
the group D x D, of order 64, and its quotient DD, which has the presentation
(2,9, 2,wla? =y* = 22 = w’ = [z,y]” = [2,w]’ = 1, [z,y] = [2,w] = ¢,

e central, € = 1, [z, 2] = [z,w] = [y, 2| = [y, w] = 1).
Thus by the Embedding Criterion, DD is a Galois group over F <= 3a,b,c,d €
F, independent mod F?, such that (a,b)(c,d) = 1 € Br(F). To study the
realizability of this group, we will make use of the “common slot”, or “link-
age” property of quaternion algebras: (a,b)(c,d) =1 < 3z € F such that
(a,6) = (a,2),(c,d) = (c,z), and (ac,z) = 1 € Br(F). (See [Sm:1993a,b] for
details of the following results.)

Theorem 3.10 DD is a Galois group over F <= D x D is a Galois group
over F. If DD is realizable, then so is DC. If s(F) > 4 and |F/F?| > 16,
then the realizability of @Q as a Galois group over F implies the realizability of
D x D.

Proof. (Sketch) In order to show the realizability of D x D, it suffices to show
the existence of two “independent” D-extensions, i.e. we must find two split
quaternion algebras (r,s) and (t,u), with 7, s, ¢, u independent mod F2. If DD
is realizable, we have a,b,c,d, independent mod F?2, with (a,b)(c,d) = 1. If
(a,b) = (c,d) = 1, we are done. If not, choose z such that (a,bz) = (c,dz) =
(ac,z) = 1. Clearly = # 1. By analyzing various possible dependence relations
among the elements a, bz, ¢, dz, ac, z, it is possible to show that at least one of

the three sets {a, bz, c,dz}, {a, bz, ac,z},{c,dz,ac, z} is a linearly independent
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set mod F2, and thus D x D is realizable. The reverse implication is trivial,
since DD is a quotient of D x D. If two independent D-extensions exist, then
at least one must correspond to the ‘splitting of a quaternion algebra (r,s)
with 7,3, —1 all independent mod F2. Then (1,-r,—s,rs) = 0 € W(F), so
rs ¢ +F2 (1,rs) represents r ¢ F? U rsE?, and F cannot be rigid. Thus
F has DC as Galois group. Finally, if Q is realizable and s(F) > 4, then
sums of two squares are not rigid, so Ja € Dp((1,1)),b € Dp((1,a)), with
b¢ F2UaF? so (—a,b) = 1 € Br(F), and a,b,—1 are independent mod
F. Since |F'/F?| > 16, 3c such that a,b, —1, c are all independent mod F2, and
thus (c, —c) and (—a, b) give two independent split quaternion algebras realizing
D x D. This result is interesting in that the realizability of a group of order 8
(Q) turns out to force the existence of groups of order 16 (DC), 32 (DD), and
64 (D x D). O

We conclude this section by providing (without proof) the Witt ring criteria
for realizability of D x D. This result illustrates again how closely the Galois

structure of F' and Witt ring structure of F' are connected.

Theorem 3.11 Assume |F/F?| > 16 and F is not rigid. If s(F) > 2, then DD
(and hence also D x D) is not a Galois group over F <= either W(F) = (Z x
Z/2Z[A))[A"] (and s(F) = oo) or W(F) = (Z/4ZxZ/2Z[A])[A"] (and s(F) =
2), where A = Dp((1,1)) if s(F) = oo, A = Dp((1,1))/ + F? if s(F) = 2,
and A' = F/ + Drp((1,1)). If s(F) = 1, then DD is not a Galois group
over F' <= either W(F) = (2/2Z[Z/2Z) x Z/2Z[A)])[A"] or W(F) =
(Z/2Z(Z/2Z) x Z/2Z(Z,/2Z) x Z/2Z(Z2Z))|A"], where A' = F/Bp, Bp = {a €

Fla or — a is not rigid}.”

4 Absolute 2-Galois Groups, W-Groups, and Witt Rings

In this section we will examine connections between larger 2-Galois groups of F
and the structure of W(F). In particular we will study Galois groups from which
it is possible to recover (almost) all information about W (F). The two groups

we will consider are the absolute 2-Galois group-of F' (i.e. the Galois group of the
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maximal 2-extension of the field '), and the so-called W-group of F, which is the
Galois group of a generally much smaller 2-extension of F. We begin by defining
each of these groups and describing to what extent each group determines and
is determined by the Witt ring of F. We then study in more detail how various
group-theoretic properties of these groups determine ring-theoretic properties of
W(F), and vice versa.The results concerning the absolute 2-Galois group which
are presented here come primarily from the work of B. Jacob and R. Ware
([Wa:1979], [JWa:1989], [JWa:pre]), though many others have contributed to
this study. The results on the W-group come primarily from work of Mina¢ and
Spira, as well as the author ([Sp:1987], [MiSp:1990], [Sm:1988], [MiSp:1992],
[MiSm1993a,b]). In many instances the results for the absolute 2-galois group
and for the W-group are quite similar; the differences reflect the fact that the W-
group is a quotient of the absolute 2-Galois group. Nonetheless, the somewhat
surprising fact is that no information on the structure of the Witt ring is lost
by considering this quotient rather than the larger group.

The purpose of the final two sections of these notes is primarily to demon-
strate how closely the Witt ring of a field and the 2-Galois groups of that field
are interrelated. The proofs of the results given here are in general considerably
more technical than those of the results in the preceding sections, and for the
most part will be omitted. The interested reader is encouraged to refer to the

cited references for full proofs.

Definition 4.1 Let F(2) denote the mazimal 2-eztension (i.e. the quadratic
closure) of the field F', and Gp(2) the Galois group Gal(F(2)/F) of this ez-
tension. Let F() denote the compositum of all quadratic eztensions of F, and
F®) denote the compositum of all quadratic extensions K of F?) such that
K/F is Galois. Define the W-group Gg of F to be Gal(F®)/F). Then both
GFr(2) and GF are pro-2-groups, and Gr is a quotient of Gr(2). The smaller
group has the useful properties that it is of ezponent 4, and that squares and
commutators are central. Letting ®r denote the subgroup of G topologically

generated by the squares of elements in Gp, we have that &p = Gal(F®)/F(2)
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and Gp/®r = Gal(F®)/F). Notice that Gp/®F = [I;c; Z/2Z if and only if
F|F? = @, Z/2Z. This is immediate from the fact that F() is the composi-
tum of quadratic eztensions F(/a), where the a’s range over a basis of F‘/F2
It can also be shown that F®) is the compositum over F of all quadratic, cyclic

of order 4, and dihedral of order 8 extensions of F.

We have already seen that the splitting of the quaternion algebra ("F—'b) cor-
responds to the existence of either a dihedral of order 8 extension of F or (if
a=be F/Fz) a cyclic of order 4 extension of F. Thus in some sense the W-
group is the smallest Galois group over F' carrying complete information about
the splitting of quaternion algebras over F. On the other hand, knowing about
the splitting of all quaternion algebras over F' is equivalent to understanding
the equivalence classes of all binary quadratic forms over F, and since equiv-
alence of any two forms can be realized as a chain of equivalences of binary
forms (by Witt’s Chain Equivalence Theorem), it is thus not surprising that it
is indeed possible to recover the structure of the Witt ring from the W-group.
What is perhaps somewhat more surprising, however, is that this smaller Galois
group, the W-group, in some ways does a better job of capturing the Witt ring

structure than does the larger absolute 2-Galois group.

Theorem 4.2 (/Wa:1979]) Let F,L be fields with Gp(2) = Gr(2). Then
W(F) = W(L), unless the level of one of the fields is 1 and of the other is
2

Remark. Once cannot hope to get rid of the condition on the levels of the
fields in the theorem above. For example, the absolute 2-Galois group for F,
is Z5, as is the absolute 2-Galois group for F5. However, their Witt rings are
not isomorphic, as we saw in 1. Moreover, the converse of the theorem is not
true. For example, the fields F; = C((¢1))((¢z)) and F; = Qs each have Witt
ring isomorphic to Z/2Z[Z/2Z x Z/2Z), but Gf,(2) is abelian, while Gr(2)
is nonabelian. Other examples are given in [Wa:1979]. For the W-group, the

situation is slightly better, as the following theorem indicates.
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Theorem 4.3 ([Sp:1987]) Let F,L be fields with Gp = Gy. Then W(F) =
W(L) unless (1,1) is universal over F, and s(F) # s(L). If W(F) = W(L),
then GF = GL.

Thus the Witt ring determines the W-group completely, and except in a
relatively small number of cases, the W-group determines the Witt ring. The
W-group has one further advantage over the absolute 2-Galois group in certain

instances: when the square class group F/Fz is finite, so is the W-group.

To gain some sense of the manner in which the W-group reflects the Witt
ring, let us briefly sketch the construction of G from W(F). Let B = {[ai] :
i € I} be a basis for F'/F?, where I is some (linearly ordered) index set.
Let S be the free pro-2-group on {z; : i € I}. Set § = 5/®(5)*[®(S), 5]
where ® is the Frattini subgroup of S, and let z; be the image of z; in S.
Then Gp is S/R, where R C &(5) and R is dual to I?F/I’F = Bry(F).
More specifically, let Gr(2) be (topologically) generated by {o; : i € I},
where each o; has the property oi(/a;) = (—1)6‘5(\/0,—,-), where §;; is the Kro-
necker delta. (The existence of such a set of generators follows from Kum-
mer theory.) Then Gr(2) can be viewed as an image of S under the map
z; — 0;. Now Gr = Gr(2)/3(Gr(2))*[®(Gr(2)),Gr(2)] = S/R. To describe
Gr it suffices to describe R. Note that ®(S) is (topologically) generated by
{2%,(zj,2k] : 1,5,k € I,j < k}, and each of these generators is central and
of order 2. Let @ be the abelian 2-group with basis {([a;],[ai]), ([a;], [ax]) :
1,5,k € I1,j < k}, and define a pairing (,) : ®(5) x @ — Z/2Z by letting
these two sets serve as dual bases to each other. We have a group homomor-
phism 6 : @ — Bry(F) determined by ([as], [e;]) — (%4£) for all i < j. Then
R = (ker6*) = {s € ®(5)|(s,q) = 0 Vq € kerf}. Moreover, the image of z;
in G is the image of 0; in G, i.e the following diagram commutes (where the

maps are the obvious projections).
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S = Gr(2)
i — l l o =1

= @i—ry
S = GF

Since ®(S) is an elementary abelian 2-group, given a basis for the group,
we can talk about which basis elements, or “factors”, occur in an expression for
any element in ®(S) (or R). Dependence relations among quaternion algebras
translate into conditions on factors which must be satisfied by elements in R.
For example, if (a;,0;),4 # j and (ax,a1),k # I are two algebras which are
independent in Bry(F), then there is an element in R which has [2i, 25] as a
factor but not [2x,2]. On the other hand, if [](a;,a;) = 1 € Br(F'), then
every element of R must have an even number of the corresponding squares
and commutators occuring in its “factorization”. As a special case, if (a;,a;) =
1,i # j (respectively if (ax,ax) = 1), then [z, z;] (respectively 22) does not
appear as a factor of any element of R. The subgroup R of § can be described
alternatively as
R = (T2 Ilz:,231% | 3f € H'(I’F/I°F,2) with f((( - a;, —a3))) = Bi;).

i<j
As constructed, it is of course not at all clear that the isomorphism type of Gp
does not depend on the choice of basis for F"/F"’, but this is in fact the case.
For many applications it is most convenient to start with a fortuitous choice
of basis for F/ F?, and proceed from there. For example, one often wants to
specify that —1 corresponds to a particular basis element a;, since the relation
(%) = (25%) holds for every a € F.

It is important to note that Gp is an extension of an elementary abelian
2-group by an elementary abelian 2-group, and that commutators and squares

are central and of order 2. Moreover, any such group which appears as a Galois
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group over F must in fact be a quotient of Gp. The construction of F() implies
it is a maximal extension of F' having such a Galois group; on the other hand, for
any two Galois extensions K and L of F, whose Galois groups are extensions of
elementary 2-groups by elementary 2-groups, their compositum will also have
this property. Thus much can be said about what groups appear as Galois
groups over F' by just looking at the possible quotients of G, and at the same
time Gr determines and is determined by W(F). These observations will be
the underlying theme of the results presented in section 5 of these notes.

Next we will look at how the larger structure of the Witt ring in general
corresponds to the group-theoretic structure of the absolute 2-Galois group and
of the W-group. First we will examine the notion of a “basic indecomposable
Witt ring”, and how Witt rings in general can be constructed from such com-
ponents, and then see what the corresponding constructions are for the Galois

groups we are considering.

Definition 4.4 An element a € F/F? is rigid if b € Dr((l,a)) = b =1
orb=a. If F/F? # {1,-1}, we say a € F/F? is basic if either a or —a is
not rigid, and let By denote the set of basic elements. (If F/F? = {1, -1}, we
take 1 and —1 both to be basic.) We say the Witt ring W(F) (or the field F)
is basic if F/F? = Bp. By a result of Berman ([Be:1978]) we have that By
is always a subgroup of F/F2, containing —1. Let A = (F/Fz)/Bp Then in
fact, W(F) = R[A] for some Witt ring R [Ma:1980).

Definition 4.5 A Witt ring is called indecomposable if it is not a nontrivial
direct product of two other Witt rings in the category of Witt rings. Given two
Witt rings Wy and W,, generated (as Witt rings) by square class groups Gy and
G, of the fields Fy and Fy respectively, then their direct product Wy x W, is
generated by Gy x G, and has the property that the “quaternion algebra” (a,b)
associated with the form (( — a,—b)) is split if and only if (91;.?1) and (“—gfl)
are split, where a = (ay,a,) and b = (by,b;) in Gy x Gy. In other words, the
ideal quotient I?/I® in the direct product is precisely the direct product of the
corresponding 1deal quotients for the factors. For details see [Ma:1980].
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Definition 4.6 A Witt ring is called basic indecomposable if it is both basic
and indeomposable. A Witt ring is said to be of elementary type if it is built up
from the indecomposable Witt rings of finite, real closed, and local fields, using
the two operations of direct product (in the category of Witt rings) and group

ring formation.

The basic indecomposable Witt rings generating all elementary type Witt
rings are Z,Z/4%Z,7/2Z, and Lago = W(L),[L : Q3] = 2k—24/—1 € L, Ly, =
W(L),[L: Q2] =2k —24/-1¢ L, and Ly_, = W(L),[L: Qz] =2k — 3. (See
[Ma:1980] for a more detailed explanation.)

The article [JWa:1989] by B. Jacob and R. Ware determines all possible
absolute 2-Galois groups corresponding to finite, real closed, and local fields,
and also determines how direct product in the category of Witt rings and group
ring formation are manifested in the absolute Galois group. However, as men-
tioned earlier, the Witt ring does not completely determine the absolute 2-Galois
group, as it does the W-group. Thus in [JWa:1989], Jacob and Ware were not
able to determine whether certain “possible” pro-2-Galois groups are in fact re-
alizable. This was partially resolved in [JWa:pre], but the description is rather
complex. The problem lies in the fact that in order to say something about
the absolute 2-Galois groups of a field, one must know quite a bit about the
extensions of the field. For example, to be able to describe the Galois group of a
field with Witt ring Ry X R,, one needs to find field extensions having Witt rings
R, and R;. More importantly, one must keep track of how the Galois group
acts on the 2"th roots of unity. The following theorem, which is presented with-
out proof, is a watered-down version of the results of [J:1981] and [JWa:1989).
It describes the correspondence between constructions of Witt rings via direct
products and group ring formation, and the corresponding absolute 2-Galois

groups.

Theorem 4.7 ([J:1981], [JWa:1989))
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1. Let Ly and L; be two field extensions of F inside F(2), and suppose that
field restriction induces an isomorphism W(F) = W(L,) x W(L;). Then
Gr(2) & GL,(2)*2Gr,(2), where x; denotes the free product in the category
of pro-2-groups. Conversely, if the inclusion maps Gr,(2) — Gr(2) induce
an isomorphism Gr(2) = Gr,(2)*2Gr,(2), then W(F) = W(L,)x W(L,).

© 2. Let W(F) = R[A], where A is an elementary abelian 2-group, and R #
Z/2Z. Then there ezists a field K with W(K) = R, and a split short
eract sequence

15 A—-Gr(2) > Gk(2) o1

where A = (Z,), where Z, denotes the 2-adic integers, with |I| = dimg,,zA
(i.e. A is the free abelian pro-2-group on |I| generators). In particular,
Gr(2) is isomorphic to a semidirect product of A and Gg(2). Conversely,
let F be a field such that there is a split short ezact sequence

1-5A—-Gp(2) -G -1

where A is an abelian pro-2-group and G # 1. Let A = Hom(A,Z/2Z).
Then there is a field F' such that Gp(2) = G, and W(F) = W(F)[A].

When working with W-groups, one does not actually have to worry about
finding appropriate field extensions with the right Witt rings in order to be able
to say something about how the structure of the Galois group corresponds to
group ring and direct product formation. This is essentially because the W-
group can be constructed from the Witt ring itself, without any reference to
the underlying field. This is of course not the case with the absolute 2-Galois
group of a field. The downside is that in many instances the W-group carries
significantly less information about the nature of all 2-extensions of F' than does
GF(2). Nonetheless, it is significant to note that in the cases when the Witt
ring determines Gr(2), then indeed the W-group determines Gr(2) (except in
the case mentioned above where the W-group fails to determine W(F)), and so
this relatively small 2-extension completely specifies all Galois 2-extensions the

field may possess.
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The W-group analogue to the above theorem could be proved simply by the
observation that Gr = Gr(2)/®(Gr(2))*[2(Gr(2)), Gr(2)], but it is perhaps
more enlightening to view the result in ferms of the significance of group ring
and direct product formation on I?F/I*F (or Bry(F)), and the corresponding
relations that determine Gr. In any case it should be no surprise that group
ring formation again corresponds to a semidirect product (and here we will
describe the conjugation action of the semidirect product explicitly), and that
direct products of Witt rings correspond to free products of W-groups, in an
appropriately restricted category. _ i

Let W = Wy x W, be a direct product of Witt rings. "The “square class
group” of the underlying field is in one-one correspondence with the one-
dimenional forms of W. Denote this by G, and the square class groups for W;
and W; by G, and G, respectively. Let also the W-group of W; be denoted
Gi,i = 1,2, and the W-group of W by G. Finally, let % denote the free-
product in the category C of pro-2-groups whose squares and commutators are
central and of order 2. In other words, for Hy,H, € C, H*H, := H =
(Hy x (H,/®(H:) ®z/22 H;/®(H3))] >4 H;, where H,/®(H,) ®@z/2z H2/®(H,)
lies in the center of H, and for h; € H;, hihy = hohy - (R ®7Lz), where h; denotes
the image of h; in H;/®(H;).

Proposition 4.8 ([Sm:1988], [MiSm:1993b]) Keep the notation above. Then
G = G1*G;. Conversely, if G = G1%G,, where G; corresponds to the W-group
associated to the Witt ring W;, then G corresponds to the W-group associated
to the Witt ring Wy x W,.

Sketch of Proof. Let G; = §;/R;, and let § = 5,%5,. Then G = S/R
for some R. Moreover, since any relation among quaternion algebras in W;
continues to hold in W, we have that R; is a subgroup of R,i = 1,2. We need
to show that these are the “only” relations in R, i.e. that R = R, x R,. But we
know that I?/I° = (I} /I3 x I?/I3). Then R = (I*/I3)* = (I3/13 x IZ/I3) =
(IF/13)* x (12/13)* = Ry x Ry, as desired. (Here * denotes the “dual”.)
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Conversely, if the W-groups G; are as given, then it is indeed possible to
construct a Witt ring W with W-group G (although the proof is outside the
scope of these notes), and the corresponding Witt ring will have the properties
G =Gy x Gy and I*/I® = (I/I? x I?/13). This is precisely what is needed to
guarantee that W =~ W, x W,. ]

Now let us look at group ring formation. Assume that the Witt ring Wis a
group ring over some other Witt ring W, i.e. W = W[A] for some elementary
2-group A. Let G denote the square class group of W, and H the square class
group of W. Then A = G/H, and the elements of G\ H are all rigid in W. Let
G be the W-group of W, and let G be the W-group corresponding to W, and
let A =3, Z/2Z. We have the following.

Proposition 4.9 ([Sm:1988], [MiSm:1993b]) Keep the notation above. Then
G = (Z/4Z)' x G if —1=1€ W, while G = (Z/4Z)! >4G if —1 £ 1 ¢ W

In other words, there is a split short ezact sequence
1-(2/42) -G -G > 1.

(The precise action of the semi-direct product determined by this split ezact
sequence will be ezplained below.) Conversely, given G = (2/42) >4 G, with
appropriate action, then in fact W = W[A] where A = ¥, Z/2Z.

Sketch of Proof. Since W[A,;A,] = W[A][Aq], we will make the simplifying
assumption that A = {1,b} = Z/2Z. Then G = HUbH, and everything in bH
is rigid. Let G = S/R, where {z:i :1 € I} is a set of generators of S dual to a
given basis B = {a;:i € I} for H. Then choosing B U {b} as a basis for G, we
may take G to be generated by {z; : i € I} U {y}, subject to relations R 2 R
where the given generators of G are taken to be dual to the given basis for G.

Assume first that —1 = 1 € W. To see that G = Z/AZ x G, we need
only see that R = (R, [z;,y]), or equivalently that the only relations among the
quaternion algebras {(a;, a;); (ai,b); (5,b)} are those that already exist among
the quaternion algebras {(a;, a;)}, as well as (b,b) = 1. But since b is rigid, this

is indeed the case.
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If =1 # 1 € W, let the basis B be chosen so that —1 = a;. Then G =
Z/4Z >1G where the action of the semi-direct product is induced by z;yz7’

I

y~!,y commutes with all other «;,7 € I. The reason for this is that the only new
relations among the quaternion algebras are again just those that are required
to exist because of the rules governing quaternion algebras, namely (b,b) =
(-1,6) #1. Thus R=(R; [zs,y] : i€ L,i#1; y2[er,v]).

Conversely, if G is a semi-direct product of G with Z/4Z as described, then
the element b of F/F? which is “dual” to the generator of the Z/4Z-factor is
rigid, and W is a group ring over A = {1,b}. (See [Ma:1980], [Sm:1988], and
[MiSm:1993b] for details.) o

Because of the direct correspondence between the W-group and the Witt
ring, the structures of these two algebraic objects are related in many ways. We
will examine a few more of these connections in the next and final section of
these notes. We conclude this section with the following chart, giving the Witt
rings and W-groups associated to real closed, finite, and p-adic fields. Here Z,
is used to denote Z/nZ.

Field Witt Ring W-Group

R zZ Z,

Fq Zz[Zz] or Z4 Z4

Qp,p = 3(4) Z4[2:] Zy >AZ,

Qp,p = 1(4) Zz[Zz ® ZZ] Z4 X Z4

Qz Zs ® Zz(]. = {l)) ® z;(l = y) [(z2 X Z4) ><(Zz X Z4)] ><Z4

5 W-Groups and Quadratic Forms

In this final section we will study further connections between the behavior of
the W-group G and the behavior of quadratic forms over F. In particular we
will show how the W-group reflects orderings on the field F , how the W-group
determines the level of the field, and how the quadratic form theoretic properties
of a field being pythagorean or rigid are reflected in the W-group. Principle
references for this section are [MiSp:1990], [MiSm:1993a] and [MiSm:1993b).

The connection between orderings on F and the W-group can be made
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through the one-to-one correspondence between orderings on F' and “signa-

tures” on the Witt ring W(F).

Definition 5.1 A signature on a Witt ring W(F) is a map o : F/F?* —
{1, -1} satisfying

1. o(-1)= ~1 and

2. Va,be F/F%((—a,~b)) =0 € W(F) => either o(a) =1 or o(b) = 1,

or equivalently
2’. o(a) = ~1 and b € Dp((1,-a)) = o(b) = 1.
We will write Xr to denote the set of signatures on W(F).

Proposition 5.2 (/Ma:1980]) Xr is in canonical one-to-one correspondence

with the set of orderings on F.

Theorem 5.3 (/Sp:1987], [Sm:1988], [MiSp:1990]) F has an ordering (equiv-
alently, F is formally real) if and only if G contains an element z of order 2.
z ¢ ®(Gr). Such an z will be called a “(nontrivial) involution” of Gp. There
is a one-to-one correspondence between the set of orderings on F and the cosets

z®(GF), where z is a nontrivial involution of GF.

Sketch of Proof. We have observed that F/F? is “dual” to Gr/®(GrF).
Moreover, we can view X as a subset of the group H'(F/F2, 2) = Gp/®(GrF)
of characters on F'/F2. Let z € G be a nontrivial involution, and let Z be the
corresponding character in H'(F/F2,2). Then a somewhat technical argument
with generators and relations for Gy shows that # satisfies conditions (1) and
(2') of the definition above, and hence that # must be a signature. (This is the
approach used in [Sm:1988].) Alternatively, one can explicitly show that the set
P:={peF |\/P® =y/p} is an ordering on F. (This is the method employed in
[MiSp:1990].)

Conversely, suppose o is a signature on W(F'). Then o can be viewed as an

element of Gr/®(GF), and thus can be lifted to an element z € Gp. Notice
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that any two elements in the same (nonidentity) coset of $(Gr) in G have the
same order, so the result will not depend on the choice of lifting of 0. Choose a
basis {—1,a;:1 € I} for F/Fz, such that o(a;) =1 Vi€ I. Then we can find
dual generators {z,z; : i € I'} for G, and showing z2 = 1 € G is equivalent
to showing the existence of an f € H'(I*/I3,2) such that F({((1,1))) = 1 and
F({( = ai,—a;))) = f(((1,-ax))) = 0 Vi j ke I Setting f = 1o achieves
this.

For any involution «, let o, denote the signature induced by . Then o, =
oy <> = =y (mod®(Gr)). Thus the number of distinct signatures on
W(F) is exactly the number of ®(Gr)-cosets of Gp, excluding ®(GpF), which
contain an involution. m]

Thus the W-group of a field F' contains a nontrivial involution if and only
if F' has at least one ordering. Recall that a field can be ordered if and only
if it is formally real, i.e. if and only if —1 is not a sum of squares in F, or
equivalently, s(F') = co. The level of a field is reflected in the characteristic of
W(F), since if s(F) = n, we have n(1) = n( — 1), and so 2n(1) = 0 € W(F),
but (2n — 1)(1) # 0. Thus we see that Gy contains a nontrivial involution
<= $(F) =00 <= the characteristic of W(F) = 0. It turns out also to be

interesting to study when the W-group can be entirely generated by involutions.

Theorem 5.4 ([Sp:1987], [MiSp:1990]) The following conditions are equiva-

lent:
1. F is pythagorean.
2. Gp is generated by involutions.

3. 8(Gr) = [Gr,GF].

Sketch of Proof. First suppose F is not formally real. Then F is pythagorean
<= F is quadratically closed < Gp = {1} and the theorem is vacuously
true. Thus we may assume F is formally real. To see (1) = (3), assume F

is pythagorean and consider Gr/[Gr,GF|. This is an abelian 2-group, and it
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must thus be elementary or else F' would have Z/4Z as a Galois group (since it
would be a quotient of GF), contradicting the fact that F is pythagorean. Thus
[GF,GF] € ®(GF) C [GF, GF), and (3) is proved. That (3) = (2) follows
because (G, Gr] C ®(GF) implies that the generators of Gr/[GrF,Gr] lift to
generators of Gr, and the order of the generators in Gy may be taken to be
the same as their order in Gp/[Gr,Gp|. For (2) = (1), notice that if F is
not pythagorean, then Gr must have Z/4Z as a quotient, and thus cannot be
generated by involutions. o
Remark. As was shown in section 2, a field F is real pythagorean if and only
if W(F') is torsion free. Summarizing what we have shown about pythagorean

fields, we have the following list of equivalent conditions.
1. F is pythagorean.
2. G is generated by involutions.
3. Z/AZ does not appear as a Galois group over F.

4. W(F) = Z/2Z or W(F) is torsion free.

The W-group, as we have mentioned, does indeed carry essentially all the
information necessary to determine equality between forms in the Witt ring,
and in particular the W-group contains complete information about the set of
elements represented by any binary quadratic form. Notice that Dr((b)q) =
bDp(q) for any b € F), so it is sufficient to determine Dp((1,a)). The complete
description and proofs of how this information is carried in the W-group is
rather technical; the reader is referred to [MiSm:1993a] for full details. We
present the following two theorems here without proof to give the flavor of the

result.

Theorem 5.5 For some linearly ordered indez set I and some subset J C 1,
let A= {a;:i€ I} be a basis for F'/F? such that {aj:j € J} forms a basis for
Dr((1,1)). Then the mazimal abelian quotient (Gr)* of G is isomorphic to
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ies(Z/4Z) x Mic1\s(Z/2Z). Moreover, (Gp)® = Gal(F®*/F), where F is
the mazimal abelian extension of F inside F(), which in turn is the compositum

of all quadratic and cyclic of order 4 extensions of F.

Theorem 5.6 Leta € F,a ¢ F2. Then Dr((1,a)) can be identified from Gp
by the following sequence of steps.

1. Leta = ar € A = {a; : © € I} where A is a basis for F/Fz, and let
{zi:1 € I} be a set of “dual” generators for Gp.

2. Consider projections § of Gr onto groups (§; : j € J) ><(%) =
(MMyes 2/42Z) > Z/2Z, where #,§;2;" = ;') Zx is the image of z), and
the preimages y; of the §; are in (z; : i # k)®(Gp).

3. Choose one such map 6 with J mazimal. Then {zy,y; : j € J} forms a
partial set of generators for Gr. Eztend to a complete set {zy,y; : i €
I't,J C I', such that {y; : i € I'} C (z; : 1 # k)®(GF) and {y; : i €
I'\ J} C ker(9).

4. Let {ax,b; : i € I'} be a corresponding “dual” basis for F/F2 Then
{ax,b;: j € J} forms a basis for Dp((1,ax)).

From a field-theoretic standpoint, this quotient of Gr arises as the Galois group
Gal(L/F') where L is the compositum of all extensions K of F such that F -
F{/a) C K,Gal(K/F) = D, and Gal(K/F{/a)) = Z/4Z.

Remark. If 0 : Gr — (§; : j € J) ><(&) = (Mjes 2/42) ><Z/2Z is a
projection determining Dp((1,ax)), then there exists a projection 8 : Gp —
(95 : 5 € J) ><(&) = ([ljes Z/AZ) >Z/4Z, such that 6 factors through 8,
if and only if (ax,ar) = 1 € Br(F). This is essentially because if (ak,ax) = 1,
then z} does not appear in any of the relations determining Gp, where as if
(ak,ax) # 1, then necessarily z? enters in some relation, and G cannot have

such a quotient.
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The fields which have the “smallest” W-groups (relative to the size of their
square class group) will be those with the fewest relations among their quater-
nion algebras, i.e. those fields for which Bry(F) = I?F/I3F is “large”. These
are precisely the so-called rigid fields. Recall that a field is rigid if Dg((1, a)) =
F?U aF? whenever a ¢ +F?. A result of Ware ([Wa:1979]) proved that F is
rigid if and only if W(F) is a group ring Z/nZ[G]. We have already obtained
a Galois theoretic description of such fields in 3 —they are those fields which do
not have DC as a Galois group. Now, however, we would like to describe the
W-groups of rigid fields. If F' is rigid, it is not hard to see that s(F) = 1,2, or
oo. First assume —1 € F2, and let {a; : i € I} be a basis for F/F?. Thenif Fis
rigid, the quaternion algebras (*47),i < j are all independent, while (428) =1
since s(F) = 1. Next suppose that s(F) > 2, and let {~1,a; :i € I} be a
basis for F'/F?. If 3(F) = 2, the only relations among quaternion algebras on
the generators arise from (24%4)(%=t) = 1 and (472) = 1. If s(F) = oo, then
the only relations among the quaternion algebras arise from (%) (gt) = 1.
Since the relations on the quaternion algebras are what determine the W-group,
we can then “read off” the W-group from the information above. We have the
following theorem, which essentially says that for a rigid field, the W-group
corresponds to the group “determining” Dp((1,—1)).

Theorem 5.7 ([Sp:1987], [Sm:1988], [MiSp:1990]) Let |F/F?| > 4, and write
F|F? = (®:1Z/2Z) ® Z/2Z, where I is a nonempty indez set. Then

1. Gp = ([lie1 Z/42) x Z/AZ <= F is rigid and s(F) = 1.

1

2. Gr = (Ilic1 Z2/4Z) ><Z/AZ, where the action of a generator o of the
outer Z/4Z on 1 € [l;e; Z/AZ is given by o 'ro = 73, <= F is rigid
and s(F) = 2.

3. Gr = ([lier Z/42) ><4Z/2Z, where the action of a generator o € Z/2Z
on 7 € [liesr Z/AZ is given by 0~'r0 = 1°, <= F is rigid and s(F) = oo.

Remark. The first situation above, where F is rigid and s(F) = 1, is almost

the only situation in which G is an abelian group. In fact, if |F//F?| > 4 and
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Gr is abelian, then indeed s(F) = 1 and F is rigid. If [F//F?| < 2, then G is
always abelian (and cyclic). We have Gr = Z/2Z <= F is real (and hence
Euclidean), <= W(F) = Z; Gr = Z/4Z <= |F/F?| =2 and F is not
formally real, <= s(F)=1or 2 and W(F) = Z/2Z(Z/2Z] or W(F) = Z/4Z
respectively; and Gr = {1} <= F is quadratically closed, <= W(F)
Z/22Z.

R. Ware ([Wa:1979]) has also provided a very nice description of the absolute
2-Galois group of a rigid field. A profinite group G is called metabelian if there
is an exact sequence 1 - H — G — G/H — 1 where H is a closed normal

abelian subgroup of G and G/H is abelian.

Theorem 5.8 Let F be a field. The following statements are equivalent.
1. F is rigid.
2. Gr(2) is metabelian.

3. If K is a finite Galois extension of F' with Gal(K/F) a 2-group, then
Gal(K/F) is metabelian.

4. If L is the field obtained from F by adjoining all 2"th roots of 1 for all
n > 1, then Gal(F(2)/L) is abelian.

5. D does not occur as a Galois group over Ff/—1).
If F s rigid, then Gp(2) is isomorphic to either

(a) (Z:)" for some set I (in which case |I| = dimz/zzF/Fz and if |I| > 1,
then F contains all 2"th roots of 1, for alln > 1), or

() an extension of (Z,)' by Z/2Z,Z,, or Zy x Z/2Z, for some set I.

The results on determining the elements represented by a given binary form
can also be used to determine the Kaplansky radical KR (or more precisely,
—KR) of the field F. This in turn can be used to develop criteria for determining

the level of a field from the Galois groups over it.
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Definition 5.9 The Kaplansky radical of the field F is the set of all elements
a € F/F? for which the binary form (1, —a) is universal. In particular, 1 € KR
for every field F. We define — KR = {a € F/Fz|(1,a) 1s universal}.

Corollary 5.10 Let a, € A = {a; : 1 € I}, where A is a basis for F'/F?. Then
axr € —KR <= 3 a projection 0 : Gr — ([Licr,izx Z/42) ><1Z/2Z (with
action as described for determining Dp((1,ax))) such that 6~ (ITicrizx Z/4Z)
15 contained in the subgroup of Gr fizing,/ax.

Remarks. When s(F) > 2, for any element a € —K R, we have a € Dp(n(1))
<= —1 € Dp(n(l)) ([Be:1978]). Notice also that if KR 2 {1}, then ev-
erything in F' is basic, in other words, for any b € F, either b is not rigid or
—b is not rigid. Forif a € KR,a # 1, then (1, —a) represents b, and so (1,b)
represents a, for all b € F. If b is rigid, then necessarily b = a, and so b € KR.
Then (1, —b) is universal, and so —b is not rigid, and b is basic as claimed.

We can now give explicit Galois-theoretic criteria for the level of a field to
be 1,2,4, or co. It is known that the level of a field must be either oo or a
power of 2, and that all powers of 2 can occur. However, it is still not known
whether there exist fields with only finitely many square classes, which have
finite level bigger than 4. (This is related to the so-called “elementary type”
question, which asks whether all Witt rings with finite square class groups are
of elementary type. If this is indeed the case, then the level of any such field is
necessarily either infinite or no bigger than 4.) Since the W-group is finite for
fields with finitely many square classes, it may indeed be possible to develop a
description of a W-group for a field of level 8, and then determine whether any
finite W-groups can satisfy that description. We should observe that the level
of a field is in fact quite easy to read off from the Witt ring — it is determined by
the characteristic. Reading it off from the W-group proves to be considerably
more technical.

We have in fact already seen the necessary and sufficient condition for a field
to have level co. We know s(F) = co <= F is formally real, <= F can be

ordered, <= Gp contains a nontrivial involution. Also s(F) <2 < -1¢€
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Drp((1,1)), and s(F) <4 <= 3 b,c€ Dp((1,1)) such that —1 € Dp((b,c)).
In terms of the W-group Gr, we have the following criterion for s(F) < 2. (See
[MiSm:1993a] for proof.)

Proposition 5.11 Assume F/F? 2 (@:c2/2Z)®Z/2Z, where I is some (pos-
sibly empty) indez set. If there exists a projection  : Gp — (MMier 2/42) >
<Z/AZ, where the action of a generator o of the outer Z/4Z-factor on T €
[lic1 Z/AZ is given by o't = 12, then s(F) < 2. If s(F) = 2, then there
ezists such a projection. If (1,1) is universal, then there ezists a projection
Gr — ([licr Z/4Z) x Z/AZ. This is always the case if s(F) = 1, and never the
case if s(F) > 4.

Notice that the one case where we cannot completely determine whether the
level is 1 or 2 is precisely the case mentioned earlier, where the W-group does
not completely determine the Witt ring, namely the situation where (1,1) is
universal, and s(F) = 1 or 2, but it cannot be determined from Gy which of
the two cases one is in.

Next we give the Galois-theoretic description of fields of level 4. Such a
field must have at least 8 square classes, since a field is of level 4 if and only
if —1¢ Dp((1,1)), but —1 € Dr((b,c)) for some b,c € Dp((1,1)). Necessarily
then, b, c, and —1 are independent mod 2. The crucial group for understanding
fields of level 4 is the W-group G; of the 2-adic field Q, which has 8 square

classes and is of level 4. This group can be described as follows:
G; = (21,2, 23|z} = 1,23 = (29, z3]; [21, T,)? = [z1, z3)? = 1; [2;, 2], 27 central)

We can then give the following criterion for a field to have level < 4. Fields of
level 4 will be those which meet the criterion to have level < 4, but which fail

the criteria given above for a field to have level 1 or 2.

Theorem 5.12 Let F be a field with F/F? = ([[;c; Z/2Z) x (Z/2Z)*. Sup-
pose there exists a projection w : Gp — G : (y; : i € I) >d(zy, Tz, T3) =

(Ilie1 Z/4Z) ><G,, where [z2,5] = [23,5:] = 1;[z1,5] = ¥}, and z,,2,,25
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satisfy the same relations as their counterparts in the presentation of G, given
above. Then s(F) < 4. Conversely, if s(F) = 4, then there ezists such a

projection.

Sketch of Proof. Assume that s(F) = 4, and let b,c be such that b,c €
Dr((1,1)) and —1 € Dr((b,c)). Then (42) = (%) = 1 € Br(F), and (42) =
(%) # 1 € Br(F). Also (%) = (=2d) Vd e F. Let {~1,b,c,d; : i € I} be
a basis for F'/F?, and let {%1,&,,%3,§; : i € I} be a corresponding dual set of
generators for Gr. Then the relations above will enable Gp to project onto the
group G as described in the statement of the theorem. Conversely, if G admits
such a projection, then let a,b,c be the elements corresponding to z,,, 3
respectively. Results we have given earlier show a € —KR, b,c€ Dr((1,1)),
and so s(F) < 4. O

The connections between the 2-groups arising as Galois groups over a field
F, and the behavior of quadratic forms over that field are many and deep. As
we have seen, the fundamental link between the two is the splitting of quater-
nion algebras and their products over the given field. The absence of certain
small 2-groups as Galois groups over a field gives very strong conditions on how
quadratic forms over that field must behave. This is not surprising, since to say
that a small group cannot be realized is indeed a big restriction. The W-group
is the smallest group that actually carries complete information about the Witt
ring, since it is the smallest group that determines the splitting of all quaternion
algebras. The absolute 2-Galois group in fact carries even more information,
so that it is possible for two fields with the same Witt ring to have different
absolute 2-Galois groups.

There are a number of questions of interest in quadratic form theory which
may be able to be answered by consideration of Galois groups. As mentioned
above, one would like to know what the possible values are for the level of a field
with finitely many square classes. The related question of whether all such fields
have Witt rings of elementary type has not been able to be resolved, either. It

would also be of interest to know how the “u-invariant” of a field is determined
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by the W-group. This invariant, which is equal to the largest integer n such that
F has an anisotropic form of dimension 7, has proved to be very mysterious, and
again nobody knows completely what values it may assume. It would likewise
be very interesting to gain more understanding of quadratic forms under field
extensions. How is the Witt ring W(K) of an even-degree extension K of F
related to the Witt ring W(F)? Similarly, what are the connections between
Gk and Gp? The answers to these and many other questions can shed new
light on the theory of quadratic forms, and it is possible that the answers lie
buried in the 2-Galois groups of the field.
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