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1 Introduction

The present notes form an enlarged update of a series of lectures at the XII

Escola de Algebra, for a mixed audience of specialists whose expertise lied
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somewhere between Commutative Algebra and Algebraic Geometry.

The notes do no claim complete originality. As a matter of fact, almost
entirety based on a forthcoming joint paper by B. Ulrich, W. Vasconcelos and
myself [32]. Since this paper is of a somewhat difficult nature and requires a
good deal of background from deeper themes of Commutative Algebra, I then
thought it appropriate to offer a souped-up version of the (prerequisites for the)
paper. In particular, all the results are stated here over a base field, while in
[32] everything is developed for algebras flat over a general noetherian base ring
(with an eye in theorems for flat families, cf. the forthcoming [19]). This on
itself constitutes a distinction and, in a sense, these lectures took the easy way
out.

Anyhow, when asked to include the notes in the present Proceedings, I pon-
dered whether a set of (mostly unproved) statements of technical flavour would
be of any help for potential readers. Thrust into this perplexity, nonetheless
still willing to contribute to the Proceedings, I arrived at a certain formula by
which I was to expand and give most proofs of the easiest parts and let the more
difficult statements stand as a reminder of the aforementioned joint paper.

The net result is an account that may be of some avail to newcomers as well
as experts, in the way of a semi-original surveylike source. Here, the reader
may enjoy elementary versions of quite a few among difficult results published
in the recent literature in the field, for which I am myself responsible together
with many co-authors.

To the latter, specially B. Ulrich and W. Vasconcelos, I wish to thank for
letting me freely use some of our published (and unpublished) work. Alas, I
cannot ask them to be accessory to my mistakes!

I would also like to aknowledge some exchange with F. Gaeta, who helped
me out in understanding a little better the classical geometric connections to
the subject.

The rest of my thanks go to the organizers of the XII Escola: by succeeding
in carrying it through, they showed the same vigor and stubborness of the early

portuguese explorers when faced with the need for founding Diamantina in the
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middle of nowhere!

1.1 Early geometric ground

We may start by considering some of the geometric ideas lying on the back-
ground.

* Thus, let X be an algebraic variety over a field k. For 2 € X a point
on the variety, one has the notion of the cone to X over z. Apparently, this
notion was made crystalline only in the late fifties or early sixties thanks to the
general effort at the period to give solid foundation to the shaky concepts of
the preceding periods.

Most of this effort was concentrated in the abstract setup, that is to say,
without imposing any restriction on the base field k. A seemingly isolated trial
was carried out by H. Whitney to convey various alternatives for the notion of
a cone over a point, assuming an analytic setup [45], [46].

Three notions of tangent cone seem to have gained more popularity than the
others, ever since the main parts of modern Algebraic Geometry started being
developed. The first two are defined, respectively, in terms of the linear forms
(Zariski tangent space) and the initial forms (normal cone) of the equations
belonging to the ideal of X at the point z. These definitions, as can be shown
by the standard machinery of local algebra, depend only on X and z (not on a
particular embedding of X).

The third species, less known to algebraists, is one of which specialists in
Segre classes and intersection theory are fond of — although, as a slight irony,
Whitney himself didn’t seem to believe in any important applications for it!
Like the Zariski tangent space, it has the advantage of admitting an immediate
global version which the cone of initial forms seems to lack. The reason is that
it is definable directly in terms of the diagonal embedding X — X x X, without
reference to the ambient space of X (in case, say, X is affine).

First systematically employed by K. Jonhson [17] = who suggested the name
tangent star — , this third kind of cone has recently been considered in a possibly

different perspective by G. Kennedy [18] and L. van Gastel [7].
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The subject has strong ties with the theory of varieties of secant lines and
a suitable generalization of it is related to the varietiy of chords. The special
fiber of what is here called the star cone coincides in some cases with the secant

variety.

1.2 The role of the star cone in Segre classes

Recall the “classical” set-up: X is a d-dimensional non-singular projective va-
riety and F is a locally free sheaf of rank r on X. Then, the ith Segre class of
F is defined as

si(F) = p.(£471H N [P(F))) € A'X,

where

® P(F) = Proj (So,F) is the total bundle space, with natural projection
map p : P(F) — X;

* AY is the Chow cohomology ring of a projective variety Y;

o { € A'P(F)is the Chern class of the tautological line bundle Op(5)(1).

The ith Segre class of X itself is, by convention, the ith Segre class of the
sheaf of Kahler differentials Q(X/k).

The non-classical case assumes that X is any purely d-dimensional variety
and replaces P(Q(.X/k)) = P(D/D?) by P(®;50D’/D*!), where D is the ideal
sheaf of the image of the diagonal map X — X x X.

The main point about the usefulness of this construction is perhaps the
following result:

Proposition. Let X C C" be a complex affine variety, let A : X — X x X
denote the diagonal map and D, the ideal sheaf of the subvariety A(X) C X xX.

Let further G denote the Grassmannian of lines in P™ and consider the map
(X x X)\ A(X) — G,

which takes a point (z,y),z # y to the line Ty € G. Then:
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(i) X x X ~ P(®;>0D?), where X x X denotes the closure of the graph of
Adn (X x X)x G;

(i) For any closed point z € X, the fiber P(®;50D7 /D7) x x k(z) can be
identified set theoretically with the union of lines | C P™ for which there
ezist sequences {y;},{y!} of points in X converging to z such that the

sequence of lines y;, y! converges to .

Thus, roughly, the fibers of the exceptional locus of the blow-up along the
diagonal embedding are limits of secant lines to the variety. That was the
original viewpoint of Whitney who was mainly interested in this sort of condition
for results of stratification nature.

The main focus of these notes is on the coordinate ring of the projecting
cone over P(@®;50,D7/Di*!). The following sections will develop the underlying

algebraic tools to deal appropriately with it.

2 A second view of dimension theory

Symmetric algebras of modules constitute the algebraist’s version of (not nec-
essarily locally free) bundles. Even from the viewpoint of Algebraic Geometry
there is enough reason to deal with modules that are not necessarily locally free
everywhere. Thus, an ordinary vector bundle over a projective variety VV C Pn
is given by a module over the homogeneous coordinate ring k[X, . .. y Xl /Z(V)
which is locally free outside the maximal irrelevant ideal.

Although symmetric algebras are quite ubiquitous in the present theme, in
order to have a deeper feeling for its meaningfulness — not just for its formal
role in the definitions - it is important to look at its dimension. The main point
throughout is that the symmetric algebra has an ezpected dimension or virtual
dimension, which works like an obstruction for certain behaviour pattern.

We collect a few results of technical nature which clarify the dimension-

theoretic background. Some of these will be useful in the following sections.
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2.1 The role of the Fitting invariants

Let R be a noetherian ring and let E be a finitely generated R-module with a
given presentation

GESHF—E—0, (1)

where F' and G are free modules of finite rank. Say, tk F' = n. The tth Fitting
invartant of E is the determinantal ideal I,,_¢(¢) of a matrix associated to ¢
- a standard exercise shows that the definition depends only on E and not on
the selected presentation.

In practice, it is more convenient to work from a fixed presentation and with
the corresponding determinantal ideals, so we will allow ourselves to generously

draw on that.

Lemma 2.1 Let E admit a presentation as (1). Given a number t > 0 and a
prime ideal P C R, one has Ii(¢) € P < p(Ep) <tk F —t (resp. I(p) € P
and I;11(p) C P < p(Ep) =tk F —t).

Proof. Localizing at P and possibly changing the bases of the free modules in

(1), one arrives to a presentation of Ep of the form
Rt ® Ry “2¥ R @ Rl — Ep — 0,

where k = rk F' — p and p = p(Ep). Then the matrix of ¢ has entries in Pp
and, from this, one clearly sees that I,(¢) C P if and only if t > t + 1, which
shows the main assertion. We leave the supplementary assertion as an exercise.

a

Recall that E is said to have a rank, tk E = r, if Ep is Rp-free of rank r for
every associated prime P of R.
Lemma 2.1 admits a uniform version for all relevant values of ¢ taken at

once.

Proposition 2.2 Let E be a finitely generated R-module having a rank. The

following conditions are equivalent for an integer k > 0:
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(i) For every P € Spec(R), the inequality
w(Ep) <htP 41k E + k
holds (resp. and for some P ¢ Spec(R) the equality is attained).
(ii) For any presentation as (1) and any 1 < t < rk(p), the inequality
| ht I(p) >tk —t +1—k
holds (resp. and for some 1 <t <tk the equality is attained).
(iii) For some presentation as (1) and any 1 < t < rk(p), the inequality
ht (o) >tk —t+1—k
holds (resp. and for some 1 < ¢ Stk the equality is attained).

Proof. We first argue for the inequalities.
(i) = (ii) Given ¢t in the required interval, pick a prime P 5 I,(¢) such that
ht I,(¢) = ht P. Then

lltlt((p)Z[L(Ep)—l‘kE—k:l‘k(p—SP—k,

where sp := 1k F' — K(Ep). By Lemma 2.1, one has sp <t —1, as required.
(ii) = (iii) Trivial.

(iii) = (i) Let P € Spec(R) and sp as above. Then I,, € P by Lemma 2.1.
On the other hand,

sp = tkF — u(Ep)
< 1k F — 1k E =rke.
Then, by the assumption, ht P >tk —sp—k= w(Ep) —tk E — k, as needed
to be shown.

Finally, the supplementary assertions as to when the equalities are attained
follow from the corresponding ones in Lemma 2.1. O

Proposition 2.2 motivates the following notion.
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Definition 2.3 The least k > 0 such that E satisfies (any of) the conditions
of Proposition 2.2 is called the Fitting deffect of E, denoted fd E. E is said to
satisfy (F_x)if k > {d E.

The Fitting defect is actually a dimension defect for the symmetric algebra
S(E) as we will soon see.

On the other hand, a version of the property (F_j) is available for negative
values of k, as was extensively treated in [11], [35], [12]. Namely, one says that

E satisfies (F_) provided the inequality
pEp <htP+rtkE+k

holds for every P € Spec(R) not lying in the free locus of E.
For negative values of k, the latter property has no impact on the dimension.

Its main bearing is to the finer properties of E.

Exercise 2.4 What is the relation between an ideal I C R and the module
I/1? regarding the condition (F-%)? What condition is to be imposed on I so
that both 7 and I/I? have ranks?

2.2 Variations on the dimension of symmetric algebras

We first consider the case of an ideal I C R. As it will turn out, this case
already implies the general case.
Let R[It] C R[t] denote the Rees algebra of I. There is a canonical surjective
R-algebra homomorphism
S(I) = R[It]. (2)
The ideal I is said to be linear type if the map (2) is injective. The basic model

of an ideal of linear type is given by an ideal generated by a regular sequence.

Exercise 2.5 If I is an ideal of linear type then p(Ip) < ht P for every P €
Spec(R/I).

The following proposition is an easy consequence of the general dimension

formula of Huneke-Rossi [15]. However, we give an independent simple proof.
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Proposition 2.6 Ifgrade ] > 1 then dim S(I) = max {dim R+1,dim S(I/I?)}.

Proof. Consider the canonical map (2): for every P € Spec(R) such that I ¢
P, the induced localization ap : S(I)p — Rp[Ipt] is clearly an isomorphism.
This shows that I'kera = (0) for t >> 0, hence every prime ideal of the ring
S(I) contains either I.5(I) or ker . Therefore,

dim S(I) = max {dim R([It],dim Sg/;(I/1%)}
= max{dim R + 1,dim Sg//(I/1%)},
since dim R[It] = dim R + 1 for ideals containing regular elements. O

Corollary 2.7 Let R,m be a local ring. If I C R is an m-primary ideal then
dim 5(7) = max {dim R + 1, u(I)}.

Proof. Since Supp(S(1/1?)) = Supp(S(Z/mlT)), the result follows from Propo-
sition 2.6. o

Ideals satisfying the formula of Corollary 2.7 were referred to by this author
as being of Valla type (cf. [29]).

Example 2.8 ([29, (4.6)]) If I is an ideal of a polynomial ring generated by
degree 2 squarefree monomials corresponding to the edges of a simple graph G,

then
dimR+1 ifrkG <2

dimS(I)Z{ dmR—-1+1tkG iftkG>2 -

This is slightly more precise than just knowing that an edge-ideal is of Valla
type, the latter having originally being shown by Villarreal [43)].

Exercise 2.9 Let A = k[X,Y, Zlxy,zpn = (X, Y,Z)xyz) and let J C A
be n-primary with 5 generators. Let Tbe an indeterminate over A, let R =
A[T)nrym = (n,T)R and let I = JR. Then dim Sr(I) = dim S4(J) + 1, thus
showing that the ideal I is not of Valla type.
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Determinantal ideals also fail to be of Valla type, except for special row and

column sizes [15].

Ideals of linear type are also important because of the next seemingly inno-

cent result.

Proposition 2.10 Let A be a noetherian ring and let I C A be an ideal of
linear type. Then
dim A > sup {dim A/P + p(Ip)}.
PoI

Proof. It follows straightforwardly from Exercise 2.5. O

Of course, one has to impose further conditions in order to obtain equality
above. We say that an ideal I C A is a junction ideal if thereis a P € Min(A/I)
such that a maximal chain of primes of A passes through P. The notion is

perhaps only interesting if dim A < co.

Theorem 2.11 Let A be a noetherian ring of finite dimension admitting a

Junction ideal I of linear type. Then
dim A = sup {dim A/P + p(Ip)}.
P2I

Proof. By Proposition 2.10, it suffices to show that dim A = dim A/P + p(Ip)
for some P O I. Let P € Min(A4/I) be such that dim A = dim A/P + ht P.
Then ht P = ht Ip < p(Ip) by general reasons. Since I is of linear type, one
must have ht P = p(Ip). O

The theorem is pointless without knowing when an ideal is a junction ideal.

One has

Lemma 2.12 Let A be noetherian (resp. graded ring of finite type over its zero
part) and I C A an ideal contained in the Jacobson radicel (resp. the graded
Jacobson radical) of A. Then I is a junction ideal.

Proof. (According to Herrmann, Moonen and Villamayor) Set B = gr 1(A).

Since I is contained in the Jacobson radical, dim B = dim A. By a well-known
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consequence of the dimension inequality [22, Theorem 2.3], for any Q € Spec(B)
and P:=Q N A:

dim B/Q < dim A/P +dim B ®, Ap/PAp
dim A/P + dim gr 1, (Ap)/Pgr 1, (Ap)
dim A/P + dim Ap = dim A/P + ht P.

IA

Applying with @ such that dim B = dim B/Q, we get dim A < dim A/P 4+ ht P,
as required.

We leave the graded version as an exercise. o

We are now ready to give a proof of the Huneke-Rossi formula.

Theorem 2.13 ([15]) Let R be a noetherian ring and let E be a finitely gener-
ated R-module. Then

dim S(E) = Pezup(m {dim R/P + u(Ep)}.
pec|

Proof. Since S(E) is graded with R as its zero part, we won’t affect its
dimension by passing to the ring of fractions A := S(E)14s(5),. The exteded
ideal I := (S(E)+)S(E)1+5(E)+ is clearly contained in the (graded) Jacobson
radical of A. By Lemma 2.12, I is a Jjunction ideal.

On the other hand, S(E), is an ideal of linear type (10, Example 2.3], hence
so is . Thus, we can apply Proposition 2.11 by further noticing that

1. Any Q € Spec(S)(E) containing S(E), is of the form (P,S(E);) for some
P € Spec(R)

2. S(E)/S(E); ~ E.

The rest is standard. a

Exercise 2.14 Show that, conversely, the Huneke-Rossi formula implies the

formula stated in Proposition 2.11 for ideals contained in the Jacobson radical.
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Next is a nontrivial application of the Huneke-Rossi formula that has often
been quoted in the related literature under various forms and hypotheses. We
believe the one here gives its state-of-the-art.

Recall that a noetherian ring of finite Krull dimension is said to be equicodi-
mensional if all maximal ideals of R have the same codimension. We say that
R has the dimensional complementarity property if dim R = ht P + dim R/P
holds for every prime P € Spec(R).

Theorem 2.15 Let R be a noetherian ring of finite Krull dimension and let
I C R be an ideal. Consider the following two conditions:

(i) dim Sg/s(J/J?) = dimgr ;(R)
(i1) u(Jp) < ht P for every prime ideal P D J.

Then (ii) = (i). If R has the complementarity property and is further equico-

dimensional (or J is contained in the Jacobson radical of R) then (i) = (ii).
Proof. (ii) = (i). Since there is a surjective homomorphism
dim Sgys(J/J?) — dim gr ;(R),

it suffices to show that dim Sg/;(J/J?) < dimgr;(R). By the Huneke-Rossi

formula (Proposition 2.13), one has
dim Sws(J1%) = sup {u(Jp/J3) + dim(E/J)/(P/ )}
= sup {p(Jp) + dim R/ P}
P2J
= < sup {ht P + dim R/P}. (3)
P2J

Now, for each P O J, choose a maximal ideal M of R containing P and
such that dim R/P = dim Rps/Py. We get

ht P + dim R/P = ht Py + dim Ryy/Pag < dim Ras. (4)
Replacing the estimate (4) in (3) yields
dim Sg/s(J/J?) < :lujg{dimRM} M maximal
= dimgr,(R),
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by the well-known formula for the dimension of the associated graded ring.

(i) = (ii). Since R is equicodimensional (or J is contained in the Jacobson

radical of R), the assumption reads
sup {¢(Jp) + dim R/P} = dim R.
P2J

Thus, for every prime P 2 J, one has p(Jp) < dim R — dim R/P = ht P, by
the complementarity hypothesis. O

Remark 2.16 Thus, the equality dim Sg/;(J/J?) = dimgr ;(R), without ad-
ditional hypotheses, is not sufficient to trigger the local estimates p(Jp) <ht P,
a condition easily implied by the linear type property. On the other hand, many
rings satisfy the complementarity property, among them the Cohen-Macaulay
rings (more generally, rings that are both equidimensional and equicodimen-
sional — for example, equidimensional finite type algebras over a field) or rings

that possess a finitely generated faithful Cohen-Macaulay module.

3 Zariski and tangent star algebras

In this section we introduce the main object of our study in a more systematic

way.
The following notation will prevail thoughout.
a base field
a ring of fractions of a polynomial ring k[X] = k[X;,..., X,]

a k-algebra of the form R/I, I C R an ideal

Ok o>

residues of the elements X; ® 1 — 1 ® X; (diagonal ideal)
Q(A/k) the module of Kihler k-differentials of A
Z the symmetric algebra of the A-module Q(A/k)
T the associated graded ring gr p(A @ A)

The scheme defined by the algebra Z is called the Zariski cone of (the variety
defined by) A, while the one defined by T, following the suggestion of Johnson’s,
will be named the tangent star cone of (the variety defined by) A.

the kernel of the multiplication map A ®, A — A, generated by the



84 A. SIMIS

The algebras Z and T will be called the Zariski tangent algebra and the
tangent star algebra, respectively, according to the terminology that has been
introduced in [32].

The well-known identification Q(A/k) ~ D/D? yields a surjective homo-
morphism

Z—T.

Various ways of measuring the kernel of this map were introduced in [32],

based on earlier development of the theory of algebras of linear type.

Definition 3.1 (i) A4 has the ezpected star dimension if
dimZ = dim T.

(i) Ais set theoretically starlike linear if
(Z)red = (T)eea.

(ili) A is starlike linear if

Z=T.

Clearly, (ii1) = (1) = (i). We will see that none of these implications is
reversible.

Although these definitions look rather inconspicuous, they become natural
as soon as one works out their meaning in concrete cases. Thus, for example, (i)
above at least implies that A is generically reduced, hence reduced if it is also
unmixed (in particular, a 0-dimensional A having the expected star dimension
must be a product of fields). If, moreover, A ~ k[X]/I, with I a perfect ideal of
codimension two, then (i) can be simply be restated by saying that A is reduced
and, locally in codimension one, (isomorphic to) a hypersurface ring - in higher

codimension, the condition required by (i) is automatically satisfied in this case.

Example 3.2 The following examples may be worth keeping in mind for their
behaviour pattern. In all of them, k stands for a field.
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1. A=k[X,Y,2Z]/(XY,X2,Y Z)

This is a Cohen-Macaulay reduced ring of dimension one.

The presentation ideal J of T over the polynomial ring A[T, U, V] contains
the element TUV which is a non-zero-divisor on the subideal J(1) generated in
degree one (by the linear relations coming from the transposed Jacobian matrix
of the generators XY, X Z, Y'Z). Therefore, dimZ > dim T, so A has not the
expected star dimension.

However, by the same token as Exercise 2.9, it is easy to check that the
“cylinder” A[T] = k[X,Y, Z, T|/(XY,XZ,YZ)on A = k[X,Y, Z/(XY,XZ2,Y Z)
does have the expected star dimension. Geometrically, this may look rather in-
triguing but, from the algebraic viewpoint, it is rather explicable.

2. A=k[X,Y]/(X? XY)

Again this is a ring of dimension one, but not reduced (clearly, not Cohen-
Macaulay since it has even an embedded prime).

The presentation ideal J of T over the polynomial ring A[T, U] is generated
by J(1) plus the extra relations T3, T2U - a result that can be obtained by means
of a computation in the program Macaulay. Since T is a zero-divisor on J(1),
it is clear that J and J(1) have the same codimension (which is 2). Therefore,
A has the expected star dimension. However, A is not set theoretically starlike
linear since Z and T do not share the same minimal primes, e.g., (X,Y) is a
minimal prime of J(1) which does not even contain J.

The reduced structure (i.e., the underlying set theoretic geometry) is easily
found: in 4-space X,Y,T,U, (Z):ea is the union of two concurrent planes while

(T)rea is one single plane.

3. A=Ek[X,Y]/(F(X,Y)), with F(X,Y) a square-free polynomial.
Geometrically, the situation is as good possible since one has a reduced plane
curve. At any rate, it is easy to verify that A has the expected star dimension.
Also, geometers will undoubtedly find no hardship in realizing that Z and T
have the same reduced structure (i.e., that A is set theoretically starlike linear).

However, most everybody will be stymied if asked whether the two cones are
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the same. The fact that this is indeed the case was originally proved in [18]
as a special case of a hypersurface in n-space. In this work, it will come out
as a special case of a more general class of varieties, namely, locally complete

intersections in n-space (see Section 4).

Problem 3.3 How does one find, without computer resources, the ideal-theoretic
defining equations of T in case A is a one-dimensional ring of the form k[X,Y]/I?

(If I is principal, the calculation falls off the method of [18]).

3.1 Kabhler differentials and the second symbolic power

In this portion, we assume that A is actually of finite type over k. Thus,
R =k[Xy,...,X,] and A = R/I = k[X;,...,Xx]/1. Since the diagonal ideal
D is closely related to the module of Kahler differentials Q(A/k), it maybe
useful to develop some aspects of the latter.

The following is a well-known presentation of Q(A/k) in this case (cf. [22],

where it is called the second fundamental ezact sequence).
I/1* 25 Q(R/k) @r A — Q(A/k) — 0.

Here, the map on the right is naturally induced from the canonical surjection
R — A, while 0 is induced from the structural derivation d : R — Q(R/k).
The kernel of the mapping

8:I/1* — Q(R/k) ®p A ~ A"

may be identified to the torsion submodule, 7(I), of I/I? (as an A-module).
If further assumptions are imposed on I, then one can specify 7(I) a bit

more.

Proposition 3.4 (Zariski holomorphic functions) Assume that k has cherac-
teristic zero and I is a radical ideal. Then ker O can be described by either one
of the following:

(i) The A-submodule D(I)/I?, where D(I):= {f € I | 8f/0X; € I for all i}
(i1) The A-submodule I\*)/I?, where I?) is the second symbolic power of I.
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Proof. (i) This description follows at once from the definitions. In fact,
the R-module Q(R/k) is free on the generators {d(X;)}. Moreover, from the
universal property of the Kahler differentials, one has d(f) = S7(8f/9X:)d(X;)
for an element f € R. Now, to say that f € kerd amounts therefore to have
0f/0X; € I for 1 <1 < n, as required.

(i) It is well known that, under the assumptions, 7(I) = I(3)/I? (cf. [38]). O

Effective calculation of I(?)

Althogh Zariski theorem identifies, more generally, higher symbolic powers
of I in terms of the higher partial derivatives (cf., e.g., [5]), it is in the case of
the second symbolic power that one can set a remarkably simple and efficient
tool for computing its non-trivial generators in terms of first order differentials.

It is based on the following:

Proposition 3.5 Let I = (fi,...,fm) C R be as in Proposition 3.4. Let ¥
stand for a lifting of the relation matriz of the transposed jacobian matriz of
f=fi,...,fm, modulo I. Then the entries of the product matriz f - ¥ form a

(not necessarily minimal) set of generators of the symbolic power I(2),

Proof. By Proposition 3.4, there is an exact sequence
I/1®—Q(R/k) ®p A — Q(A/k) — 0.

The transposed jacobian matrix will give a map

S (R/I)e; ~ (R/T)™ 2 Y (R/T)dX;

j=1 i=1
with image module /1), Let K C YT1(R/I)e;j stand for the kernel of © and
let

(R/T)P — 3 (R/T)e; (5)
J=1
map surjectively onto K. Say, ¥ = (1) is a corresponding lifted matrix of (5)
over R. It follows that 3", ¢ f; € I(2).
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Conversely, any element }°; a; f; € 1) with aj € R, is such that 3, aje; €
K, where “~” denotes residue modulo I. This means that a; = 3, d;_,-kﬁ;, for
certain Bx € R/I with j = 1,...,m, k'=1,...,p. Write a; = Xi ¥ixBe + 9;,
with g; € 1. It follows that

Yaifi=) b (Z 1/ijfj) +>_9ifi,
) k j ]
hence I® C ((fi,-.., fm)¥)R + I?. This shows the contention. O

Remark 3.6 It is clear that, as long as one is not concerned with finding
minimal generators, then one can liberally assume that the first syzygy matrix

of the ideal I itself is a submatrix of the lifted relation matrix ¥.

The preceding remark leads us to formulate the curious

Proposition 3.7 Assume that I = (fi,..., fm) C R is a perfect radical ideal of
codimension two. Then the defining m x (m—1) matriz ¢ of I can be augmented
to an m x p matriz ¥, for suitable p > m, such that I(?) is generated by the

mazimal minors of ¥ fizing the columns of ®.

Proof. We can assume, by the earlier remark, that the m x (m — 1) syzygy
matrix ¢ of I is a submatrix of the lifted relation matrix ¥ as described above.
Since the (m — 1) x (m — 1) minors of ¢ are, up to sign, the generators f of I,
we can so arrange that m x m minors of ¥ be exactly the entries of the product
matrix f- ¥. Since, by Proposition 3.5, the latter generate I(?), we are through.
O

Often, after throwing away the zero minors, the generators obtained by this

procedure are indeed minimal.

Example 3.8 Let I stand for the ideal of an affine (or an arithmetically Cohen-
Macaulay projective) monomial curve. It has been shown (cf. [41], [27], [24])
that I(®)/I? is cyclic and a generator is given by the determinant of a 3 x 3
matrix obtained by suitably enlarging the presentation matrix of I. In charac-

teristic zero, this matrix is nothing but the first syzygy matrix of the transposed
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jacobian matrix of the generators of I (modulo I). It would be nice to prove

directly that the second syzygy of € is minimally three-generated in this case.

As a simple illustration of this example, consider the curve in P® defined
parametrically by the equations:

5

z=3:
y = st
z = 83t?
w=t°

By the nowadays sufficiently well known theory of curves defined by monomial
parametric equations, one can prove that the curve is arithmetically Cohen-
Macaulay — the point being, for instance, that one of the eliminated binomial
cartesian equations exhibits a pure y-power of degree not smaller than the degree
of the other term.

Once this is known, determining three equations that generate the homoge-

neous ideal of the curve is a matter of standard calculation. Namely, one gets:

3 2

y? —zz, 2° — zyw, y2? — 2?w.
By computing the relation matrix of the transposed Jacobian matrix of these
polynomials modulo the ideal I they generate, and lifting to R, one finds the

following 3 x 6 matrix

0 z y 22 y’-zz 0
0 -y —z —zTWw 0 y?—zz |,
y2—zz 22 zw yzw 0 0

which yields, by throwing away the null minors, a minimal set of generators of

I?), namely:

(¥* — z2)?, (¥° — z2)(z® — zyw), (¥° — z2)(y2* — z’w)

and
2% + yPzw — 3zy2lw + 2w’

The last generator is a cyclic generator of the torsion module I(3)/I%, as meant

above.
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3.2 A presentation of the Zariski tangent algebra

The preceding presentation of Q(A/k).as an A-module yields a corresponding
presentation of the Zariski tangent algebra as an A-algebra, namely, if T =
Ti,...,T, are presentation variables such that T; — dX; (mod 8(I/1?%)) then

Z ~ A[T)/(T®).

It may be worthwhile mentioning yet another related algebra, to wit, the sym-
metric algebra S4g, 4(D) of the ideal D C A ®; A

In order to deal with a presentation of the latter, we identify A®y A with the
ring k[X, U]/(I(X)+I(U)), where I(X) = I and I(U) is obtained from I by the
substitution X — U. Let T = T,..., T, denote new variables (“ presentation
variables”) over k[X, U]/(I(X) + I(U)) and define a surjective homomorphism

p:k[X,U,T)/(I(X) + I(U)) = Sae.4(D)

by the assignment T; — X; — U; (mod I(X) + I(U)), where X; — U; is taken
in degree 1.

It is well known that the presentation ideal kerp is generated by T-linear
polynomials with coefficients in k[X, U]/(I(X) + I(U)). Now, for each of these
generators whose coefficients actually belong to D, we consider an arbitrary
lifting to k[X,U,T] and denote by D(X — U) C k[X, U, T] the ideal generated
by these liftings. We informally call the latter the syzygetic generators of the
presentation ideal ker p.

We now introduce fresh generators, to be called the Taylor generators of
ker p. Namely, for each generator f;(X) of I(X), consider the Taylor expansion
of f;(X) at the point U and collect the polynomial coefficients of the linear terms
Xi — U; in an arbitrary fashion to get an expression of the form ¥ g;;(X; — U;)
- modulo D(X — U), it will be immaterial the way one collects them, due to
the Koszul relations. Let 7(I) denote the ideal of k[X,U, T] generated by the
corresponding T'-linear forms Y g;;T;.

Our result claims that, together the two kinds not only generate but are also

natural generators.
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Proposition 3.9 Let char k = 0. Then, in the above notation, one has:
1. There is a presentation

Saeia(D) = k[X, U, T)/(D(X - U) + T(I) + I(X) + I(U)).

2. The above presentation of Sag,4(D) modulo D yields the earlier presen-
tation of the Zariski tangent algebra by means of the transposed Jacobian

matriz.
Proof. (1) Quite generally, for any ring B and any ideal b, from a presentation
0—Z—B*"—b—0,
one obtains a presentation of the conormal module
0 — Z/ZNbB™ — B"/bB™ — b/b> — 0.

This says that Z = Z N bB™ + L, where L is generated by lifted generators.
Applying to the present situation, with B = A ®, A and b = D, it will suffice
to show that the Taylor expansions at U of the generators fi,..., fm of I, read
modulo the ideal I(X) + I(U), are liftings of the differentials

afm

Z 0f1 dX,,..

read modulo I = I(X).

Now, for that, in the Taylor expansion

N 6f,,, 1 0% f; ,
X)—fi( U)(X:-U)+= —(U)(X;—U;)(Xe—=Ui)+
HE-HU) = L g @XUtg 3 GraeUX=U)Xe-0)

one collects terms as follows:

0
fi(X) - f;(U) = 8}{'] > Bkagx o~ Uk) +...) (X1 = Uh)

k>2

afg 0f; ,
(3x, kz):a ax,0x, Xk~ Uk 4 ) (X = U)

+
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It is clear that, modulo D, these yield the above differentials.

(2) The second part follows immediately from the preceding proof. o

Although much less ubiquitous than the tangent algebras studied in these
notes, the symmetric algebra Ssg,4(D) is nonetheless important. We next

mention connections to central theories.

¢ (Relation to deformation theory) Under suitable conditions, the presen-
tation ideal of Syg,4(D) is actually generated by the Koszul relations on
the generators of D and the Taylor relations 7(I). This requires that
the ideal D be syzygetic in the terminology of [33] or, in the language of
deformation functors [21], that T(A|k, A) = 0.

¢ (Relation to embedding dimension of affine varieties) Let A stand for a
finitely generated algebra over an infinite field k. In[30, Theorem 1] the

following estimate is obtained
edim A < dim S4g, 4(D).

(This is not stated as such in loc. cit, but it turns out to be the same
statement at least if grade D > 0 due to Proposition 2.6). Here edim A
stands for the affine embedding dimension of A, i.e., the least n > 0 such

that there is a surjective k-homomorphism
k[X1,..., X, — A.

The proof given in [30] hinges on a rather involved geometric argument,

so one would naturally wonder if there is a simpler algebraic proof.

We note en passant that if A is a finite type equidimensional k-algebra
having the expected star dimension then the above estimate reduces to edim 4 <
2dim A+1 (cf. Proposition 3.12 and, specially, Remark 3.13), which is a classical
result in the case of a smooth A. Thus, it seems even more natural to ask for a

direct algebraic proof of this inequality for algebras A having the expected star
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dimension. It would suffice to show that, for such algebras, the following upper

bound always works:

edim A < sup {edimA,}+ 1.
meEMaxA

Actually, one is tempted to formulate the

Conjecture 3.10 Let k be an infinite (maybe perfect) field and let A be a
finite type equidimensional k-algebra. Then edim A < 2dim A.

3.3 Zariski algebras having the expected dimension

Let k be a field and let A be a k-algebra essentially of finite type; write A =
W-1B, B finitely generated k-algebra, B C A, W a multiplicative set in B.

As before, write
0D —5>ARA=AQ,A— A -0

then D/D? = Q(A/k).

A typical prime ideal of A will be denoted by gp. Identifying Spec(A) with
V(D) C Spec(A®x A), will allow for the slight confusion of denoting the inverse
image of p in A ®; A also by p.

Lemma 3.11 [32, Lemma 2.2] Let k stand for a field and let B C A be k-
algebras such that B is of finite type over k and A is a ring of fractions of B.
Let p € Spec(A4) = V(D) C Spec(A ®x A); then

dim(A ®x A), = 2dim A, + trdeg, A, /pA,.

If A is locally equidimensional, then (A ® A),, is equidimensional and quasi-

unmized.

We refer to (32, loc. cit.] for a proof of this lemma which uses but standard
machinery.
The next proposition also appears in [32], but since it is based on earlier

results of independent interest, we provide a proof.
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Proposition 3.12 Assume that k is a perfect field, A is a k-algebra essentially
of finite type, locally equidimensional and equicodimensional. Then the following

are equivalent:
(a) dimZ = dim T (i.e., A has the ezpected star dimension).
(b) edim(A,) < 2dim A,, for all p € Spec(A).
(c) n(Dy) < dim(A ® A),, for every p € V(D).

(d) Let B = k[X]/(f1,--.,fm) C A such that A is a ring of fractions of B.
Then
ht ,(®) > bt (f1,..., fm) —t + 1,

for 1 <t < ht(f1,...,fm), where © denotes the transposed Jacobian
matriz of f1,..., fm modulo the ideal (fi,..., fm).

Proof. (a) & (c). This is immediate by Theorem 2.15
(b) © (c) It is well known (cf., e.g., [8]) that

1(Dy) = p(QA/k)p) = edim(A,) + dim B/p.

The equivalence follows now from Lemma 3.11.

(c) < (d): (Asuming that A is generically a complete intersection) This follows
from Proposition 2.2 with E = Q(A/k) and using the fact that this module has
a rank equal to dim A. o

Remark 3.13 We note that the equivalence (a) ¢ (b) holds with no assump-
tion on the field k. Moreover, if A is k-affine (or local) equidimensional then
all hypotheses are fulfilled and we can freely use this equivalence. More partic-
ularly, if 4 is a graded affine k-domain (or a local domain) then condition (b)

is equivalent to dim Z = 2dim A.

The next result explains the behaviour of set theoretically starlike linear

rings under deformations. It will be used in the following sections.
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Proposition 3.14 Assume k is a perfect field and let A and C be k-algebras
essentially of finite type such that A = C/(ay,...,a,), where ay,...,a, is a
quasiregular sequence in C. Assume that:

(i) A has the ezpected star dimension.

(ii) Cq s equidimensional and set theoretically starlike linear for every mazimal

tdeal Q@ containing (ay,...,a,). Write
DD —s G T— F=20.

Then A 1s set theoreﬁcal!y starlike linear as well.

The proof goes beyond the scope of these notes and will not be given here.

We refer instead to the forthcoming [32, Proposition 6.4].

4 Homological background

The earlier sections were practically concerned with the Zariski algebra Z and
its dimension, while the star algebra T was only mentioned in connection with
Proposition 3.12. In this section we will deal with the finer properties of T
using the method of the approximation complexes, which has proven efficient
to study many classes of ideals and modules (cf. [9], [11], [13], [34], [35], [10],
(39)).

The main ingredients of the method are the homology of the Koszul complex
attached to the generators of an ideal and the conditions () introduced earlier.
Our interest hinges on the diagonal ideal D, hence the method depends largely
on the techniques related to the so-called reduction to the diagonal, a device
perhaps dating back to Weil and even others before him. Since the main focus
is on the homological side of the technique, we largely draw on Serre [28] and
Cartan-Eilenberg [4].

It may be convenient to review both the basic features of the approximation
complexes and technique of Serre, as they will appear slightly adapted to our

present needs.



96 A. SIMIS

4.1 The complexes of Herzog—Simis—Vasconcelos

Let R be a commutative ring, let ¢ : G.— F be a map of R-modules and let
M be a third R-module. The basic construction of the theory is the so-called
Koszul complez of ¢ with coefficients in M, denoted K(p, M): the components
of the complex are the modules A"G ®g S;(F) ®r M and the differential is
ANGOrS(F)@M — A 'G®rSiti(F)®M
A AgGRFfOm — T(=1VgA...AGA...Ng-Qp(g) f®m.

Now, one reason for the ubiquity of this complex is the following.

Lemma 4.1 Let F,G be free modules of finite rank and let E := coker¢ (i.e.,
¢ is a presentation map of E). Then:

(1) K(p, R) has a natural structure of graded complez over S(F') and, as such,

it is a direct sum of R-complezes
Kg 00— /\qG ® St_q(F) e PN ] /\1G® Sg_l(F) -2 Sg(F),
with ¢ = min {t,rk G} and Ho(K;) ~ Si(E).

(i1) As a graded complez defined over the polynomial ring S(F) = ¥, Si(F),
K(p, R) s isomorphic with the (ordinary) Koszul complez attached to a
set of generators of the presentation ideal J(p) C S(F) of S(E) coming
from the presentation map p. As such, K(p, R) is a complez such that
Hu(K(p, R)) ~ 5(E).

Proof. (i) As a graded complex over the polynomial ring S(F'), K(p, R) is the

direct sum of the complexes

0 - So(F) = 0
0 — ANG®So(F) — G®Si(F) — S(F) — 0

0 - AG®So(F) — AG®S(F) - G® Sy(F)

Therefore, K(p, R) is of the form

0 = AmGRS(F)(—m) — ... — A2GRS(F)(~2) — GR®S(F)(~1) - S(F) — 0.
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We leave as an easy exercise the verification that Ho(K;) ~ S;(E). Clearly,
then Ho(K(p, R)) ~ Y450 St(E) = S(E).
(ii) Let {g1,...,9m} be a basis of G. Then G ®g S(F) is a free S(F')-module
on the generators {g1 ®1,...,9m ® 1}. On the other hand, J(y) C S(F) is, by
definition, generated by the polynomials

SI(F) : ‘P(gl), A SI(F) ) <ta(gm);
where - denotes matrix product. Therefore, we have a map of free S(F')-modules
G®r S(F) % S(F), g; @1~ 5i(F)-¢(g;),1 <j<m.

If we now consider the ordinary Koszul complex K(®,S(F)) associated to the

map ®, then there is an isomorphism of complexes over S(F')

K(,R): 0o — (A™G)® S(F)(-m) — ... = G®S(F)(-1) — S§(F) — o0
K(8,5(F)): 0 — A™G®S(F))(-m) — ... — (G®SF))(-1) — S(F) — o
We leave the details as a rewarding exercise. O

Exercise 4.2 Let G % F be a map of free R-modules of finite rank and let
E := cokerp. Let, as above, J(¢) C S(F') denote the presentation ideal of

S(E) coming from the given presentation of E.
1. If L =kerp C F, show that L ~ J/JS(F);.

2. If the first syzygies of the entries of the product matrix (S(F');) - ¢ have
coordinates in S(F); if and only if L is a free R-module.

3. From the previous item, one deduces that L is a free module if the entries
of (S(F)4) - ¢ form a regular sequence in S(F). Write your smallest
“sufficiently regular” counterexample for the converse (Hint: set R = k[X]

and try tk F = rk G = 2 out).

4. Can you guess sufficient conditions on the matrix of ¢ in order that the
converse of the previous item holds? (If you think in terms of the Fitting

ideals of ¢, you are guessing right).
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We now specialize a bit our settting, to wit, we assume that F = G and
that the given map F' — F is the identity map. Clearly, in this case K(id, R)
is isomorphic to the ordinary Koszul complex on the variables of S(F) (i.e., the
generators of the irrelevant ideal S(F'),), which is then obviously acyclic.

But now assume, moreover, one is given a second map ¢ : F — R. Then

AF ® 5(G) is a double complex

!

!
e /\FF ® Sg(F) g /\r—-lF ® Sl+l(F) b d
l !
== /\r_lF®S¢(F) 4 /\T_ZF®SH.1(F) - ...

l !

where the horizontal subcomplexes are acyclic and the vertical ones come from
the ordinary Koszul complex K(p, R) by “symmetrization” (i.e., by extending
coefcients to S(F)).

Here, a typical square composed of horizontal and vertical differentials is
skew-commutative. If we denote the cycles of K (i, R) by Z(p, R) then, from the
(skew-) commutativity of the maps and the fact that extending coefficients by a

flat map is left-exact, we see that the horizontal complexes induce subcomplexes
Ziyeieoo. > Ze(p, R)® Se(F) = Zo_1(p, R) ® Sesa(F) — ...
Therefore, we obtain a graded complex Z(¢; R) of the form
0— Zm(p,R)® S(F)(—m) — ... = Zi(p,R) ® S(F)(-1) = S(F) — 0.

This complex has been dubbed the Z-complez attached to ¢ (or to its image
in R). There are similar versions using the boundaries and the homology of the
complex K(p, R) (see Exercise 4.3).

Also, these complexes can be defined with coefficients in an R-module M.

We leave the details to the reader.
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Exercise 4.3 Let B, = B,(¢p, R) (resp. H, = H,(i, R)) denote the boundaries
(resp. the homology) in degree r of the complex K(p, R).
(1) Show that there are graded complexes B(y; R) and M(p; R) of the form,

respectively
0= Bu(p, R)®S(F)(~m) = ... = By(p, ()® S(F)(~1) — (o(F))S(F) — 0

and

0 = Hn(p, R)®S(F)(—m) — ... — Hy(p, R)®S(F)(~1) — S(F)/(¢(F)S(F) — 0.

(ii) Show that the length of the M-complex, as defined in (1), is usually much
shorter.

(iii) Let I = (¢(F)) C R. Show that Ho(Z (¢, R)) ~ S(I), Ho(B(¢, R)) ~ I5(I)
and Ho(M(p, R)) ~ S(I/1?).

Exercise 4.4 Let K(p, M) denote the ordinary Koszul complex of a map ¢
F — R with coefficients in an R-module M.

(1) Show that Ho(p, M) ~ M ®g Ho(y, R).

(ii) Show, by mean of examples, that the analogue of (i) for the homology in
degree 1 is false (Hint: consider M = R/(yp(F))).

The following condition on the depth of the Koszul homology has been
known as sliding depth [11] (but cf. [35] and [10] for earlier appearances).
Thus, one is given a noetherian ring R and a map ¢ : F — R, where F is a

free R-module. Let a be a set of generators of the ideal (p(F)).

Definition 4.5 The set a (or the map ¢) is said to satisfy the sliding depth
condition if

depth H;(K(a,R)) > dim R — tk F + 1, (6)

for all 7 > 0.
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Sliding depth with coefficients is defined in the same manner if the complex

has coefficients in a module, with no change in the right hand side of (6).

Remark 4.6 (i) (Invariance [11]) Although the homology of the Koszul com-
plex varies while the set of generators of I = (p(F)) C R changes, it does so
in a stable fashion sufficient to imply that the sliding depth condition is inde-
pendent of the chosen generators. This means that, if R is local then rk F' may
be replaced by () in the right hand side of (6) as soon as we replace a by a
minimal generating set of I.

(ii) (Localization [11]) If R is local Cohen-Macaulay then the sliding depth con-
dition implies a similar condition locally at every prime of R. Thus, taking in

account (i), one would have similarly
depth H;(K(b, E))p > dim Rp — p(Ip) + 1,

for every P € Spec(R), where b is a minimal generating set of the ideal I and

E is a coefficient module.

Put together in a single statement, the facts in Remark 4.6 amount to saying
that if sliding depth holds locally at every mazimal ideal of a locally Cohen—
Macaulay ring R then it holds locally at every prime ideal of R.

Next is the main application of the M-complex. It serves as a template for
a diversity of situations. For convenience, it is stated in a slightly more general

form than in [10, Theorem 9.1].

Theorem 4.7 Let C be a locally Cohen-Macaulay noetherian ring, let ¢ : F —
C be a map, let J = (p(F)) and let E be a finitely generated C-module. Suppose
the following conditions hold:
(i) J satisfies sliding depth with coefficients in E locally at every mazimal ideal
of C.
(ii) J satisfies (F;) (i.e., p(Jp) < dim C,, for every p € Spec(C)).

Then:
(a) The M-complez M,(y; E) is acyclic.
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(b) If, moreover, Hi(p, E) ~ E ®c H;(p,C), one has
(b.1) Ho(M.(p; E)) ~ E ®c Scys(J/J?) ~ E @rgrs(C) ~ gr 4(E).
(b.2) If C/J is a Cohen-Macaulay ring then E ®g Sc/s(J/J?) ~ E ®r
grs(C)
s a Cohen-Macaulay Sc,;(J/J?)-module;
(b.3) If Supp(E) = Spec(C) then (Sc/s(J/J?))req = (87 3(C))req-

Proof. (a) Suppose to the contrary and choose P € Spec(S(F)) such that P

is minimal in the set

U Supp(H:(M.(y; E))).

i>0
Look at the localized complex M,(¢p; E)p: its homology H;(M,(y; E))p) (for
i > 0) is either the null module or has depth zero. Now set p = PN C. By the

preceding remarks on the localizability of the sliding depth conditions, one has
depth Hy(K (b, E)), > dimR, — p(J,)+1
#(Je) — u(Jp) + 14, by (ii)

= 1,

A%

for every 1 > 0, where b denotes a minimal generating set of (¢(F')). Therefore,
we can apply the acyclicity lemma of Peskine-Szpiro to deduce that the complex
M. (b; E)p is acyclic. It follows that the localized complex M,(y; E)p is acyclic
as well since the homology of the M-complex is independent of generating sets
(10, p. 102].

(b.1) By the assumption and Exercise 4.4, it follows that the complexes M, (p; E)
and E®c M, (p; C) coincide in degrees 0 and 1. By Exercise 4.3, Ho(M . (p; C)) ~
Sc/1(J/J?). Therefore, we obtain a commutative diagram of canonical surjec-

tive homomorphisms

Ho(Mo(p;E)) ~ E®c Scis(J/J?)
1B l
grs(E) — E®cgry0).

By (10, Theorem 4.6], A is an isomorphism, which implies that all the maps in

the diagram are isomorphisms.
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(b.2) We show that locally at every prime of Supp(E), E ®c Sc;s(J/J?) is
Cohen-Macaulay. Thus, let p € Supp(E). We have, for every i > 0,

depth (Hi(K(¢, E)) ®c S(F)), > depth Mi(b, E,,)

i+ dim Cy, — ht J, + p(J,), by part (a)
> i+dimC,, (M

\Y

where b denotes a minimal generating set of J,..

Depth-chasing through the complex M,(b; E), using (7) and part (b.1),
yields depth E;, ®c, S(J,/J2) = depth Ho(M,(b; E,)) > dim C,,.

On the other hand, again by part (b.1),

dim E,, ®c, S(J,/J2)

dim E, ®c, gr4,(Cp)
dim gr 5,(Cy) < dim C,.

IA

This proves the contention.

(b.3) The assumption on the support implies Supp(E ®¢ S(F')) = Spec(S(F)),

hence

Spec(S(J/J%))

Il

Supp(S(J/J?)) = Supp(S(J/J?) N Spec(S(F)))
Supp(S(J/J?)) N Supp(E ®c S(F))
Supp((E ®c S(F)) ®s(ry S(J/J*)) = Supp(E ®c S(J/J?)).

I

Likewise, Spec(gr;(C)) = Supp(E ®c grs(C)). The result now follows from
part (b.1). O

4.2 The principle of Cartan—Eilenberg—Serre

We now consider the technique of reduction to the diagonal. We note that it
will be mainly used in the opposite direction to that used in the classical sense!

In considering ordinary Koszul complexes, we will henceforth focus on a
set of generators of p(F) C R rather than on p itself. Accordingly, given a
sequence b of elements of a ring B and a B-module E, the Koszul complex
(resp. the Koszul homology) of b with coefficients in E will be indicated by
K,(b; E) (resp. H.(b;E)).
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Theorem 4.8 [28, Ch. V, B Let k be a field, let R stand for a ring of fractions
of the polynomial ring k[ X, . . . y Xn] and let M and N be R-modules. Then there

is an isomorphism of graded R-modules
H,(A; M ® N) ~ Tor (M, N),
where A denotes the sequence {(Xi®1-10X; |1<i< n} C R®: R.

Proof. One may clearly assume that R — k[Xy,..., X,]. Quite generally, since
A is a regular R @, R-sequence such that R ®r R/(A) ~ R, one has

Hu(A; M ® N) ~ Tor s **"(M &, N, R).
The rest follows from a well known result in (4, IX, 2.8] to the effect that
Tor s **"(M &, N, R) ~ Tor R(M, )
O

Remark 4.9 We will be mainly interested in gathering information on the
diagonal ideal D from the homology modules Tor B(M, N). The main cases will
have M = N=Aor N = A, M = wy. In such situations one has a reasonable

grasp of the modules Tor f(M, N).

We now go back to the notation that has been set up at the beginning of
Section 3.

By definition, the diagonal ideal D = ker A ®k A — A is generated by the
residues of the elements of A. The next result could be rightly called main

theorem as it draws practically on all the material developed so far.

Theorem 4.10 Let k be a field, let A be a locally Cohen-Macaulay k-algebra,
essentially of finite type over k and consider any fized presentation A ~ R/I,
with R a ring of fractions of the polynomial ring k(X] = k[X1,...,X,]. Let
A={Xi®1-10X;1<i< n} C k[X] @« k[X] and let further E be a finitely
generated A-module. Assume that the following conditions hold:
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(i) depth Tor f(A, E)n > dim A, —ht Ins +1, for every integer i > 0 and every
mazimal ideal M D I, where m = M/I.
(1) p(QUA/k)p) < dim A, +n — ht Ip, for every prime ideal P D I, where
p=P/I.

Then:

(a) The approzimation complez MJ(A; E Q A) is acyclic and

Ho(M.(A;E Ok A)) ~ ZQ®asF
TQqFE ~ grD(E Rk A).

12

(b) If A ts Cohen-Macaulay then Z ®4 E ~ T ®4 E is a Cohen-Macaulay
Z-module.

(c) If Supp(E) = Spec(A) then (Z)red =~ (T)rea (in other words, A is set

theoretically starlike linear).

Proof. It is an application of Theorem 4.7, with C := AQA, J := (Delta)/(I®
1+1®171) =D and E := E (considered as an A ®; A-module via the map
AQ®r A — A). The remaining identifications come from Theorem 4.8, from
D/D? = Q(A/k) and from dim A, + n — ht Ip = 2dim A,, + trdeg, A,/pA, =
dim(A ®x A),, by Lemma 3.11.

The hypothesis in Theorem 4.7(b) is satisfied in the present contex since

Hl(A, E ® A)

1

Tor(A,E) ~IQrE ~(I®rA)®4 E
Tor (A, A) @4 E ~ Hy(A; A®k A)®4 E

12

O

Remark 4.11 Theorem 4.10 admits a formulation with k replaced by a noethe-
rian ring and A being flat over it [32]. This has some interest because of defor-
mation theory [19].

On the other end of the spectrum, if k is a perfect field and A is equicodimen-

sional - a property Nagata used to include in the definition of a Cohen-Macaulay
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noetherian ring — then by Proposition 3.12, condition (ii) of Theorem 4.10 is

but the condition that A has the expected star dimension.

Corollary 4.12 Let k be a field and let A be a k-algebra essentially of finite
type over k satisfying the following conditions:

(i) Tor f(A, A) is Cohen-Macaulay for everyi > 0.

(i) p(QA/k),) < dim A, +n —htIp, for every prime ideal P 2 I, where
p=P/I.

(iii) A is (locally) Gorenstein.

Then A is starlike linear and Z = T is a Gorenstein ring.

Proof. The starlike linear part follows from Theorem 4.10 with E = A and

the Gorenstein part is proved in [10, Theorem 9.1]. O

There are other consequences and variants of Theorem 4.10 which are of
interest. However, most of them actually fall off Theorem 4.7, so we will not

expand on them referring rather to [10].

5 Selecta

This section will briefly survey reasonably broad classes of ideals that can be
approached from the point of view of the preceding section. At the end we will
discuss a question posed by van Gastel and give counterexamples to it in the

spirit of some of the chosen classes herein.

5.1 Ideals in the linkage class of a complete intersection

Following current terminology, we say that a noetherian local algebra A is licci
over a field k if it admits a presentation A ~ R/I with R a localization at a
prime ideal of a polynomial ring over k and I, an ideal belonging to the linkage

class of a complete intersection.

Theorem 5.1 Let k be a perfect field and let A be a k-algebra essentially of
finite type over k satisfying the following conditions:
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(1) A is licci locally at every one of its mazimal ideals;
(i1) edim A, < 2dim A, for every p € Spec(A).
Then:

(a) Z@®awa, ~T®swa, for every mazimal ideal m of A and this module

is a Cohen-Macaulay (Z)m,-module.
(b) A is set theoretically starlike linear.

(c) Moreover, if A is Gorenstein then D C A®y A is normally torsion free if
and only if edim A, < 2dim A, — 1 for every non-minimal p € Spec(A).

(d) If A is Gorenstein then it is starlike linear and Z ~ T is a Gorenstein

ring.

Proof. By [2, 6.2.11], Tor F(A,.,wa,,) is a maximal Cohen-Macaulay A,,-
module for every ¢ > 0 and every maximal ideal m of A. The assertions then
follow from Theorem 4.10, Remark 4.11, Proposition 4.12 and [10, Theorem 9.1]
a

Remark 5.2 (Locally complete intersections) A special case of the preceding
theorem is that of a locally complete intersection A with the expected star
dimension. Here, of course, the modules Tor f(A, A) are locally free (i.e., pro-

Jjective) over A.

5.2 Cohen—Macaulay rings of codimension two

Perfect ideals of codimension two form the first class of licci ideals for which
the assumption on having the expected star dimension actually implies starlike

linearity (not just set theoretically). Here is a more precise version of this result.

Proposition 5.3 Let k be a perfect field and let A be a k-algebra essentially of
finite satisfying the following conditions:
(i) For every mazimal ideal m of A, A, ~ R/I where R is a polynomial ring

over k localized at a prime ideal and I is a perfect ideal of codimension at most
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2.
(ii) For every prime ideal p € Spec(A), edim 4, < 2dim A4,,.
Then

(a) Z =T is a Cohen-Macaulay ring;

(b) D is normally torsionfree if and only if edim A, < 2dim A,,— 1 for every

non-minimal prime p € Spec(4).

Proof. By [10, Theorem 9.1] and Remark 4.11, it suffices to show the depth
condition on the modules Tor B(Apm, An), with m a maximal ideal of A. We may
then assume that A is local and that ht I = 2. Therefore, we have only to deal
with Tor fi(A, A) (i = 1,2). By the result of [1], Hy(I) is a Cohen-Macaulay

module. Thus, on one hand, from the exact sequence
0— Hi(I) — A™ — I/I* — 0

one gets depth Tor f(A, A) = depth I/1? > dim A — 1.
On the other hand, the symmetric power Sy(wy) is also a Cohen-Macaulay

module [37, 2.1(b)]. This implies that
Tor 3 (A, A) ~ Hom (w4, A) ~ Hom (S5(w4),wa)
is Cohen—Macaulay as well. o

Remark 5.4 Condition (ii) in the preceding Proposition can in the present cir-
cumstances be restated to the effect that A is a reduced ring and a hypersurface
locally in codimension one. Likewise, the above condition in order that T be
torsionfree over A is equivalent to requiring that A be normal and a hypersurface

locally in codimension two.

Example 5.5 Let X be an m x m — 1 matrix of indeterminants over a perfect
field k, let R := k[X] and let I C R stand for the ideal generated by the maximal
minors of the matrix X. Setting A = R/I, the assumptions of Proposition 5.3

are fulfilled, so A is starlike linear, T is a Cohen-Macaulay domain.
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5.3 Cohen—Macaulay rings of codimension three

The exact conditions we ought to tailor in order to have starlike linearity for
codimension three ideals are far from. clear. In the next section we will see
examples of such ideals that are of the expected star dimension and nevertheless
not even set theoretically starlike linear.

The next proposition gives one result in the positive direction. The main
condition, homological in nature, may not look so natural but it takes place in

many situations.

Proposition 5.6 Let k be a perfect field of characteristic # 2 and let A be a
k-algebra essentially of finite type satisfying the following conditions:
(i) For every mazimal ideal m of A, An ~ R/I where R is a polynomial ring
over k localized at a prime ideal and I is a perfetct ideal of codimension at most
3 such that the first Koszul homology module Hy(I; R) is Cohen-Macaulay.
(ii) For every prime ideal p € Spec(A), edim A, < 2dim A,,.

Then

(a) Z =T is a Cohen-Macaulay ring.

(b) D is normally torsionfree if and only if edim A,, < 2dim A,—1 for every
non-minimal p € Spec(A).

Proof. Again it suffices to show the following depth inequalities
depth Tor f{(A, A) > dim A — (3—1), 1<i<3

where A is assumed to be local and 4 ~ R/I with ht I = 3.

The cases ¢ = 1,3 are taken care of exactly as in the proof of Proposition 5.3.
As fori = 2, by [33] one has Tor §( A4, A) ~ A?I since I is syzygetic and 1/2 € R.
On the other hand, Weyman'’s resolution [44] implies that pd A2] < 4. Therefore

depth A’ >dimR—-4=dimA4 - 1.0

Example 5.7 The primeval example of a perfect ideal I C R such that H;(I; R)
is Cohen-Macaulay is one that has deviation d(I) := p(I) — ht I at most two.
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Thus, codimension three perfect ideals generated by at most 5 elements satisfy
condition (i) of Proposition 5.6. For them, A = R/I is starlike linear provided
it has the expected dimension. By Proposition 3.14, any specialization thereoff

having the expected star dimension will be set theoretically starlike linear.

The assumption on H;(I; R) being Cohen-Macaulay is not necessary as the

following instance puts forward.

Example 5.8 Consider the ideal [ C k[Xi, ..., Xg] generated by the following

polynomials:
f1 = 4\'2 /\’4 + )(3 -X’G, fz = 1Y3X 5 + 1\’1 X 6) f 3 = 1\'1 JYZ - 4\'2 1\’5 + 4\’3 4‘\’5 = ,\.5 4\'5,

f 4 = x\’z ){3 + 1"21\’4 + 4‘\'2 1Y3 + JYGZ f5 = 1"32 + /\’3/\'4 + 1\,34\’6 = 1\’4 4\-6;

fe = A’1X3 + X11Y4 + qu\’s + 1\’11\’6-

This ideal I is perfect of codimension three (and deviation three) and has
analytic spread £ X)(1) = 5 (in particular, I is not of linear type).

Actually, H,(I; R) is not Cohen-Macaulay as I is not syzygetic: a quadratic
relation lying outside (X)R[T] being

N + 0Ty — ToTs + ToTs + T'Ts — TyTs,

with T; — f;.

The corresponding projective variety cut by quadrics in P® has degree 4 and
is reduced and irreducible as is shown by means of Noether normalization using
the method given in [40]. Alternatively, one can show under a calculation with
Macaulay that the ring R/T is (Rz2), hence R/I is a normal domain (since it is
Cohen-Macaulay) and the corresponding projective variety is non-singular.

A second calculation in Macaulay grants that the Zariski tangent algebra
and the tangent star algebra are isomorphic. Sufficient evidence from a wasteful
computation in the same program indicates that the algebra is indeed Cohen-

Macaulay (possibly, a normal domain too).
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This example is curious in a number of other ways as well. Let us look at
the ideal I more closely.

First, its transposed jacobian matrix has rank 5 over R = k[X] with cokernel
L such that

O—»RLRG—eﬂRe—vL——»O,

where I = (®*). Another computation in Macaulay yields that ht I5(0) = 2
when char k # 2, thus showing that L is isomorphic to an ideal of k[X] in this
case. This ideal can be taken as the ideal generated by the cubic polynomials
obtained by cancelling the common factor among the six 5 x 5 minors of a 5 x 6
submatrix of rank 5 of © (in particular, it has codimension two).

Of course, we have (R/I) ~ L/IL, alocally free module in the punctured
spectrum of R/I.

Further, L is self-dual in the sense of jacobian duality, i.e., it and its Jjacobian
dual [31] are isomorphic.

Let us remark that if char k& = 2 then the cokernel L has torsion and,
moreover, (®') = (X).

5.4 Determinantal rings

Determinantal rings are representative of a more general pattern which is ex-
plained, at least in one direction, by Proposition 5.20. The coordinate rings of
the Veronese and Segre varieties, to be considered later, are examples of special
interest,.

Typically, the results for this class are more or less definitive, at least in the
generic case. We will content ourselves in quoting the following theorem, whose

parts are collected from [32].

Theorem 5.9 Let R be a regular domain and let (X) be an r x s(r < 38) matriz

of indeterminants over R. Let t be an integer such that 1 <t < r. Then:
(a) R[X]/1.(X) has the ezpected star dimension if and only if

=1 or
t=r or
=r—1s<r+1
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(b) If R is a localization of a polynomial ring over a field then RIX]/I(X) is

set theoretically starlike linear if and only if
t=1 or
t=r

- The proof of (a) is by induction, using the well-known inversion-localization
trick for matrices of indeterminants. The argument for (b) is a consequence
of Proposition 5.20 for one direction, but a lot more involved for the other

direction.

5.5 Rings associated to graphs

To a simple graph G = (V,E) (V = vertices, E = edges) one can attach a
polynomial ring k[X] and an ideal ] — Z(G) C k[X], where X is in bijection
with V and I is generated by the squarefree monomials X;Xj corresponding to
the elements of E. The ideal J (resp. the ring k[X]/1) is called the edge-ideal
(resp. the edge-ring) of the graph G.

For further terminology and basic results in this section, we refer to [43] and
(36].

Let then I = 7(G) c k[X] be as just explained. Set A — k[X]/I. Fur-
ther, let T and J denote, respectively, a set of presentation variables and the
corresponding presentation ideal of T over A.

The suspension over G is the graph defined by doubling the set of vertices
of G and then adding to the set of edges of G one extra edge for each pair of
vertices (V;, U;), where V; is an old vertex of @ and U; its duplicate. In terms of
ideals, the suspension is defined by the ideal (Z(G), X114, . .. Xn¥n) CE[X, Y],
where Y is a doubling of X.

Here is a result that explains the definite pattern for edge-ideals regarding

the problem posed by van Gastel.

Proposition 5.10 (k a perfect field) Let I c R := k[X,Y] stand for the edge—
ideal of a suspension over q graph G and let A= R/I. Then
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(1) A has the ezpected star dimension.

(2) If G is not bipartite then A is not set theoretically stalike linear.

Proof. (1) Let G denote a graph and let S(G) denote its suspension. Then
I=1I(5(G)) = (I(G), X111, ... X,.)Y,) C R.

Proceed by induction on n = # X. For n = 1, G is an isolated vertex, so
I = (XY). Then Z ~ k[X,Y,T,W]/(XY,XT + YW) which is certainly of
dimension two.

Since A is Cohen-Macaulay [43], it suffices by Proposition 3.12 to argue that
edim Rp/Ip > 2ht Ip for every prime P D I.

If P = (X,Y) the result follows from the nature of the suspension since one
has here ht I = n. Let P # (X,Y). Say, first X; ¢ P. Clearly then Rp/Ip =
(Rx,/Ix,)PRy,- But Ix, = (Y1, Xs,..., X4, XiX;, Xa1Yas1, - - ., XnYa), where
d is the degree of the vertex corresponding to X; in S(G) and 4,5 # 1,2,...,d.

Cancelling the free variables Y;, X, ..., X4, the ring Ry, /Ix, is isomorphic
to a localization of the ring of the suspension over a subgraph of G with n — d
vertices.

Suppose now that, say, ¥; ¢ P. A similar argument shows that Ry, /Iy, is
isomorphic to a localization of the ring of the suspension over a subgraph of G
with n — 1 vertices.

In either case, one is done by the induction hypothesis.

(2) If G is not bipartite, it contains an odd cycle with vertices Xj, ..., Xoms1
(say) and m > 2. We claim that the corresponding monomial Ty - - Tymy1
belongs to J.

For this, let U be the other set of variables in the enveloping algebra of k[X].
The ideal of the diagonal is generated by the differences X; — U; plus similar
generators for the Y.

Since everything is homogeneous, it suffices to show that upon substitution
T; » X; — Ui, the monomial T} - - - Tymy1 lands inside Z(G) + I(G') C k[X, U],

where G’ stands for a copy of G in the “vertices” U.
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But, note that any variable product in

2m+1

ITI x:-uy)
=1
is divisible by at least one monomial of the form XiX;j (or U;U;) with 1 < j. If
J =141, we are done; otherwise, it must be the case that the variable product
is
XUy --- X2m—1Usz2m+1 or U1 X,--- UZm—1X2mU2m+ly
in which case we are again done.
To reach the desired conclusion one now invokes the fact that set theoretic
starlike linearity implies that there are no equations of analytic dependence for

the generators of D (cf. next subsection). O

Remark 5.11 One can actually prove that ( for char k # 2) if G is an odd
cycle then J(1) = J N (X, Y)R[T] where, as above, J denotes a presentation
ideal of T, with A the edge-ring of the suspension of G, and J(1) denotes the
ideal generated by the linear (T)-forms of J. This euality is not true for an
arbitrary suspension, an easy example being given by the suspension over a

graph consisting of a pentagon with a chord.

To finish these short considerations, we would like to file the following.

Conjecture 5.12 (k perfect, char k # 2) The following conditions are equiva-
lent:

(1) A s starlike linear.

(2) ht (X)Z > 1.

(3) G is bipartite.

Note en passant that condition (3) implies, by [36], that ht (X)R[It] > 2
which is at least interesting to compare with condition (2).
Actually, the above conjecture falls within the expectation that, if char

k # 2, the generators of J not contained in J(1) are monomials corresponding
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to the odd cycles present in G. A large computation of examples indicate this
might be the case.

Moreover, some examples also point out in the direction that the equality
J(1) = J N (X)R[T] might hold for large classes of graphs (see below).

5.6 Hall of starlike counterexamples

The rings considered in this section will be again finite type algebras over a
field, i.e., of the form A := R/I, where R = k[X] (k perfect) and I C (X) an
arbitrary ideal.

Dimension theoretic versus set theoretic The following question was
raised by L. van Gastel [6).

Question 5.13 Let A be a reduced affine ring having the expected star dimen-

sion. Is A set theoretically starlike linear?

The preceding sections dealt with this and similar questins from their pos-
itive side (Proposition 5.10 being an exception). Here we we show that the
answer to this question is negative in general.

The question can be so rephrased as to ask whether the two tangent algebras
have the same minimal primes. We observe initially that the hypothesis on the
expected star dimension already implies generic reducedness of A.

Let now J(1) and J stand, respectively, for the presentation ideals of Z and
T on the polynomial ring k[X,T]. We know (see, e.g., [14]) that a necessary
condition for the set theoretic equality of Z and T is the analytic independence

of the generators of D at the maximal ideal
(X, U)/1(X) + I(U)) C k[X, U)/1(X) + I(U)) ~ A @ A.

This latter condition translates to J C (X).
All the counterexamples to follow will trespass this condition by exhibiting
directly a (global) relation of analytic independence. In particular, the following

weaker version of van Gastel’s is momentarily open:
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Question 5.14 Assume A = k[X]/I is reduced and has the expected star
dimension. If the generators of D are analytically independent at (X, U)/I(X)+
I(U)), is it true that Z and T have the same reduced structure?

If one is willing to sacrifice unmixedness, then a “smallest” example that
answers the question negatively is very likely to be the following ideal of codi-

mension two.
Example 5.15 Let X = X;, X3, X3, X4 and let I be generated by
X1X2, XzXa, X3X1, X1 X

It is easily seen directly that dim Z = dim T(= 4). Let T = T}, T3, T, Ty be the
presentation variables. Then T1T,T3 € J.

In order to construct a negative instance which is moreover prime, one can
upgrade the example to a Cohen-Macaulay one. In particular, codimension

three must be the case.

Example 5.16 (char k # 2) Let X = X;,X,, X3, X4, X5, X6 and let I be
generated by

Xle, Xsz, ngl, X]Xq, Xsz, Xa)(e.

I is Cohen-Macaulay of codimension three and deviation (= p(I) — ht I) three
(moreover, it is of linear type).

Again A has the expected star dimension, as is readily checked from the
heights of the various Fitting ideals, using Proposition 3.12.

The presentation ideal J of the tangent star algebra T has an extra generator
as before, namely, TyT>T5 corresponding to the (odd) cycle structure in the
graph defined by the generators of I.

Actually, a computation in Macaulay shows that (provided char k # 2) then

J = (J(1),TyT,T5) and J(1)=MnJ,

where M = (X)k[X, T).
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Remark 5.17 We note en passant that the tangent star algebra T is still
Cohen-Macaulay. This holds even if k has characteristic 2, although in the latter
case one has J = (J(1), XsTy Ty, Ty T;T5) hence the finer equality J(1) = M NJ

is no longer valid.

Out of Example 5.16, using the deformation-linkage argument in the last

section of [31], one can produce many prime ideals preserving similar data.

Example 5.18 Here is an example linking the preceding one with the regular

sequence

XiXo + X1 Xy, XoXs+ XoXs, XaXe.

After introducing generic variables Z;, Z;, Z3 and linking again, one finds the

following (non-homogeneous) prime ideal in a polynomial ring in 9 variables.

X3 X421+ X4 X521+ X3 X621+ XaXeZ1+ X5 XeZy — X1 X4Zy — X1 X622+ X1 X4,
X2X3Zy + XoXsZ1 + X2 X621 — XaXeZ1 — X1 X227 + X1XeZy + X1X223
+X1X4Z3 + X1 Xo,
ngl + XaXsZ1 + X3XeZy — X1X3Zy + X1 X323 + X1 X523 + X1 X3,
XaXsZy + XoX6Z3 + XaX6Zs + Xs X623 — X223 — X2 XaZ3 + X2 X5,
XsXaZy + X3XeZy + X273 + XoXaZ3 + X2 X3,

XaXaZs+ XaXsZ3+ XoXeZ3 + X3XeZ3 + XaXeZ3 + X5 XeZ3 + X3Xe.

The symmetric algebra Z still has the expected dimension (which is now 12).
On the other hand, A is not set theoretically starlike linear by Proposition 3.14

as the present link is also a deformation of the original ideal.

Remark 5.19 For the purpose of getting smaller counterexamples, one may
specialize down the Z-variables. Again, it would not be too difficult to apply

same primality test as in [40] to show that a suitable specialization is still prime.

The preceding examples seem somewhat fragmentary. Next we present two
counterexamples to van Gastel’s question which are important from the view-

point of deformation theory and free resolutions.
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1. The projecting cone of the Veronese surface

This surface is certainly ubiquitous in classical Algebraic Geometry. The
approach taken here is rather simple.
As is well known, the projecting cone of the surface is ideal-theoretically
defined by the 2 x 2 minors of the symmetric matrix
( X1 X X; )
X, X4 X5 |.
Xs Xs Xe
Let R := k[X] = k[Xy,..., Xe] and A := R/I, where I is the ideal generated by
these minors. Also well known is that 4 is a normal Cohen-Macaulay isolated
singularity of of dimension 3. Let T' = T1,..., T be presentation variables for Z
(or T) over A. Finally, let D(T) stand for the determinant of the above matrix
evaluated on the variables T.
A classical argument will show that D(T') belongs to the presentation ideal
of T over A. This yields the required relation of analytic dependence.

More generally, one has the following intriguing phenomenon:

Proposition 5.20 Let k be a field, let R = k[X] = [Xy,...,X,] and let
I C (X) be any ideal of R. If there ezists an v X r matriz M, whose entries
are linear forms in R and whose determinant is non-zero, such that moreover

Ii(r+1)/2(M) C I, then the ring (R/I)x) is not set theoretically starlike lincar.

Proof. The canonical generators {z; ® 1 —1® z;| 1 <i < n} of D (here z;
denotes the residue of X; in B = (R/I)x)) are minimal generators. Therefore,
as remarked above, they would have to be analytically independent at the max-
imal ideal (2;®1,1®x;| 1 < i < n) were B to be set theoretically starlike linear.
Now, expanding the determinant of the r X r matrix M ® 1 — 1 ® M by Laplace,
using multilinearity and the assumption that the [(r +1)/2] x [(r +1)/2] minors
of M belong to the given ideal I, one finds

det(M@l—l@M)CI[(,.+1)/2]®R+R®I[(,.+1)/2]CI®R+R®1,

which yields a relation of analytic dependence. O
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Going back to the example, it remains to verify that A has the expected
star dimension. But this is clear by Proposition 3.12, (b), since 4 is an isolated
singularity (alternatively, by a computation in Macaulay using (d) of the same

proposition).

Remark 5.21 (1) The ideal I above is interesting from the purely algebraic
viewpoint. First, the preceding argument shows a posteriori that its first
Koszul homology module Hy(I; R)is not Cohen-Macaulay (cf. Proposition 5.6).
Nonetheless, it is known [20] that it is an ideal of linear type, i.e., its blowing-
up algebra coincides with the residual scheme (symmetric algebra of I). This
seemingly makes the counterexample very tight.

(2) The star algebra T is a Cohen-Macaulay domain (computation in Macaulay).
(3) As in Example 5.16, here too the finer equality J(1) = M N J hold true
provided char k # 2.

2. The projecting cone of the Segre X, ,

It is well known that this cone is ideal-theoretically defined by the 2 x
2 minors of a generic 3 x 3 matrix. The argument is then ipsis-literis the
same as the one for the Veronese, a relation of analytic dependence being given
once more by the determinant evaluated at T. Thus, this yields an additional

counterexample to van Gastel’s question. .

We close this section with a remark about the characteristic of the ground
field k.

The difference between characteristic 2 and other characteristics turns out
to be deeper than it appears on the surface, at least for ideals generated by
quadratic polynomials.

Practically all the explicit examples discussed so far have in common the
following feature. Let ] ¢ R = k[X] be a homogeneous ideal generated by
quadrics and let E stand for the R-module defined as the cokernel of the trans-

posed jacobian matrix of a set of generators of 1. Assume that E has rank zero
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as R-module. Then the maximal minors of the jacobian matrix ©, viewed in
the T-variables, belong to the presentation ideal J of T (and, clearly, not to
J(1)).

In the case of the veronesean and the Segre threefold, the module E indeed
has rank zero if char 2 # 0 (but positive rank otherwise!) and, moreover, the
maximal minors of © are indeed powers of generators of J not lying in J(1).

This yields an efficient, as yet not completely understood, method of verify-

ing the deficiency of the corresponding secant variety.

Set theoretic versus ideal theoretic We will briefly deal with the impli-
cation “set theoretically starlike linear = starlike linear”. To the best of our
feeling, this implication should fail even for A ~ k[X]/I with I a perfect codi-
mension three ideal. The examples may require a good deal of ingenuity for
their construction.

We will next give a flavour for the question by showing a counterexample
in codimension two which, in spite of not being unmixed, keeps many features

common to determinantal ideals.

Example 5.22 Let R = k[X,...,X;] and let I C R denote the ideal of max-
imal minors fixing the first column of the catalecticant
X1 X2 X5 X4
Xz X3 X4 Xs '
Then I = (X3, X;) N D, where D is the ideal of all maximal minors. Hence,
I'is prime (but not C-M, not even unmixed).
We have found directly the minimal primes of both algebras, as follows.

Letting J stands for either presentation ideal, then:

1. Every minimal prime of Z (resp. T) contains a minimal prime of either

(X1,X3)Z (resp. (X1,X;)T) or DZ (resp. DT);

2. A trivial computation shows that the minimal primes of (X;, X,)Z (resp.

(X1, X3)T) are (X) and (X1, Xz, Th, T2) (modulo J of course);
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3. Since ht J = ht (X3, X3, T1, T2)(= 4), it follows that the latteris a minimal

prime of J.

4. Now, a computation following the script of Vasconcelos [42] yielded that
the radical of the extension of D/I is (X) N (X1, X2, X3, X4, T1) (It is

immediate that these are minimal primes of the extension of D/I but not

trivial that they are the only ones). These are primes of codimension 5.

5. To see that the primes in (2) are actually minimal primes of J is more
involved: still following the same script, we checked that they are minimal
primes of a larger ideal J; N J; sharing same radical as J, N J; — the latter

standing for the intersection of the minimal primes of codimension 5 or 6.
6. Therefore, the minimal primes of J (for both Z and T) are

(X1, X2, Ty, T2), (X), (X1,Xa2,X3,X4,Th);

7. It follows that Z and T have the same set structure, as required.

To conclude, we give below the explicit equations of the respective presen-

tation ideals, thus showing they are different.

Remark 5.23 The homological dimension of J (for both Zariski and star) is
6. We have checked that (X, g(T)) (cf. below) is an embedded prime of both

presentation ideals. Is it the only prime in cod. 6 ?

We next give explicit sets of generators of both presentation ideals.
Here is the presentation ideal of the star algebra (the one of the Zariski

algebra just leaves out the last polynomial)

XoXa— X1 X5, XoXa — X1 X, X2 — X1 X3
XsTy — XaT2 — XoTy + X1 Ts, XaTy — XaTs — XoTs + Xu Ty,
XaTh — 2X,T; + X1 Ts,
X,TW T3 — X, T,T3 — 2X, Ty ToTaTy + 2X, T3 15Ty + X,T:T? — X\ T\ T, T}
+XoTyTETs — XaT3Ts — XoTETsTs + XaTh T2 T Ts.
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In particular one sees that all coefficients lie in (X)) which implies analytic
independence of D C kX, U]/(1(X) + (U)) globally on (X, U)/(I(X) + (U))
(recall that this fact on itself is insufficient to have set theoretic starlike linear-
ity).

Next are the generators of the primary part J; N J; needed for the higher

codimension primes.

2 Xs — XaXs, XoX3 — X1 Xy, X2 — X1 Xs, X3 — X1 X3X;
XaX3 = X2XuXs, X2X2 - X3 (3 X2, X§ —2Xa X2 X5 + XZX?
XsTh — XyTp — XoTy + X1 T, XuTy — XaTy — X5 Ty + X1y,
XaTy — 2X,T5 + X Ts,

XX Ty — X XX Ty + 2 Xa Xl Ty — X X2 X5Ts,

X3Ts — 2X, X2Ts — XaXiTy — X2X5Ty + AX, X2Ty + X3X4Ts — 2X1 X X5 T,
aXiTs— 1/2X2 X5 T — X1 X2Ts — X3X 4Ty + 2X:1 X XsTy — 1/2X: X3 X5Ts,
Xah T3 — XaToT3 — 2X, T\ Ty Ta Ty + 2X, T3TeTs + XoTRT? — Xy 1T, T2
+XNTETs ~ Xh T3Ty — X, T2TsT; + XiThToTsTs.

In order to calculate in turn the radical of the extension of the minimal

prime coming from the Fitting of 2 x 2 minors, we have used the following.

regular sequence of length 5:

X.f‘ - X1X,, st — X1 X5, Xf — X3X5,
XsTh — X4Tp — X, Ty + XiTs, XaTh — 2X,T, + X175,

The result was the ideal generated by the polynomials below, which are

indeed awful and do not present any explicit signs of the final result.

X3 — X1 X3, X2 - X1 X5,

Xalh —2X5T + Xi T, X0 — Xals — XJT, 1 Xi1Ts,
XoXaTo — 22X, X5 + XoX3Ts + X, XaTy — X1X,Ts,
XTo — 4XaT] + 4XaToTs — X\ T2 + X,To T, — X111 T,
XaXsT —1/3X3X4Ts — 2/3X, XsTs — 1/3X,X4Ty — 2/3X, X5 Ty
+2/3X, X3Ts + 1/3X, X, T,



122 A. SIMIS

XoXsToTs — 1/3X, X T? — 2/3X, Xs T2 — 2/3X; Xo T T,
—1/3X1 X4 T5T4 — 1/3X; X, Ty Ts + 2/3X: X4ToTs + 2/3X: XoTo Ty,
XoXsT? — 5/9Xa X T2 — 4/9X, XsT2 — 5/3X, Xs Ty T,
~5/9X; XsTsTs + 2/9X: XsTsTy + 2/3 X2 XsT? + 5/3X, Xs Ty T
—2/9X, X3 TsTs + 5/9X1 XaTsTs — 4/3X, XoTyTs + 2/3X1 X, T2,
XoT}Ts — 11/3X3T3T2 + 23/6 X, T2TS — 1/6X, T, T3
X\ TaT} — 5/3X; T2TsT, + 4/3X, T\ T, T2 T,
+4/3X, TPT3T, — 1/3X, TyT3Ty + 1/6 X, T2T5T?
+4/3X, TN TETs Ty — X\ TETTs — 1/3X, T2T2T,
~2/3X\ T, T3T; — 1/3X, T2ToTyTs — 1/6X, T3T?
+1/3X,T2T, T2,

XTI — 83X 12T 42Xy ToTS = 13K, T
—5/3XsT2T2Ty + 2/3X, TyT3Ty + 4/3X, T, T3T,
+1/3X, TYT2T? + 4/3X, Ty Ty T2Ts — Xy T2T2T;
~2/3X:\ Ty T3T; + 2/3 X, T Ty T, T
—4/3X\ YT, T3 T4 Ts — 2/3X,T2T, T2 + 4/3X, Ty T2T?
—1/3X, T2T5T2,

XaT§ — 14/3X3T3Ts + 37/6 X, T3TZ — 2/3X, Ty Ty TS
—23/12X, T3T3 + 1/12X, Ty T# — 5/3X,T2T,
+2X, VT3 T Ty + 4/3X, T3TsTy — 1/6 X, T2T2T,
—2/3X, VT, 2T + 1/6 X, T2TyT? — 1/12X, T2T5T?
+4/3X, Ty TPTs — X\ TATs — 2/3X T2T,yTsTs
—2/3X, T\T3TaTs + 1/6 X, T2T2Ts — 1/6X,T3TsT;
+1/12X, T3T2,

XaTZT3 — 65/96X, Ty T3 — 95/96 X5 TyTd + 2/3X, T3
+65/16 X4 T3T5Ty — 123/53 X3 T2T2T, — 68/67X, ToT3T,
—7334X, T3Ty — 65/96 X T2 Ty T2 — 65/48 X, T2TyT?
—3329X, Ty T2T? + 4/3X, T,T2T? — 65/8 X, TTs
+102/73 X, T3TTy — 65/48 X, T2T2Ty + 7292.X, T2 T2 T
+4/3X, Ty T3Ts — 20/107X, ToT3Ts + 116/107X, T3T, Ty
+13316 X, Ty Ty ToTa Ty — 57/77 X, T2To T4 Ts
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—11/8X, TyT2T,Ts — 65/48 X, T2T2T; — 65/96. X, T?T?
—8/3X, Ty T2T? + 21/8X, T3T? + 2/3X,T2T:T?
+49/6 X, Ty ToTT?2 + 65/48 X, T2T, T2
XiTTs  RTT — G TOTAT <+ X TETRT,
— D3RI TOT 4 B T, + X TPTST?
+2X,T2TST2 — 6 X, T, T2T2 + 12X, TiTs
—56X3T3TsTs + 2XsT2T2Ts + 58X, T2 T2 T
15X TsT8T} = 03 TOT, T, + M, TR TS
HOX TET T T 4 X Ty TOT T, + LT3,
X TITE 4 4K TITD — 16X, TVTL 5 T2
—2X,T2T,T2.

The following is the determinant of the specialized symmetric 3 x 3 matrix
whose 2 x 2 define the rational normal quartic (also generated by the 2 x 2 of

the catalecticant):

q(z) = T:f == 2T2T3T4 + T1T42 + TZZTE = T1T3T5.

Its geometric role is not so clear, neverheless the ideal (X, q(T)) is an em-
bedded prime (of codimension 6) of the presentation ideal of both the Zariski
and the star algebras. Also, it is a generator of the presentation ideal of the

star algebra of the homogeneous coordinate ring of the rational normal quartic

(cf. [19]).
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