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SOLVING CERTAIN GROUP EQUATIONS IN
PGL(2,k) -
A COMPUTATIONAL APPROACH

Said Sidki®

1. Introduction

Let F, be the free group of rank 2, freely generated by z,y. Let k e N,

i1,..., %k, J1,- - -, Jk integers different from zero,
w(z,y) ="y ... s*y*

element an of F,, and

G=<uzy|w(wy)>

the quotient group of F; by the normal closure of w(z,y) in F;. The questions

we treat here fall under the following general problem.

Problem. Describe all representations (or projective representations)
pr : G — GL(2,K) (or PGL(2,K))

over a variable field K. In particular, determine those pg for which px(G) is a
nonsolvable group.

The abelianized group G = G/G', is nontrivial and has faithful representa-
tions in GL((2, K) for appropriate fields K depending upon the type of G.

Let us fix some notation: (conjugate) z¥ = y~'zy, (commutator) [z,y] =
¢~1y~lzy, (iterated commutator) [z, ky] = [[z, (k — 1)y], 9.

Two groups studied by G. Baumslag define two extremes of the problem.
The first

<zyl|[z,yl=2>
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is isomorphic to a subgroup of GL(2,Q) through

10 . 20
S a7 e L o

On the other hand, the second group
<oylle,a=2>

has a derived group which is not finitely generated. Also, all its finite quotients
are cyclic; (see [1]].

It follows from a theorem of Mal’cev [6] that all images by linear represen-
tations of this group are also cyclic.

We refer the reader to W. Magnus [5] in which presentations into PGL(2, C)
of diverse classes such as Knot and Fuchsian groups are reviewed, and a survey
is given of Fricke characters.

In this lecture we describe complete solutions of group equations of the type
eV, k] =2¥  (k=1,2,8)

and of

[a:y-1 ’ my] = m’

mainly in PGL(2,K). These solutions were obtained with the help of the
algebraic software MAPLE [7] complemented with a package of subroutines
which were prepared by Christoph Seidler during 1988-89 with a scholarship
from CNPq.

2. The Group Equations
The second group of Baumslag belongs to
Ly(niiyf) =< z,y| 2" =¢, [, =2 >

which was used by R. Lyndon as a test for the Kervaire Lauderbach problem

[4].
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The group L, (n;—1,1) is an overgroup of the groups
VEm,n)=<z,y|y"=z"=¢, [z¥ 2=z, [2¥,2]=€>.

V€ stands for “verbal embedding” or codification of the ring Z, within the
group; see [2]. The linear group SL(3,Z,) satisfies the conditions of VE(6,n)

due to the existence of an automorphism 7 of order 6 such that
Elz(a)" = Els(a), Ela(a)" = Eza(a);

and to the well-know facts

[Elz(a), Eza(ﬂ)] = Ela(aﬂ); [Eza(a), Els(ﬂ)l =TI

Another class of groups generalize two groups proposed by H. Heineken;

these have their origin in variety of groups problems. We define
Hein(n,k) =< z,y | y" =1, [z¥,kz] =2V >.

Clearly, Hein (n,k) has as a quotient group the cyclic group of order n, by
setting ¢ = e.

It is known that Hein (3,1) is cyclic of order three, whereas the finiteness of
Hein(3,2) is still open. Finite quotients of the latter group were investigated by
J. Neubiiser, and its SL(2, —) representation by Schonert and Sidki (see [8]).

The group theory software SPAS [9] provides a “deep view” of the group
H, = Hein(0,1). It has a unique normal subgroup N such that H;/N =
SL(2,5). In addition, N/N' is isomorphic to

2 x B Wy BE % Ty

3. The Computational Approach
We define the ring R = Z[s, s, z:j, ¥i;],

Aiz o (25)(=X), y- (¥;)(=Y).
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Then, A extends to a PGL(2, —) representation when the equation
w(X,Y) = (wij) = oI

is satisfied. That is, if and only if, s,x;;,y;; are solutions of the system of
equations

3§ =wn, Wi = Wz, wiz = wyn =0;
The trivial representation corresponds to the solution
s=1, zy=yu=1 (1=12), z;;=yi; =0 for 1 # 3.
On considering 7, the ideal of R generated by
{s —wn, wi —wiz, wiz, wn}

the problem translates immediately to that of understanding the quotient ring
R = R/T. On defining

§=T+s, &i;=T +wij, §i; =T +yij, X = (25), Y = (3i5)
the representation
A:G— PGL(2,R)

where £ — Z, y — § becomes the “universal” PGL,-representation of G.

In order to diminish the number of variables, we look for solutions in alge-
braicly closed fields K, without previously fixing such fields. This restriction
eliminates the Jacobson radical of R, and thus also the corresponding normal

nilpotent subgroup
MG)N(I+ Mzx2(J(R))) (mod. scalars).

The restriction allows us to find simple representatives of the conjugacy
classes of the pairs (X,Y),

{(enX¥, ;YY) | U € GL(2,K), c1,c2 € K7}
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Such representatives (Xo,Y;) can be chosen to satisfy

sef(§2) (29}
Yo € {Y¥| det(Y) =1, U € GLy(K), UX, = Xold}.

In addition, since we are interested in non-solvable quotients of G, the condition

Y12 # 0 should hold. Therefore the representatives are simply

0 1 ’
X°=(g 1)’. Y"=< - ) O

Yuyz — 1 yz
1
(!

Y1 Y12
y Yp= = .
) v %)

or

= o

4. Solutions of two matrix equations

With the purpose of dealing with the group equations discussed above we have

found all solutions of the following system
(X, Z)=r1, W,X]' =sZ (r,s€ K*).
We consider equivalent the solutions
(r,8,X,2,Y,W), (r,855",51X,8.Z Y55y, 5,W5)
where 51,8, € K#, [S1,Z] = I (that is, §; € C(2)),
S, € C(X), SeC<X,Z>.

With respect to this equivalence, the solutions fall into eight families as is seen

in the next table.
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5. Representations of Hein (n, k)

Recall that Hein(n, k) =< z,y | y" =€, [2¥,kz] = ¥ >. Define H, =
Hein (0, k).

. 5.1. The group H;. The polynomial necessary and sufficient condition is

5
K] +1=0.
s+1

HOES

This leads to
o(X) = 10, Y?® is scalar,

MHy) = PSL(2,5).

5.2. The group H,. The polynomial condition is

f(s) = fl(‘g)fz(-’) =0,

where
fi(s) = ’:%11 fa(s) = s — 255 4 25* — 353 + 257 — 25+ 1.
(21) fi=0=>
o(X) = 10, Y? is scalar
A(Hz) = PSL(2,5).
(22) fi=0=

A(Hz) is an infinite group:

On imposing finiteness on the order of ¥ (= Y modulo scalars), the first

values which give nonsolvable groups are
(22.1) o(Y)=6= char(K) =7, s2-3s+1=0, A(Hz) = PSL(2,7%),

(222) o(Y)=11= char(K) =43, s?—9s+1= 0, A(H;)= PSL(2,43),
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(22.3) oY) = 13 = char(K) = 307, s +39s+1 =0, AH,)
PSL(2,307%),

5.3. The group Hz. The polynomial condition is

f(s) = fu(s)fa(s) = 0

where

fa(s) = 8 — 757 + 245 — 5855 4 113514 — 187513 4 27212
—3523™ + 409510 — 4315° 4+ 4095 — 35257 + 2725°

—1875% 4+ 113s* — 5833 + 2452 — 75 + 1.

Again, fi(s) = 0 gives us an infinite group. On imposing finiteness on o(Y’),

the first values have the following implications
(5.3.1) oY) =3 = char(K) =2, or 239

(5.3.2) oY) =4 = char(K) = 41893.

6. Representations of V&
Define the verbal embedding group

VE=<z,y|[z* " a¥ =2, [zY,2]=e>.

6.1. Let ¢ be a projective representation of V€ into PGL(2, K),
w ‘T X’ y = Y’

such that the image is nonsolvable.
We invert our previous strategy by concentrating on the normal form of Y
first and then simplify that of X.
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As < o' 22V > sa nilpotent class 2 group, we conclude that
O(X) = 2, T22 = —T1;.

6.1.1. Let Y = ( ; (1] ) The solution is
char(K) =17, x=( 0 /3
’ 2/3 0 )

< X,Y > PSL(2,17).

6.1.2, Let Y = ( g 2 ) . We have the solution
1+9)1 + ),

o (L)1 +n*)y
(L—nP)

where 7 is a root of the polynomial

—T1

P(t) =20t +1)(£* +1) + ¢
(irreducible over Q) and K is such that
20(1+7)(1+7°)(1 - 7°) £ 0.

We note that for 7 to be invertible, char(K) # 2. Also, for 1 — 5 to be
invertible, char(K) # 17.
Let D =23, ] (t]/ (p(t)) Then, in D,

b, t4+1, -1, 241, 2+t +1.

are invertible. Thus, the above the representation is realizable over D. Also,

since p(t) is not a cyclotomic polynomial, ¢ has infinite order in D. Therefore,
<X,Y>< PGL(2,D)

is an infinite group.



68 S. SIDKI

6.2. It turns out that the projective representation in 6.1.2 is a special case of

the 3-dimensional representations ¢ into SL(3, K)

T
(" Jen
1

z = (2i) (= X),

such that X2 = I. Here the solution is equivalent to one where

M2+ m 72 m+1
L1 = y Tig=—2 ——— , T13=1,
M2~ n2—m nM2—1 :
Ty =zn+1, Tp=c12—1, T3=1,
z31 = —(211 + T12 — 1)(z11 + 1), 232 = (211 + @12 — 1)212, zaa = —(z11 + Z12),

(m1,7m2) a solution of
P(t1,t2) = 2(ta + 1)(t2 + 1)(t1 + ta) + tata = 0,
and K is such that

2mna(m — 1)(n2 — 1)(m — m2) # 0.

1
The coincidence with the PGL(2, K) representation happens when t; = >

1
Apparently, making o(Y') = m finite, forces ¢( = characteristic (K)) to be

positive. Indeed the first nontrivial cases are

7|8 |9t |uji2] 13 | 14
35,7 |17 | 3,31 |43 | 37 | 3,719,131 | 13,41,127

For the first two groups we have the epimorphisms
VE(2,6) —» PGL(2,7), VE(2,T) — U(3,3) x Cy,

and from [2,3] we know that the kernel of the first is trivial, whereas it is infinite

for the second.
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