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RINGS WITH POLYNOMIAL IDENTITIES
AN ELEMENTARY INTRODUCTION

Nikolaus Vonessen *

Abstract
These notes form an elementary introduction to the theory of rings
satisfying a polynomial identity. No background in non-commutative
ring theory is assumed; the only prerequisite is familiarity with the fun-
damental concepts of commutative algebra.

ntents.

Definitions and examples.

Some elementary notions from the theory of non-commutative rings.
Kaplansky’s theorem.

Central polynomials and Posner’s theorem.

. Examples of prime Pl-rings.

The trace ring of a prime Pl-ring.

An application of the trace ring to non-commutative invariant theory.

Rings satisfying a polynomial identity, Pl-rings for short, play a promi-

nent role among the non-commutative rings, since they are “non-commutative

enough” to exhibit interesting, non-commutative behavior, but still not too far

away from commutative rings, so that they have a very rich structure theory.

An indication of the close connection between PI-rings and commutative rings

is a

theorem of AMITSUR (3.7 below) which says that the “good” Pl-rings are

obtained as subrings of matrix rings over commutative rings: To be precise, if

Ris

a Pl-ring without nilpotent ideals, then there is a commutative ring C and

some integer n such that R embeds into the n x n-matrices over C.
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These notes were written as a supplement to a series of lectures given at the
XII Brazilian Algebra Meeting, held during the first week of August of 1992
in Diamantina, Minas Gerais, Brazil. The intended audience were algebraists
not familiar with non-commutative ring theory. In fact, the only prerequisite
required was a good understanding of the fundamental concepts of commuta-
tive algebra. This has consequences for the presentation of the material: For
example, the concept of primitivity is not treated in the main body of the text,
only in an appendix to Section 2. Thus we state KAPLANSKY’s theorem in
Section 3 only for simple rings, relegating its actual statement and a detailed
outline of its proof to the appendix of that section. My reasoning here is that
after all, one of the statements in KAPLANSKY’s theorem is that the primitive
PlI-rings are just the simple PI-rings, making it possible (on an elementary level)
to study PlI-rings without the concept of primitivity. In another direction, the
concept of AZUMAYA algebra is not being covered, resulting in the omission of
the important theorem of ARTIN and PROCESI. Many other interesting topics
had to be excluded, for example chain conditions for PI-rings, and SCHEL-
TER’s work about affine Pl-rings. Also, proofs are often only sketched and
sometimes completely omitted. These remarks make it clear that after reading
these notes, anyone interested in PI-theory should consult one of the excellent
texts on PI-rings listed in the bibliography (see also the remarks preceding the
bibliography).

No attempt has been made to give a history of the theory of Pl-rings, al-
though I have tried to give credit where due. I owe much to the textbooks and
survey articles from which I learned the material, and a knowledgeable reader
will doubtlessly note the connections.

Finally, I would like to thank the organizers of the XII Brazilian Algebra
Meeting, in particular Michel Spira and Dan Avritzer, for their support, and
for making this conference a great success.

Conventions. All rings have a unit element 1. If S is a subring of a ring R, then
R and S have the same unit element. Homomorphisms of rings preserve unit

elements. Ideals are always two-sided ideals (i.e., closed under multiplication
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by elements of the ring both from the left and from the right). All modules are
left modules: If M is a left R-module, we let R act on M from the left, i.e., the
product of r € R and ¢ € M is rz, not zr.

1. Definitions and Examples

1.1. Denote by F, = Z{X;, X, ...} the free polynomial ring in the countably
many non-commuting variables X;, X, ... with coefficients in Z. We assume
that the coefficients commute with the variables, but that the variables do not

commute among themselves. Thus X;3 = 3X;, but X; X,X; # (X1)*X,.

Definition 1.2 Let R be a ring, and let f(Xi,...,X,) € F be a polynomial
such that at least one of its monomials of highest degree has +1 as a coefficient.
If f(r,...,7a) = 0 for all choices of 1,...,r, € R, then f is called an identity
or polynomial identity of R. If R has a polynomial identity, then R is called a
Pl-ring.

1.3. The definition of a polynomial identity is somewhat technical in order
to avoid certain trivialities. For example, every non-commutative algebra over
a field of characteristic two satisfies the polynomial 2X;. In order to exclude
such trivial identities, one has to require that at least one of the monomials
occuring in a polynomial identity has +1 as a coefficient. When working with
a polynomial identity, it is sometimes necessary to work with monomials of
highest degree; for that reason it is useful to require that some monomial of

highest degree has coefficient +1.

1.4. Nearly every text on Pl-rings has a different definition of what is a polyno-
mial identity. But in the end, this does not make any difference: Any reasonable
definition of PI-ring implies that every PI-ring satisfies some power of the “stan-

dard polynomial”; we will come back to this in 1.7 below.
Now let us look at some examples.

1.5. Commutative rings are Pl-rings: They satisfy the identity XY —Y X = 0.
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1.6. Subrings and homomorphic images of Pl-rings are Pl-rings. This follows

immediately from the definition.

1.7. Any ring which is a finite module over its center is a Pl-ring. In fact, if
a ring R is generated as a module over its center C by n — 1 elements, then R

satisfies the n-th standard polynomial
Sn(X1,.., X)) = Zsign(w)X,,(l) e o Kok} o

where 7 runs over all permutations in the n-th symmetric group. The identity
in 1.5 is S5(X,Y). Note that S, is multilinear and alternating in n variables.
Thus Sp(zy,... &) = 0 if two of the z; are equal.

Now say that R = ™! Cr; for some generators r; € R. Let z,,...,z,

be n arbitrary elements of R. Then T = Y ¢ v for ¢;; € C. Because of the

multilinearity of S,, S,(z,.. .,Tn) can be written as a sum with coefficients in
C of evaluations of S, of the form Sn(Piyy ..., 7i,). Since there are only n — 1
distinct generators r;, two of the ri; must be equal. Thus Su(ry,,...,r.) = 0.

Consequently, R satisfies S,,.

As we have just seen, any ring which is a finite module over its center
satisfies some standard polynomial. This is not true for all PlI-rings, but nearly
so: AMITSUR showed that every Pl-ring satisfies some power of some standard
polynomial, i.e., it satisfies (Sn(X1,...,X,))™ for some integers m,n > 1 (see
[C2, §12.6, Exercise (4)]).

1.8. If C is any commutative ring, then M,(C), the ring of n x n-matrices
over C, is a Pl-ring. In fact, it satisfies Sp241, since M,(C) is a free module
of rank n? over its center C. The famous theorem of AMITSUR and LEVITZKI
says that My, (C) satisfies actually S,, (see (C3, §12.5, Theorem 11]).

Matrix rings will be the most important Pl-rings for our purposes since any
“good” Pl-ring can be embedded into a matrix ring over some commutative
ring. To be precise, “good” means any Pl-ring which does not have non-zero
nilpotent ideals. We will outline a proof of this important result of AMITSUR
at the end of Section 3 (Theorem 3.7).
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1.9. It is easy to see that M,(C) does not satisfy S for k < 2n. Denote by
e ; the matriz unit with a 1 in the 4, j-entry and zeroes everywhere else. Then

eijekl = 6jkeir. Consider the first k elements of the 2n — 1 matrix units

€1,1, €1,2, €22, €23, €33,..., €En—1n-1, En-1,n, €nn-

Multiplied together in the order in which they appear in this list, their product
is some non-zero matrix unit e; ;, but their product in any other order is zero.
Thus the evaluation of Sk at these k matrix units is e; ; # 0. Consequently,
M,(C) does not satisfy Sy for k < 2n.

Actually, the only property of Si which we used in the previous paragraph
is that Si is a multilinear polynomial of degree k. A slight modification of
the argument shows that M,(C) does not satisfy any multilinear polynomial of

degree < 2n. We will use this fact later on repeatedly.

1.10. Any ring R which is integral of bounded degree n over its center C is
a Pl-ring. Every z € R satisfies by assumption a monic integral equation of
degree < n over C. Multiplying such an equation by a suitable power of z, we

may assume that z satisfies an equation of the form
"+ e '+ttt =0 (c: €C).

Given any y € R, we can form the commutator of y with this equation and
obtain

[=", 9] + aalz™ "yl + - + caa[z,y] = 0.
(Here for any elements a and b, their commutator is [a,b] = ab — ba.) It fol-
lows that the n commutators [z, y], [z"7,y], ..., [z, y] are linearly dependent
over C, the center of R. Since the standard polynomial S, is multilinear and

alternating, it follows that
S.([X™ Y], [X™ 4 Y),...,[X,Y)])
is an identity for R.

1.11. Tensor products of Pl-rings are Pl-rings. To be precise, the tensor

product should be taken over a central subring. This is a deep theorem of
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REGEV (see [Ry, Theorem 6.1.1]). In the special case that one of the two
rings is commutative, the proof of this result is much easier: It is then an easy
consequence of the following lemma which we will also use frequently in other

situations.

Lemma 1.12 Let R be a PI-ring. Then R satisfies some multilinear polynomial

identity.

Sketch of the Proof Say R satisfies the polynomial identity f(Xi,...,Xn).
We will “multilinearize” f to obtain a multilinear identity whose degree is less
or equal to the degree of f. If there is some monomial of f in which X; occurs
more than once, replace f by g(Xi,...,Xnt1) = f(X1 + Xn41, X2y .., Xn) —
f(X1,X2,...,Xs) — f(Xn41,X2,.: ., Xn). One can convince oneself that the
total degree of g is less or equal to the total degree of f, that every coefficient
of g is a coefficient of f (up to sign), that g is non-zero, that g is a polynomial
identity of R, and that X; and X,y occur in g with smaller degree than the

degree of X in f. Repeating this process, one arrives at a polynomial identity

h(Xi,...,X,) in which every X; occurs in every monomial at most once. Fix
a monomial m of h of highest degree and with coefficient +1. Say Xj, ..., X,
occur in m, and X,;, ..., X, do not occur in m. Replacing h(Xy,...,X;)

by h(Xi,...,X,,0,...,0), we may assume that all X; occur in m. Replacing
h by h(X;,X,,...,X,) — h(0,X;,...,X,), we may assume that X; occurs in
every monomial of h exactly once. Repeating this step also for the other X;,
we finally obtain a polynomial identity for R in which every variable occurs in

every monomial exactly once. Such a polynomial identity is multilinear. a

Corollary 1.13 Let R be a Pl-ring. Let C be a central subring of R, and let
L be a commutative ring containing C. Then R ®c L is a Pl-ring. In fact,
R ®c L satisfies every multilinear polynomial satisfied by R.

Proof: By the lemma, R satisfies some mullilinear polynomial identity, say
f(X1,...,X,). Let @1,...,2, € R®c L. Write z; = ¥;;; ® l;; with ;; € R
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and [;; € L. Then

f(zh"')zﬂ) = z f("'l,j,,---,"‘n,j,.)@ll,jl "'lﬂ,.in =0. o

jlr---njn
Actually, this corollary holds in somewhat greater generality. Say S is an
overring of a ring R such that S = RL for some subring L of S which is
contained in the center of S. Such a ring § is called a central eztension of R.
The argument used in the proof of the corollary shows that a central extension

of a Pl-ring is a Pl-ring.

1.14. After having seen so many Pl-rings, it is only fair to say that there are
many more rings which are not PI-rings. Important examples of rings which do
not satisfy polynomial identities are free algebras (like F), the Weyl algebras
An(C), and the enveloping algebras of most Lie algebras.

2. Some Elementary Notions from the Theory of Non-
Commutative Rings

2.1. Prime Rings and Ideals. Before we go on, we have to introduce some
terminology. Let R be a ring, and I an ideal of R. The ring R is prime if
products of non-zero ideals of R are non-zero. Unlike for commutative rings,
this does not imply that products of non-zero elements of R are non-zero, see 2.4.
In case R has no zero-divisors, R is called a domain. This latter notion, however,
is too strong for our purposes; too many interesting non-commutative rings are
prime but not domains. In non-commutative ring theory, prime rings play the
main role, not domains like in commutative algebra.

There is a characterization of prime rings using elements: One can check
that R is prime iff whenever aRb = 0 for some elements a,b € R, eithera =0
or b = 0. From this it follows that the center of a prime ring is a (commutative)
domain. In fact, it follows that non-zero central elements of a prime ring are

not zero divisors: If a is central and ab = 0, then aRb = Rab = 0, so that b = 0.
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The ideal I of R is called prime if R/I is prime. Again, note that this does
not imply that if I contains a product of two elements then I contains one of

the factors. This is only true in the special case that R/I is a domain.

2.2. Semiprime Rings and Ideals. The ring R is called semiprime if it has no
nilpotent ideals. (Anideal N of R is nilpotent if for some integer k, N* = 0, i.e.,
for all z4,...,zx € N, the product z,---z; is zero.) The ideal I is semiprime
if R/I is semiprime. One can prove that R is semiprime iff the intersection of
all prime ideals of R is zero (see [Cz, 12.2, Thm. 3]). On the level of ideals this
means that I is semiprime iff ] is the intersection of all prime ideals in which it
is contained. Note that a commutative ring is semiprime iff it is reduced, 1e.,

iff it does not contain non-zero nilpotent elements.

2.3. Simple Rings and Mazimal Ideals. The ring R is called simple if the only
(two-sided) ideals of R are 0 and R itself. Note that a commutative simple ring
is a field. An ideal I is called mazimalif R/I is simple. Note that simple rings
and maximal ideals are prime.

The center C of a simple ring R is a (commutative) field: Since R is prime,
C is a domain. And if 0 # z € C, then R = RzR is a non-zero (two-sided)
ideal of R, and thus equal to R. Consequently, z is invertible in R, and one
checks easily that z=! € C. However, not all elements of R need be invertible,
see 2.4.

Let us demonstrate these definitions with an example.
Example 2.4 The mazimal, prime and semiprime ideals of M,(C).

Let C be a commutative ring, and let R = M,(C) be the ring of n X n-
matrices over C. By 1.8, R is a Pl-ring. We view C as a subring of R via the
embedding as scalar matrices. Note that C is the center of R. The ideals of
R = M,(C) are all of the form I = M,(I'), where I is an ideal of C. In fact,
I'=1INC. (Let I be the subset of elements of C which are entries of matrices
in I. Clearly I C M,(lo). Using multiplication by matrix units (see 1.9), one
checks that equality holds. From this one deduces that Io = I'n C.)
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It follows that R is simple iff its center C is simple, i.e., iff C is a field. If I
and J are ideals of R, then IJ = M,(INC)-M,(JNC) = Mp((INC)(JNC)). It
follows that R is prime iff C is prime, i.e., iff C is a domain. And R is semiprime
iff C is, i.e., iff C is reduced. Translating these observations to ideals, we see
that the ideal I of R is maximal, prime, or semiprime iff the ideal I N C of C
is. Finally, note that if C'is a field, then R is a simple (and hence prime) ring

which contains zero-divisors (if n > 2). O

Appendix to Section 2: Primitive Rings

2.5. Primitive Rings and Ideals. The notion of primitivity is not as important
in PI-theory as in general non-commutative ring theory, because the primitive
PI-rings are just the simple PI-rings: This is one particular consequence of KA-
PLANSKY’s theorem (3.8 below, not the elementary version 3.1). It is needed,
however, if one wants to understand how Pl-theory ties in with general ring
theory, and in particular, if one wants to get a better understanding of Kaplan-
sky’s theorem and its proof. In this short appendix, we discuss primitive rings.
In an appendix to the next section, we will then give a more complete proof of
KAPLANSKY’s theorem, using the material presented here.

A module is called simple or irreducible if it does not have proper non-zero
submodules. A ring R is called primitive if it has a faithful simple module. And
R is called semiprimitive if the intersection of all primitive ideals is zero. As
usual, an ideal I of R is (sems)primitive if R/I is. A word of caution: In some
of the literature, the term semisimple is used instead of semiprimitive.

Note that a commutative primitive ring C is a field: If ¢ is a non-zero
element of a faithful simple C-module M, then Cz is a non-zero submodule,
so Cz = M. Suppose that for some ¢ € C, cz = 0. Since C is commutative,
0 = Ccx = cCz = cM. Since M is faithful, this implies that ¢ = 0. Thus
C ~ Cz = M as C-modules. Hence C is simple as a C-module, i.e., the only
ideals of C are 0 and C itself. Consequently, C is a field.

It is easy to see that primitive rings are prime: Suppose that a primitive ring
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R has ideals I and J such that IJ = 0. Let M be a faithful simple R-module.
If J # 0, then JM # 0 since M is faithful. Thus JM = M since M is simple.
Then IM = I(JM) = (IJ)M = 0-M =0, so that I = 0 since M is faithful.

Simple rings are primitive: If m is a maximal left ideal of a simple ring R,
then M = R/m is a non-zero simple (left) R-module. The set I of all elements
of R which annihilate M is a two-sided ideal. Since 1 ¢ I, I # R. Thus I =0,
and M is a faithful R-module.

2.6. The following diagram summarizes the connections between primitivity
and the notions defined earlier. For a ring R (or ideal I, respectively),

simple (maximal) =>  primitive ==  prime
4 Y

semiprimitive ==> semiprime
As already mentioned, primitive PI-rings are simple, see KAPLANSKY’s theorem
(3.8). But even for commutative rings (and thus also for PI-rings), all other

implications are strict.

3. Kaplansky’s Theorem

In this section, we outline the proof of KAPLANSKY’s theorem:

Theorem 3.1 (Kaplansky; Elementary Version) If R is a simple Pl-ring,
then R =~ M,(D) for some division algebra D which is a finite module over the
center of R.

This is an elementary version of KAPLANSKY's theorem. Using the material
on primitive rings presented in the appendix to the previous section, we will
study the “real” theorem of KAPLANSKY in an appendix of this section.

Note that a simple PI-ring is in particular Artinian (i.e, it satisfies the de-
scending chain condition for left and right ideals) since it is a finite dimensional

vector space over a field (namely its center).

Sketch of the Proof of Kaplansky’s Theorem. Since R is a simple ring,
an important result from non-commutative ring theory (the CHEVALLEY-

JACOBSON density theorem) asserts the existence of a division ring D such that
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R is either isomorphic to M,(D) for some natural number ¢, or for each natural
number ¢ there is a subring of R mapping homomorphically onto M,(D). Let us
assume that the latter is true. We will show that this leads to a contradiction.

Denote by K the center of D. Note that R has also a subring mapping
homomorphically onto M,(K). By Lemma 1.12, R satisfies a multilinear poly-
nomial identity f. Also M(K) satisfies f. It follows by 1.9 that the degree of
f is greater or equal to 2¢. Since this is true for all natural numbers t, thisis a
contradiction. Hence R =~ M,(D).

It remains to be shown that D (and thus R) is a finite module over its center
C. This is done by a second application of the CHEVALLEY-JACOBSON density
theorem. Using the notion of primitivity, we will outline the argument in the

appendix to this section. m]

3.2. Facts about Finite Dimensional Simple Algebras. As KAPLANSKY’s theo-
rem indicates, simple rings which are finite dimensional over their centers play
an important role in PI-theory. Such rings are often called finite dimensional
simple rings (or algebras). Let us record some facts for later reference. Note

first that if R is a simple ring which is finite dimensional over its center, then
R is a Pl-ring by 1.7.

Theorem 3.3 Let R be a simple ring which is finite dimensional over its center
C. Then the dimension of R over C is a perfect square, say dimc R = n?. The
integer n is called the degree of R. By KAPLANSKY’s theorem, R ~ M,(D)
for some division ring D which is finite dimensional over the center of R. Let
L be a mazimal subfield of D. Then L contains C, and R ®c L ~ M,(L) s

isomorphic to the ring of n x n matrices over L.

Any field extension K of C such that R ®@¢ K ~ M, (K) is called a splitting
field for R.

During the proof of KAPLANSKY’s “real” theorem in the appendix of this
section, we will see quite a bit of evidence that this theorem is true. Good

references for a complete proof are [Fe| or [H].
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We will use the following lemma frequently.

Lemma 3.4 Let R be a simple Pl-ring s.ati.sfying a multilinear polynomial iden-

tity of degree d. Then d > 2n, where n denotes the degree of R.

Proof: Note that by KAPLANSKY’s theorem 3.1, R is finite dimensional over
its center C, so that Theorem 3.3 applies. Let L be a splitting field of R. Then
R®c L ~ M,(L). By Corollary 1.13, also M,(L) satisfies f. But by 1.9, M,(L)
does not satisfy any multilinear identity of degree < 2n. It follows that d > 2n.

m]

3.5. Using KAPLANSKY’s theorem, we will now see that every semiprime PI-
ring embeds into a matrix ring over a commutative ring, a fact which we already
mentioned in 1.8. For this, we need a very useful theorem; for a proof, see [Cy,

Prop. 8 in §12.5 and Cor. to Prop. 6 in §12.6].

Theorem 3.6 (Amitsur) Let R be a semiprime Pl-ring. Let t be a central
indeterminate over R (i.e, t commutes with the elements of R). Then the in-

tersection of all mazimal ideals of the polynomial ring R[t] is zero.

Note that R[t] is a PI-ring: Denoting by C the center or R, one sees that
R[t] % R ®c C|t], so that Corollary 1.13 applies.

(Actually, the proof of this theorem consists of showing that R|[t] is semiprim-
itive, i.e, the intersection of all primitive ideals is zero. Using the “real” theorem
of KAPLANSKY, it follows that the intersection of all maximal ideals of R[t] is

zero.)

Theorem 3.7 (Amitsur) Let R be a semiprime Pl-ring. Then for some inte-
ger n and some commutative ring C, R embeds into M, (C). Thus all semiprime

Pl-rings are obtained as subrings of matriz rings over commutative rings.
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Proof: The ring R embeds into the polynomial ring R[t]. By Theorem 3.6, the
intersection of all maximal ideals of R|[t] is zero. Replacing R by the polynomial
ring R[t], we may thus assume that the intersection of all maximal ideals is zero.

Say R satisfies a multilinear polynomial identity f of degree d. Denote by
{M,} the family of maximal ideals of R. Fix a maximal ideal M,,. As seen in 3.3
and 3.4, the simple Pl-ring R/M, embeds into some matrix algebra M, (Ca),
where C, is some field and d > 2n,. Note that the kernel of the composition
R — R/M, C M,,(C,) is the ideal M,. The maps R — M, (C,) induce a
map ®: R — [], M, (Ca). Since the kernel of R — M, (C,) is just M, and
since the intersection of all maximal ideals is zero, it follows that ® is injective.

Choose a maximal number no among the n,, and let n = (no)!. Note that
if m | n, then m X m-matrices embed “block-wise” into n X n-matrices. For

example, 2 X 2-matrices imbed into 4 x 4-matrices via the function

23—

©oa o8
no fo
oA oo
RO oo

It follows that M, (C,) embeds into M,(C,). Consequently R embeds into
[la Mn(Ca) = Mp([1a Ca) = Mn(C), where C =[], Cs is a commutative ring
(actually, a product of (commutative) fields). O

Appendix to Section 3

Using the notion of primitivity (introduced in the appendix to Sectio 2), we

now state and sketch the proof of

Theorem 3.8 (Kaplansky) If R is a primitive Pl-ring, then R is a simple
algebra finite dimensional over its center. In fact, R = My(D) for some division

algebra D which is a finite module over the center of R.

As seen in 2.5, simple rings are always primitive. One assertion of KaA-

PLANSKY’s theorem is that for PI-rings, the notions “primitive” and “simple”
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coincide. On the level of ideals, this means that the primitive ideals of a PI-ring
are just the maximal ideals.

The proof of this result needs quite a bit of the general theory of non-commu-
tative rings. But I included it in this appendix because it shows very nicely how
the assumption that a ring satisfies a polynomial identity can be used to deduce
something about the structure of R. I tried to present the proof in such a way
that even a reader unfamiliar with non-commutative ring theory can understand
it, if he (or she) is willing to take some of the background material for granted.

We have now to take a closer look at the CHEVALLEY-JACOBSON density

theorem. It says that if R is a primitive ring and M a faithful irreducible R-
module, then R is a “dense ring of linear transformations on M.” This has
the following consequence. Denote by D the ring of R-linear endomorphisms of
M. By Schur’s lemma, D is a division ring. One can deduce from the density
theorem that R is either isomorphic to M;(D) for some natural number ¢, or for
each natural number ¢ there is a subring of R mapping homomorphically onto
M,(D). These facts can be found, e.g., in [Ry, 1.5.2 and 1.5.5].
Sketch of the Proof of Kaplansky’s Theorem. As in the proof of the
elementary version of KAPLANSKY’s theorem, one sees that R a~ M,(D), where
D = Endgp(M) is the ring of R-linear endomorphisms of the faithful simple R-
module M. It is easy to check that a matrix ring over a division ring is simple
(cf. 2.4). Thus R is simple. It remains to be shown that R is a finite module
over its center C.

Denote by End(M) the set of Z-linear endomorphisms of the faithful irre-
ducible R-module M. Via multiplication, each element of R gives rise to a Z-
linear endomorphism of M. This induces a ring homomorphism R — End(M).
Since M is a faithful R-module, this map is injective, and we identify R with
a subring of End(M). The division algebra D (which is by definition the set of
R-linear endomorphisms of M) is also a subring of End(M).

Recall from 2.5 that the center C of the simple ring R is a field. Let L be a
maximal subfield of D. Note that L contains C. Now consider the subring RL
of End(M). Since RL contains R, M is also a faithful irreducible RL-module.
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Thus RL is a primitive ring. What are the RL-linear endomorphisms of M?
They certainly commute with R, so belong to D. But they also commute with L,
which is a maximal subfield of D. Thus they must belong to L. So Endpr(M) =
L. We now apply the density theorem to the faithful irreducible module M of
the primitive ring RL, and deduce that either RL ~ My(L) for some k, or that
for each k, there is a subring of RL which maps homomorphically onto M;(L).
Since RL is a homomorphic image of R ®¢ L, it is a PI-ring by Corollary 1.13.
The argument used in the sketch of the proof of the elementary version of
KAPLANSKY’s theorem shows that the second possibility cannot occur. Thus
RL ~ M;(L) for some k.

Now a standard result from the theory of simple rings shows that RL =~
R ®c L. (The reason is as follows: A theorem says that if one tensors a simple
ring over its center with an extension field of the center, the tensor product is
a simple ring. Thus R ®¢ L is a simple ring. The ring homomorphism from
R ® L onto RL given by multiplication is non-zero, so that its kernel is not the
whole ring. Thus the kernel is zero, and the map is an isomorphism.)

It follows that dim¢ R = dimy R®c¢ L = dimy RL = dimy My (L) = k? < co.
This concludes the proof of the theorem. O

Note that modulo some background material, we also proved Theorem 3.3.

4. Central Polynomials and Posner’s Theorem

We begin with a definition.

Definition 4.1 Let R be a Pl-ring. Let f(Xi,...,X,) € F be a polynomial
without constant term, and which is not a polynomial identity for R. If for all
choices of 71,...,7, € R, f(r1,...,7,) is a central element of R, then f is called

a central polynomzial for R.

As in the definition of polynomial identity, the definition of central polyno-

mial is somewhat technical in order to exclude certain trivial cases: If f is a
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polynomial identity of R, then both f and 1+ f take on central values on R, but

for trivial reasons. These polynomials would not give us any new information.
Example 4.2 A central polynomial for M,(C).

Let C be a commutative ring. If z and y are 2 x 2-matrices over C, then
zYy — yx is a matrix of trace zero. A simple calculation shows that the square of
a trace zero matrix is a scalar matrix, so belongs to the center of M,(C). Thus
all evaluations of the polynomial (XY — Y X)? lie in the center of M,(C). This
polynomial does not have a constant term, and one checks easily that it does
not vanish identically on M;(C). 1t follows that it is a central polynomial for
M,(C). O

It is very difficult to exhibit other central polynomials. That they exist in
abundance was only discovered in the early seventies. The first central poly-
nomials for n x n-matrices were found by FORMANEK and RAZMYSLOV. It js
no exaggeration to'sa;';tha.t central polynomials revolutionized PlI-theory: They
allowed the discovery of many new results, and also gave rise to new and better

proofs for many of the earlier theorems about Pl-rings.

Theorem 4.3 (Formanek, Razmyslov) For each integer n, there ezists a
polynomial g, which is a central polynomial for every ring of n x n-matrices

over a commutative ring. In fact, g, can be chosen to be multilinear.

The proof of this result is quite intricate and we omit it. One of the many
references is, e.g., [C;, §12.6].

The following useful observation is due to PROCESI.

Lemma 4.4 A central polynomial for n x n-matrices is a polynomial identity

for matrices of smaller size.

Proof: Let k < n, and let R be the set of all matrices in M, (C) whose last

n — k rows and columns are zero. We can identify R with My(C). If g is a
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central polynomial for M,(C), then the values taken on by g on R are scalar
matrices in M,(k), and these scalar matrices have to be zero since the last row
and column of each element of R are zero. (Recall that the constant term of
the central polynomial g is by definition zero.) Thus g vanishes identically on
R. m]

It is now fairly easy to deduce the existence of central polynomials for simple

Pl-rings.

Theorem 4.5 Every simple Pl-ring R admits a central polynomial. In fact, if
the degree of R is n (see Theorem 3.3), then g, is a central polynomial of R.
Moreover, g, is a polynomial identity for R for all k > n.

Actually, also all prime PI-rings admit central polynomials: This is an easy
consequence of POSNER’s theorem (4.8 below). But we will see later on that
not all Pl-rings admit central polynomials (Example 4.7).

Proof: By KAPLANSKY’s theorem, R is finite dimensional over its center C. Let
L be a splitting field of R (which exists by Theorem 3.3). Then R®¢ L ~ M,(L).
By 4.3 and 4.4, g, is an identity for M,(L) and thus for R if k > n. Clearly,
the evaluations of g, are central in R, since they are even central in the bigger
ring Mp(L). It remains to show that g, is not a polynomial identity of R.
Suppose the contrary. Since g, is multilinear, it is then by Corollary 1.13
also a polynomial identity of the central extension M.(L) ~ R ®c L. This
is a contradiction, since g,, being a central polynomial for M,(L), is not a

polynomial identity for M,(L). o
We now see that the center of a semiprime Pl-ring is very large.
Theorem 4.6 (Rowen) Let R be a semiprime Pl-ring. Then every non-zero

(two-sided) ideal I of R has non-zero intersection with the center C of R, i.e.,
INC #o.
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As an immediate consequence of this theorem, note that a semiprime PI-ring
whose center is a field is actually simple.

We remark that the proof of this theorem is very similar to the proof of

AMITSUR’s Theorem (3.7) which asserts that every semiprime ring embeds into
a matrix ring over a commutative field.
Proof: Let't be a central indeterminate over R. Consider the polynomial ring
R[t]. Since R is a semiprime PI-ring, Theorem 3.6 says that the intersection of
all maximal ideals of R[t] is zero. By Corollary 1.13, also R|[t] is a PI-ring. And
if I is a non-zero ideal of R, then I[t], the set of all polynomials with coefficients
in I, is an ideal of R[t]. Suppose that I[t] contains a polynomial which belongs
to the center of R[T]. One checks easily that the coefficients of this polynomial
are central in R. Thus I contains non-zero central elements of R. In order to
prove the theorem, we may thus replace R by R[t]. Hence we may assume that
the intersection of all maximal ideals of R is zero.

Now let I be a non-zero ideal of R. If M is a maximal ideal of R, then R/M is
simple, so that the image of J in R/M is either zero or all of R/M. Since I # 0,
the image of I in some R/M is non-zero. By Theorem 4.5, there is for each
maximal ideal M an integer ny such that g,,, is a central polynomial for R/M.
Using the fact that R satisfies some multilinear polynomial of some degree d,
one checks that the integers np are bounded above: Also R/M satisfies this
multilinear polynomial, so that d > 2n; by Lemma 3.4.

Choose among the np an integer no maximal with respect to the property
that the image of I in R/M is non-zero. Denote the corresponding maximal
ideal by M,. Now choose any elements in I such that the evaluation c of Gn, at
these elements has non-zero image in R/M,. Clearly ¢ # 0. Since g, has zero
constant term, c belongs to I. We will show that c is central in R.

Let M be a maximal ideal. We show first that the image Zof cin R/M is
central. If the image I of I is zero in R/M, then & = 0, so that ¢ is central.
Now assume that I # 0. Then by the maximality of ng, gn, is either a central
polynomial for R/M or (by Theorem 4.5) a polynomial identity for R/M. In

either case, ¢ is central in R/M.
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Finally, let = be any element of R. Then modulo every maximal ideal M,
zc—cz is zero, since c is central in R/M. Thus zc— cz belongs to every maximal
ideal of R. Since the intersection over all maximal ideals is zero, it follows that

zc—cx =0, i.e., zc = cz. Thus cis central in R. O

. The following example shows that not all PI-rings admit central polynomials,

and that Rowen’s theorem can fail for PI-rings which are not semiprime.

Example 4.7 There is a Pl-ring R which (1) has a non-zero ideal I whose
intersection with the center of R is zero, and which (2) does not admit central

polynomials.

Let C be a commutative ring. Let R be the ring of upper triangular 2 x 2-
matrices over C. One checks easily that the center of R consists of the scalar
matrices and is thus isomorphic to C. Let I be the set of all matrices whose

second row is zero. So

c C c C
R_(OC) and I—(OO).
One verifies easily that I is an ideal of R. Since the zero matrix is the only
scalar matrix in I, the intersection of I with the center or R is zero, proving

(1). According to ROWEN’s theorem, this means that R cannot be semiprime.

And indeed, the set of all strictly upper triangular matrices

~(39)

forms an ideal which is nilpotent: J2 = 0.

Now suppose that f is a central polynomial for R. Consider the map ¢: C —
R given by ¢(a) = aey;. This map is a ring homomorphism which does not
preserve 1: ¢(lc) = ez # 1p. Since the evaluations of f on ¢(C) are scalar
matrices belonging to ¢(C), it follows that f vanishes on (C). Thus f is a
polynomial identity for C ~ ¢(C). Since R/I ~ C, it follows that all the

evaluations of f on R belong to I. So the evaluations of f on R are scalar
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matrices belonging to I, i.e., they are zero. Consequently, f is a polynomial
identity for R, in contradiction to f being a central polynomial for R. This
proves (2). { o

As a corollary to ROWEN's theorem, we obtain a strong form of POSNER’s
) g

theorem.

Theorem 4.8 (Posner) Let R be a prime Pl-ring. Then the center C of R
is @ domain. Denote by S the set of non-zero elements of C. Then RS™! is
a simple Artinian Pl-ring. In fact, RS~! ~ M,(D) for some division ring D

which is finite dimensional over its center.

The ring RS~ is called the total ring of fractions of R. Note that the center
of D is equal to the center of RS™!, which is nothing but CS~!, the field of
fractions of the center C of R.

Proof: As for localization in commutative algebra, one checks that the ideals
of RS™! are in one-to-one correspondence with those ideals of R which do not
meet S. But by ROWEN’s theorem, every nonzero ideal of R has non-zero
intersection with C, i.e., meets S. Thus RS~! is a simple ring. Again, as for
localization in commutative algebra, RS~! ~ R ®c CS~'. Thus RS~! is a
Pl-ring by Corollary 1.13. So RS~! is by KAPLANSKY’s theorem isomorphic
to Mi(D) for some division ring D which is finite dimensional over its center.
Consequently, RS~! is a finite dimensional vector space over its center and

therefore Artinian. m]

5. Examples of Prime PI-Rings

It is time to look at some examples of prime PI-rings, and to review the results
of the previous sections in some concrete situations.

The following lemma is a useful criterion to verify if a ring is prime.

Lemma 5.1 Let R be a subring of a prime ring S. If R contains a non-zero

two-sided ideal I of S, then R is prime.
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Proof: Say A and B are ideals of R such that AB = 0. Since I = SIS C R
and Al C AR = A, it follows that ASISB = 0 and thus (SAS)I(SBS) = 0.
Hence one of the three ideals SAS, I, and SBS of the prime ring S must be

zero. Since by assumption I is non-zero, either A or B must be zero. o

5.2. We know that every prime Pl-ring R is a subring of a matrix ring § =
M,(C) over a commutative ring C. We concentrate now on a special class of
PI-rings, namely those “defined component-wise.” To explain this, consider the
matrix units e; ; € S. If r € R is a matrix with entries r; ;, then e;;re;; = i je; ;
is the matrix with the same entry as r in the 4, j-position and zeroes elsewhere.
Informally, we will call R defined component-wise iff R contains for every element
r also all the e;;re;; = r;je; ;. Such rings are very easy to work with. And
although they are rather special as far as general PI-rings are concerned, they
can be used to demonstrate many properties of PI-rings. We already saw a
component-wise defined ring in Example 4.7. Let us look at some more intricate

examples.

Example 5.3 Let A be a commutative ring, and let A[t] be the commutative
polynomial ring in one variable over A. Denote by (t) the ideal of A[t] generated
by t. Let A; and A, be subrings of A. Let S = M;(A[t]) be the 2 x 2-matrices
over A[t], and let

_( A+() Al
R‘( (t) Az+(t))'

Here R is defined component-wise: A matrix of S belongs to R iff its 1, 1-entry
belongs to A; + (t), its 1,2-entry belongs to A[t], etc. One checks easily that
R is closed under matrix multiplication, and that R is an additive subgroup of
S. Thus R is a ring. As a subring of the Pl-ring S, R is also a Pl-ring. Set
I = My((t)) =tS. By 2.4, Iis an ideal of S and S is prime. Since I is contained
in R, it follows by Lemma 5.1 that R is prime. So R is a prime Pl-ring.

What is the center C of R? One checks easily that a matrix in R which
commutes with all other matrices in R has to be a scalar matrix. Thus C is the

set of all scalar matrices in R, i.e., C = (A;NA4;)+(t) = (A1NA;)+tA[t]. O
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5.4. Let us verify ROWEN’s and POSNER’s theorems for this example. Let
z = (a;;) be a non-zero element of a non-zero ideal J of R. Say a;, the 1,2-
entry of z, is non-zero. Then I contains the non-zero scalar matrix e; 1z(tes,1) +
(tes,1)zess = tay oI5, where I, denotes the 2 x 2 identity matrix. So in this case
I contains a non-zero central element. One argues similarly if some other entry
of = is non-zero. So INC # 0.

The field of fractions of the center C of R is nothing but the field of fractions
of A[t]. Denote this field by K. Since 4;K = A,K = (t)K = K, it follows that
RK = M(K). So the ring of central fractions of R is a matrix ring aver a field.
In particular, it is simple (see 2.4) and finite dimensional over its center (which

is K).

5.5. Actually it is enough to invert a single element to make R into a full
matrix ring over a commutative ring: The localization R[t™!] = Ma(A[t,t™])
is the ring of 2 X 2 matrices over the Laurent polynomial ring Alt,t7Y. In
particular, R[t~!] is a finite module over its center.

This is special case of a general phenomenon: Whenever R is a prime PI-
ring, there exist central elements ¢ € R such that R[c™!] is a finite module over
its center (and in fact an “AZUMAYA algebra”). Moreover, one can choose c to
be any non-zero evaluation of a central po]ynomié,l of R. This is a particular
consequence of the theorem of ARTIN and PROCES]I, one of the most important

in PI-theory. For a statement and proof of it, see, e.g., [Cs, §12.6].

5.6. Let us verify that for some evaluation ¢ of a central polynomial, the ring
R[c™!] is a full matrix ring. Recall from 4.2 that (XY — Y X)? is a central
polynomial for 2 x 2 matrices. Setting X = te;; and Y = e, we see that
¢ = t* = t’I; is an evaluation of a central polynomial for R. Note that R[c™!] =

R[t™?] = R[t!] = M,(A[t,t™"]) is a full matrix ring over A[t,¢™!].

But now an example which shows among other things that not every prime

Pl-ring is a finite module over its center:

Example 5.7 A prime PL-ring R such that
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(1) R is not a finite module over its center. (In fact, R is not even integral

over its center.)
(2) R is a finitely generated algebra over a field. (That is, R is “affine”.)

(3) R is neither left nor right Noetherian.

' (1) Let R be as in Example 5.3, and denote by C its center. As a C-
module, R is the direct sum of the four C-modules A; + (¢), A[t], Az + (t)
and (t). Thus R is a finite C-module only if A[T]is a finite C-module. Since
C = (A1NA;)+tA(t), this is only true if A is a finite 4; N A,-module. It is easy
to arrange that the latter fails: For example, let A = k[z,y] be a polynomial
ring over a field, and let A; = k[z] and A4, = k[y]. Then A = k[z,y] is not finite
over A; N A; = k. Explicitly, the ring R is now of form

R ( k(z) + tk[z,y,t] k[z,y,t] ) .
tk[z,y,t] kly] + tk[z,y,t]
Note that the subring of diagonal matrices is not integral over C' = k+tk[z, y, ]
since both A; = k[z] and A, = k[y] are not integral over 4; N A, = k. Thus R
is not integral over C.

(2) One can verify that R is generated as k-algebra by the six matrices
€11, T€i1, 1,2, tea;1, €32, and yeyz.

(3) Finally, let us check that R is not Noetherian. Let I be the ideal M,((t)).

Then
RJI= ( Al ) :

We will show that R/I is not Noetherian, which implies that also R is not
Noetherian. Let V' be any k[z]-submodule of k[z,y]. Then Ve, is a left ideal
of R/I. Since k[z,y] is not a Noetherian k[z]-module, this shows that R/I
does not satisfy the ascending chain condition on left ideals, i.e., R/I is not left
Noetherian. A similar argument using k[y]-submodules of k[z,y] shows that

R/I is also not right Noetherian. O
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Note that (2) and (3) say that HILBERT’s basis theorem does not generalize
to Pl-algebras which are finitely generated over a central subfield.

5.8. So far, we have been somewhat‘ sloppy about left and right chain con-
t{itic‘ms. The reason is that these notions coincide for “good” PI-rings: CAU-
CHON'’s theorem asserts that if a semiprime PI-ring satisfies the ascending chain
condition (acc) on two-sided ideals, it also satisfies the acc on both left and right
ideals (see [R1, 5.1.8]). Since the acc on left (or right) ideals always also implies
the acc on two-sided ideals, this means that a semiprime PI-ring is left Noethe-
rian iff it is right Noetherian! By the way, a ring which satisfies both the acc
on left and right ideals is simply called Noetherian.

6. The Trace Ring of a Prime PI-Ring

6.1. A very useful construction in PI-theory is the trace ring associated to a
prime Pl-ring. It was introduced by SCHELTER who used it successfully to prove
many interesting facts about affine Pl-algebras. An affine PI-algebra over a field
k is a Pl-ring containing k in its center and which is finitely generated over k
as algebra. We will not pursue this interesting subject. A good introduction to
affine Pl-algebras is contained in SMALL’s notes [Sm] which are unfortunately
difficult to obtain. See also the relevant sections in [MR], [R,], and [R,).

6.2. Let us come back to the trace ring. Let R be a prime PI-ring. Denote by
C the center of R and by K the field of fractions of C. By POSNER’s theorem,
the localization RK of R is a simple Pl-ring which is finite dimensional over
K. Let L be a splitting field of RK (which exists by Theorem 3.3). Then
RK ®x L ~ M,(L) for some integer n. Viewing an element z of R as an
element of M, (L), it makes sense to talk about the characteristic polynomial of
z. The coefficients of this characteristic polynomial belong to L. One can show
that the coefficients belong actually to K, and that they are independent of the
choice of the splitting field L of RK (see, e.g., [Pi, 16.1, Proposition]). Now
denote by T' the commutative C-algebra generated by all the coefficients of the

characteristic polynomials of all elements of R. Nof&that every element of R
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is by construction integral over T, since it satisfies its characteristic polynomial

whose coefficients belong to T

Definition 6.3 The commutative ring T is called the commutative trace ring
of R, and the subring R[T]| of RK generated by R and T is called the trace ring
of R.

6.4. We defined the trace ring by associating to each element of R an n x n
matrix over some splitting field of RK, where n is the degree of RK. In some of
the literature (e.g., [MR], [R1], and [R;]), the trace is defined using the “regular
representation of RK on 1itself via (right or left) multiplication,” associating to
each element of R an n? x n? matrix over K. The resulting trace ring is not
always equal to our trace ring, but shares all the important properties of the

trace ring which we will discuss below.

6.5. Why is R[T] called the trace ring? If z € R, then the trace of z is after all
only one of the coefficients of the characteristic polynomial of z. So it might be
more appropriate to call R[T] the characteristic ring of R, or the characteristic
closure of R. The reason for the name “trace ring” is that if R is an algebra
over a field k of characteristic zero, then T is generated by the traces of the

elements of R. This follows from NEWTON’s formulae, see, e.g., [Cy, p.179].

The following theorem summarizes the most important properties of 7' and

R[T).

Theorem 6.6 Let R be a prime Pl-ring with trace ring R[T].

(a) R[T] is a prime Pl-ring.
(b) R[T] is integral over its central subring T.
(c) There is a non-zero ideal of R[T] which is contained in R.

(d) If R is Noetherian, R[T| is a finite R-module. In particular, R[T| is also

Noetherian.
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(¢) If R is a finitely generated algebra over a central subfield k, then also T
and R[T] are finitely generated algebras over k. Moreover, R[T] is then
a finite module over T. In particular, both T and R[T] are Noetherian
(although R need not be).

Some Remarks about the Proof The proofs of most of these results about
the trace ring are beyond the scope of these notes. Here are just a few easy
observations.

(a) Since R[T is a homomorphic image of R ®c¢ T, it is a Pl-ring by Corol-
lary 1.13. If A and B are ideals of R[T] such that AB = 0, then AK and
BK are ideals of the simple ring RK whose product is zero. (AK is an ideal
of RK since AK = RARKK = (RK)A(RK).) Thus either A or B are zero.
Consequently, R[T] is prime.

(b) One might be tempted to say that R[T], being generated over T by
integral elements, is obviously integral over T. However, this reasoning is false
for non-commutative rings. But in the special case at hand (R[T] being a PI-
ring generated over its central subring T' by a subring, namely R, all elements
of which are integral over T'), SHIRSHOV’s theorem (see [Ry, 4.2.9]) applies and
allows the deduction that R[T] is indeed integral over R.

(c) This is a result of SCHELTER.

(d) Using (c), this is easy. Denote the common non-zero ideal of R and
R[T] by I. By ROWEN’s theorem, I contains a non-zero central element c of
R[T]. Note that R[T]e C I C R. So R[T]c is a Noetherian (left) R-module.
Since central elements in a prime ring are not zero divisors (see 2.1), the map
R[T) - R[T]c given By multiplication by c is injective. Thus it is an R-module
isomorphism. Hence also R([T]is a Noetherian R-module.

(e) That T is finitely generated over k is a result of PROCESL. The already
mentioned theorem of SHIRSHOV assures that R[T] is a finite T-module. The

other statements are easy consequences of these facts. O

6.7. How to compute the trace ring. In general, this is quite difficult. But

there is an easy special case. Assume that R is a prime Pl-ring whose total
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ring of fractions is a matrix ring over a field. To be precise, if K denotes the
field of fractions of the center of R, then we require that RK = M,(K) for
some n. (In general, RK =~ M;(D) for some division ring D.) Note that the
center of R is just the set of scalar matrices in M,(K) which are contained in
R. If L is a splitting field of RK, then RK ®x L = M,(K) ®x L = M,(L).
Here the isomorphism is induced by the inclusion of M,(K) into Mn(L). So
computing the characteristic polynomial of an element of R in M,(L) is the
same as computing it in RK = My(K).

If we assume additionally that K is a field of characteristic zero, then T
is generated over the center C of R by all the traces of the elements of R,
computed in RK = M,(K) (see 6.5). And this is quite easy if R is defined

component-wise.
Let us look at the trace rings for the examples of Section 3.5.

6.8. Continuation of Example 5.3. Using the notation of that example, let
R=(Al+(t) Alt] )
) A+(t)
Recall that the center C of R is (A; N A;) + (t). One verifies easily that
trace(R) = A; + Az + (t), and that det(R) = A;A; + (t). Denote by B the
subalgebra of A generated by A; and A;. Then the commutative trace ring T
of Ris B + (t) = B + tA[t]. Consequently, the trace ring of R is

C(B+() AW
Rm‘( (t) B+(t))' :

6.9. Continuation of Example 5.7. There we looked at the more special

case that A is a commutative polynomial ring over a field k in two variables =
and y, and A; = k[z] and A; = k[y]. Now B = A, so that T = k[z,y,t], and

klz,y,t]  k[z,y,t] )
R[T] = . O
m= (e oy

6.10. Let us verify the results of Theorem 6.6 for these rings. First, let R and
R[T] be as in Example 6.8.

(a) is easy to verify.
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(b) One readily checks that B + (t), the center of R[T], contains the traces
and determinants of all elements of R[T]. So each matrix of R[T] satisfies a
monic equation over T = B + (t), namely its characteristic polynomial. Thus
R|[T] is integral over T.

(c) Note that My((t)) is both an ideal of R and R[T).

(d) Without some special assumptions on A and the A;, R is not Noetherian,
as we saw in Example 5.7.

(e) Let us look at the situation of Example 6.9. We saw already in Exam-
ple 5.7 that R is here finitely generated over k. Clearly T = k[z,y, z] is a finitely
generated k-algebra, and it is Noetherian. Since R[T)] is a finitely generated T
module with basis ey, ey, tes1, and ey, it is a finitely generated k-algebra

and a Noetherian T-module. In particular, R[T] is Noetherian. O

It is worth noting that in the situation of Example 6.9, the prime Pl-ring R
is not Noetherian (as we saw in Example 5.7), although T and R[T] are.

7. An Application of the Trace Ring to Non-Commuta-
tive Invariant Theory

7.1. Throughout this section, k denotes an algebraically closed field. For
simplicity, we assume that chark = 0.

In this last section, we will demonstrate the power of the trace ring con-
struction by proving a theorem from non-commutative invariant theory. The
trace ring has been used successfully to prove many results; we mentioned al-
ready SCHELTER’s original applications to finitely generated PI-algebras. The
particular choice of topic chosen here to exemplify the usefulness of the trace

ring is due to the personal taste of the author.

7.2. Commutative Invariant Theory. Let us recall a famous theorem of HILBERT
from commutative invariant theory. Let k be an algebraically closed field, and
let R be a finitely generated commutative k-algebra. Let G be a linearly reduc-
tive group acting rationally on R by algebra automorphisms. (We will define
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these terms below.) Denote by RC the fixed ring of R, i.e., the set of all ele-
ments of R invariant under the action of G. HILBERT’s theorem asserts that
RC is a finitely generated k-algebra. In this section we will use the trace ring

to prove a generalization of this result to certain PI-algebras.

7.3. We begin with some background material. A reader might skip the fol-
lowing definition and think of a “rational action of a linearly reductive group”
simply as a particularly nice linear action of either GL,(k) or SLn(k). Good

references for commutative invariant theory are [Fog], [K], and [Sp].

Definition 7.4 A linear algebraic group G (over k) is a subgroup of some
GL,(k) which is closed in the ZARISKI topology. That means that G is de-
fined as the set of zeroes of some regular functions on GL,(k). Prime examples
are GL,(k) itself and SL,(k).

Let W be a finite dimensional k-vector space. A linear representation (or
action) of G on W is called rational if the corresponding group homomorphism
G — GL(W) is a morphism of affine algebraic varieties. And a linear action of
G on an infinite dimensional vector space V is rationalif V is a union of finite
dimensional, G-stable subspaces W such that the induced action of G on each
of these subspaces W is rational. A good example of a rational action is the
action of GLy(k) on the commutative polynomial ring k[z,y] given by “change
of coordinates.”

Finally, a linear algebraic group G is called linearly reductive if every rational
representation of G is completely reducible. The latter means that if V is a k-
vector space with a rational G-action, then V is a direct sum of subspaces which
are irreducible representations of G. Examples of linearly reductive groups are
G,, = k* (the multiplicative group of k), GL,(k) and SL,(k). (The latter two

groups are not linearly reductive in prime characteristic.)

Now let G be a linearly reductive group acting rationally on a (possibly
non-commutative) k-algebra R. We will use the linear reductivity of G via
the following lemma. The proof of this lemma is an easy application of the

elementary properties of the so-called REYNOLDS operator (see [V;,4.1]).
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Lemma 7.5 Let G be a linearly reductive group acting rationally on a (non-
commutative) k-algebra R. Suppose that S is a G-stable subalgebra of R such
that R is a Noetherian left S-module. Then R€ is a Noetherian left SC-module.
As a particular consequence, if R is (left) Noetherian, also RC is (left) Noethe-

rian.

We are now ready to state the generalization of HILBERT’s theorem to PI-
algebras (see [V},4.4]).

Theorem 7.6 Let k be an algebraically closed field, and let R be a finitely
generated (left) Noetherian Pl-algebra over k. Let G be a linearly reductive
group acting rationally on R by algebra automorphisms. Then also the fized

ring RC is a finitely generated (left) Noetherian k-algebra.

That RS is (left) Noetherian is a trivial consequence of Lemma 7.5.
Idea of the Proof The proof begins with a series of reduction steps (which
we omit) to the case that R is a prime ring. So assume that R is prime.
Denote by T' the commutative trace ring of R and by R[T] the trace ring of
R. Since R is Noetherian, R[T] is a Noetherian R-module (Theorem 6.6(d)).
And since R is a finitely generated k-algebra, both T and R[T] are finitely
generated over k and Noetherian, and R[T] is a finite (and so Noetherian) T
module (Theorem 6.6(¢)). One can check that the action of G on R extends
to an action on R[T] under which T is stable. Moreover, this action is rational

([V1, 3.4]). So G acts rationally on the ring extensions
R[T]

R ‘\T

Taking fixed points, we obtain the following diagram:

R[T)C
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Here RET€ is the subalgebra of R[T|® generated by R€ and T€. Since R[T] is
a Noetherian module over both R and T, Lemma 7.5 implies that R[TICis a
Noetherian module over both RS and T.

Since T is a finitely generated k-algebra, its fixed ring T'C is finitely generated
by HILBERT’s theorem. Now consider the subring RETC of R[T|C. Since R[T)¢
is a finite 7% module, R°TC is a finite T¢-module. In particular, RCT€ is
Noetherian, and is finitely generated over k. Since R[T)® is finite over R€,
RCTC is also finite over RC.

To summarize, we showed that RET€ is a finitely generated Noetherian k-
algebra which is a finite module over RS, In fact, RST€ is generated over RC by
central elements (namely T'%). In this situation one can use a non-commutative
version (due to MONTGOMERY and SMALL [MS)]) of the so-called ARTIN-TATE
lemma from commutative algebra (see, e.g., [AM, 7.8]) to conclude that RS is

also finitely generated over k. O
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