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HILBERT POLYNOMIALS OF SMOOTH SURFACES
IN P{£. COMMENTS.

Christian Peskine

1 Intro ductioh.

Consider C' a smooth projective curve. It can always be embedded in P3 (the
projective complex space of dimension 3). More generally, a smooth variety of
dimension n can always be embedded in Py,4;, via any embedding and general
projections.

The smooth curves which can be embedded in P, are essentially well known.
They belong to certain subvarieties of the moduli varieties, which have been
extensively studied.

For surfaces, the picture is certainly not as clear. As mentioned above, any
smooth surface can be embedded in Ps.

The smooth surfaces which can be embedded in P3 are well described. An
important necessary condition is that linear and numerical equivalences on such
a surface are alike, hence the surface has to be regular. Families of smooth space
surfaces have been, in many ways, studied more precisely, but we do not intend

to develop this theme here.

One has no criterium to decide when a given surface is embeddable in Pj.
Severi proved that “the natural” way to do it (projection) was, as in the case

of P3, unpracticable, by establishing the following celebrated result :

Theorem 1.1 (Severi) : If S C Ps is a smooth surface generating Ps (i.e.

not contained in a hyperplane), the general projection of S to P4 is not an
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isomorphism, except if S is a Veronese surface (P, embedded in Py by the

complete linear system of conics).

Severi’s conclusion was that a surface is naturally embedded in P, with
singularities. Hence for the Italian school, an important part of the informa-
tion concerning a surface in P, is contained in the singularities carried by this
surface. Surprisingly, there was very little interest in this school for the very

natural special case of an empty singular locus.

There are many interesting smooth surfaces in P4. Complete intersections
of 2 hypersurfaces are of course easy to construct. As all complete intersec-
tions, they share the most remarkable property of space surfaces : Linear and
numerical equivalences are alike and a hyperplane section is not divisible.

More generally, if E is a vector bundle (say of rank r) on Py, and if s;, with

1 € [1,r — 1], is a section, general enough, of some twist E(n;), then
coker[®:0p, (—n:) "5 E] = 7 ® Op, (c1(E) + 3 ma),

where J is the sheaf of ideals of a smooth surface. All smooth surfaces in Py
can be obtained in this way. Unfortunatly, undecomposable vector bundles on
P, are even more mysterious than surfaces in Py.

Surfaces in P, can also be constructed from a given surface, using linkage
(”liaison”) or endomorphisms of P4. These constructions apparently more ge-
ometric than the preceding are in fact of the same nature. Nevertheless, they
produce, naturally, curves on the constructed surface, hence they give informa-

tion on the Picard group of this surface.

Now, if we want to embed a smooth surface S in P4, we must find on the

surface a “small”

complete linear system (small because projective dimension 4
is small, on a surface, and complete because of Severi’s theorem) which is also
“positive” enough (very ample!).

A natural way to study this problem is to start with a surface equiped with

a precisely described Picard group, for example a rational surface obtained by
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blowing up points in the plane. We can choose among many linear systems if
the Picard group is large. Let’s blow up many points in the plane and try to
find such a linear system. R.Hartshorne realized that if the points are in general
position and if there are many points, it is, in most cases, impossible to embed
the surface in P, so that exceptional divisors become lines. He was bold and
. conjectured that there should be few rational surfaces in P,, perhaps only a

finite number of families. This conjecture proved to be true.

In fact we will see that except for a finite number of components of the
Hilbert scheme of srr;ooth surfaces in Py, all surfaces are of general type.

This surprising statement does not really describe how little we understand
our problem.

It seems to suggest that one knows necessary geometric conditions to im-
pose on a surface to be able to embed it in P,. After all, surfaces which are
not of general type do, often, carry special families of curves. One would like
to believe that these special families cannot be embedded in P,. No such result
was obtained, but this interesting path was tried by several specialists (Alexan-
der, Aure, Okonek, Ranestad, Serrano,...). Hoping to find an indication, they
constructed, using geometric methods, many families of smooth (rational, K3,
elliptic, bielliptic) surfaces in P, carrying beautiful families of curves. With the
celebrated abelian surfaces of Comessati and . Horrocks-Mumford, they form a
an exciting but disparate set in which it seems difficult to find a unity, hence to

find a reason for which these surfaces should be exceptions to a natural theorem.

Another optimistic analysis would follow a more algebraic line. One be-
lieves nowadays that the syzygies of the graded ideal of an embedded variety
should, in some sense, reflect the intrinsic geometric properties of this variety.
Now, obviously, if a surface is embedded with codimension 2 the syzygies of the
graded ideal of the surface should be ”small” ("short”). This could imply that
the Picard group of the generic surface in the corresponding component of the

Hilbert Scheme should also be “small”...! The syzygies path was particularly
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followed by Decker, Ein and Schreyer (and Popescu). They produced an ele-
gant algorithm to construct surfaces in Py, via there syzygies bundles. They
recovered in this way many interesting known surfaces (in P4) and discovered
new families. It is rather exciting to see that this algorithm has, up to now,

failed to produce surfaces not of general type of degree more than 15.

With both approaches, one is immediatly impressed by the difficulty to con-
struct irregular smooth surfaces embedded in P,4. Hence an irritating question:
Is there a uniform bound for the irregularity of smooth surfaces in P4?

This problem has been floating around for years, with no serious clue in any
direction, except for the fact that one does’nt know any smooth surface in Py
with irregularity larger than 2.

One can construct infinitely many families of surfaces of general type, in Py,
with irregularity 1 and 2 (using endomorphisms of P4). Remarkably enough,
the general hyperplane section of a surface contained in one of these families is
linearly complete, except, once more, for a finite number of families. Hence the
two (obviously related) following questions:

Is there a uniform bound for the embedding dimension of a general hyper-
plane section of a smooth surface in P,?

Are smooth surfaces in P4 whose general hyperplane section is not linearly

complete contained in a finite number of families of the Hilbert Scheme?

Unfortunatly, after considering with excitment these exciting schemes, one
has to go back to the unpleasant reality and particularly to more primitive
means. The method we propose is to study the Hilbert Polynomials of smooth
surfaces embedded in P4, with a special interest for their constant term (which
we recall is intrinsic). It is too much to hope that surfaces in P4 can be char-
acterized by their Hilbert polynomial, but we believe that there are serious
constraints on this polynomial. We intend to explain some of these constraints

here.

A few years ago, we proved with Ellingsrud, ([8]), that given an integer x
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the smooth surfaces S such that X(Os) = x are contained in a finite number of

components of the Hilbert scheme of smooth surfaces in Py.

As an obvious consequence we see that the degrees of such surfaces are
bounded. To stress the meaning of this result for newcomers, one should think
of curves with a given genus which quite obviously can be embedded in P3 with

all large enough degrees.

Two other consequen;:es are less obvious, but nevertheless easy.

(i) There is an integer o such that X(0s) > xo for all smooth surfaces in
P,. ‘

(ii) There is an integer dy such that d®(S) < dy for all smooth surfaces in

P4 which are not of general type.

Of course one would like to find the sharp bounds x, and do. If xo = 0 seems
to be a reasonable conjecture, there is no serious hint concerning dy. Recently
Braun and Floystad proved d, < 243 ([4]). All known smooth surfaces in P,
which are not of general type are of degree less than or equal to 15 (see (7).

There is still a long way to go.

We come back to the study of Hilbert Polynomials of surfaces in Py, in
these notes. Not really to announce new results, since we do not believe that
we have any worth speaking of, but to describe the true (and easy) nature of
our proof (with Ellingsrud). We hope it can help for a better understanding of
this problem, and perhaps to sharpen our information about yo and dy. One
surprising aspect of this proof is that it relies heavily on the classification of
space curves (we have seen that curves sit naturally in the space whereas we
agree with Severi in thinking that surfaces are not naturally in Py). It is entirely
numerical and the self intersection of a surface in P, (the second chern class of

its normal bundle) is the only useful fact concerning the embedding.

Our renewed interest for this study is due to the recent work of Braun and
Floystad ([4]), as well as the generalisation of our result to solids in Pg, obtained

by Braun, Ottaviani, Schneider and Schreyer ([5)).
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The comments presented here are a report on a series of discussions with
Geir Ellingsrud, motivated by our desire to understand these works. The pre-
sentation of the consequences of our key Ler;lma is essentially the same as in
our previous paper ([E.P.]), but our understanding of the proof of this Lemma
is now modified. He is certainly a coauthor of any reasonable mathematical
statement (assuming there are some), but he should not be considered respon-
sible for the “foggy” aspect of these comments. I have also discussed this topic
freely and extensively with W. Decker, F. Schreyer and F. Zak. I appreciate
their generosity. All members of the Europroj group working on surfaces in
P, have also shared their ideas freely with me. This was done in a useful and

pleasant atmosphere.

To conclude, I would like to thank the organizers of the XII Escola de Algebra

in Diamantina, for giving me the opportunity to present these comments.

2 The key Lemma and its consequences.
Let o be a positive integer. Consider the polynomial with rational coefficients
P,(T) = (T%/60%) + ((¢ — 5)T?/40) + ((20* — 150 + 35)T/12).
An obvious computation shows the following result :

Proposition 2.1 : If a surface S in Py is the complete intersection of an

hypersurface of degree o and another hypersurface, then
x(0s) = 1+ h*(0s) = Po(d),
where d is the degree of S.

A less obvious analysis, to which we will come back later, proves the following

statement :

Theorem 2.2 : If a surface S lies in a reduced irreducible hypersurface T of
degree o of Py, then x(0s) < 1+ h*(Os) < P,(d), where d is the degree of S.
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Furthermore 14+ h*(Os) = P,(d) if and only if S is the complete intersection
of ¥ and another hypersurface.

In this section we intend to justify our interest for the following key Lemma,

by stating and proving its main corollaries :

Lerﬂma 2.3 (key Lemma) : For each integer o there exist polynomials Q, and
Q., with rational coefficients, of respective degrees 1 and 2, such that :

If ¥ is a reduced irreducible hypersurface, of degree o, in P4 and if Sisa
smooth surface, of degree d, lying in ¥ and not contained in the singular locus
of L, then

(i) if the singularities of ¥ are isolated

Pv(d) - Qv(d) < X(OS) <1+ hz(OS) < Pd(d))
(i) if the singularities of & are not isolated

Fp(d) — Qo(d) < x(0s) < 14 h*(0s) < Py(d).

This apparently boring Lemma has three interesting consequences.

Corollary 2.4 : Let x be an integer. There ezists an integer d(x) such that
for all smooth surfaces S C P4 with x(Os) = x, one has d°(S) < d(x).

Corollary 2.5 : There ezists an integer dy such that all smooth surfaces, of

Py, of degree > dy are of general type.

Corollary 2.6 : There ezists an integer xo such that X(0s) > xo for all smooth

surfaces S in Py.

To understand how they can be deduced from our key Lemma, let us recall

some known facts.
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Theorem 2.7 : Let S be a smooth surface, with canonical class K.

(i) If S is not of general type or birationally ruled, then x(Os) > 0 and
K?<0. '

(ii) If S is rational then x(Os) =1 and K* <9.

(ii) If S is birationally ruled of positive genus, then x(Os) < 0 and K* <
8x(0s).

(iv) If S is of general type, then x(Os) > 1 and K? < 9x(Os).

This is an easy consequence of Enriques classification, except for the last

inequality (Bogomolov-Miyaoka).

Theorem 2.8 (The double points formula) :
If S is a smooth surface in P4, with degree d, sectional genus = and canonical

class K, one has
d® — 5d — 5(2m — 2) — 2K* + 12x(0s) = 0.

This well known result (see [12], Example 4.1.3., p.433, for example) is
equivalent to the self intersection formula for a‘locally complete intersection
surface in Py :

Cz(Ns) = dz,

where Ng is the normal bundle of S in Py.

Theorem 2.9 (The bound for the genus of space curves) :
Let C be a space curve of degree d and genus g. Assume that C is not con-
tained in a surface of degree < s or that it is contained in a reduced irreducible

surface of degree s, then
5(29 - 2) < d(d + s(s — 4)).

Furthermore equality holds if and only if C is a complete intersection of a surface

of degree s and another surface.

This result is proved in ([10]) under the assumption s(s — 1) < d. It can
easily be checked that this last hypothesis is unnecessary.
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Theorem 2.10 : If the general hyperplane section of smooth surface S C Py,
of degree d, is contained in a space surface of degree o, with (c)? < d, then this

space surface is a hyperplane section of a hypersurface, of Py, containing S.

This result of Roth ([20], p.152) can also be proved following the ”Grauert-
Mulich” method.

Proof of Corollary 2.4 : Let x be a fixed integer and let S be a smooth
surface in P4 with x(Os) = x.

By the double points formula, we have
"5(2r —2) = d* — 5d — 2K? + 12x.
Using the classification of surfaces, it gives
5(2r — 2) > d? — 5d — 6y,
except when S is birationally ruled of positive genus. In that case, one has
5(2r — 2) > d? — 5d — 4x.

But for d large enough, one has

(d* —5d —6x)/5 > (d* + 12d)/6 and (d® — 5d — 4x)/5 > (d* + 12d)/6.

By the Theorem bounding the genus of space curves, this implies that a
general hyperplane section of S is contained in a space surface of degree < 5,
and by Roth’s Theorem the surface itself is contained in a hypersurface of degree
<5, of Py.

We therefore have proved that for d large enough, all smooth surfaces of
degree d, with x(Os) = x are contained in an hypersurface of degree < 5.

We can now use our key Lemma without thinking twice. There exists an

integer o € [1, 5] such that

Py(d) - Qu(d) < x,
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hence the degree of S is bounded.

Proof of Corollary 2.5 : Let S C P4 be a smooth surface which is not of
general type.

If S is biratinally ruled, then x(Os) < 1 and the degree of S is bounded by
the preceeding Corollary.

If not, then x(Os) > 0 and K? < 0. The double points formula gives

d? — 5d 4+ 12x < 5(27 — 2).
This implies
(27 —2) > (d* — 5d)/5 > (d* + 12d)/6,

for d large enough. Hence, for d large enough S is contained in an hypersurface

of degree < 5, and by our key Lemma there exists a o € [1,5] such that
Py(d) - Q;(d) < x(0s)-
But an obvious application of the bound of the genus gives
5(2r —2) < 5d(d —3) hence 12x < 5d(d — 3) — d® — 5d = 4d® — 10d.
Combining these two inequalities we find that there exists o € [1, 5] such that
P, (d) - Q4(d) < (4 — 10d)/12,
and d is bounded, since P, — Q' is a polynomial of degree 3 with positive leading

coefficient.

Proof of Corollary 2.6 : It is an obvious consequence of the previous Corollary

since x(Os) > 0 for surfaces of general type.
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3 Proof of the key Lemma.

This proof is based on the following, well known but never completely stated,

principle :

Proposition 3.1 : Let X be an equidimensional projective scheme of dimen-
sion n, without embedded component, contained in a reduced irreducible hyper-
surface ¥ C P,;2, of degree o.

If the degree of X isto—r, with0 <7 <o, let Y C P,y be the residual
of a complete intersection of a hyperplane and a hypersurface of degree r in the
complete intersection of hypersurfaces of degrees t and o.

Let A =73, A be the graded ring of the embedding X C Ppyy and B= 3, B,
be the graded ring of the embedding Y C P,y,. Then

rk(A) > rk(B;) and A™(0x(1)) < B*Oy(l)), V L.

If k(A1) = rk(By) for some | > t, or if k*(Ox(1)) = h*(Oy(l)) for some
l<o+t—n—1-—r, then

X 1is, as Y, the residual of a complete intersection of a hyperplane and a
hypersurface of degree v in the complete intersection of hypersurfaces of degrees

t and o.

This result is proved in ([10]) for n = 1. It can be extended to all n > 0 by
an elementary induction. Use a general hyperplane section of X.
By the way, our Theorem 2.2 is an immediate consequence of this Proposi-

tion.

We will also need the following result, whose proof is an elementary chern

class computation.

Lemma 3.2 : ¢;(N(—0)) = d(d+0(0—4))—o(2r—2), where 7 is the sectional
genus of S (the algebraic genus of an hyperplane section of S) and N the normal
bundle of S in P,.
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Our last technical Lemma is a bit more difficult.

Lemma 3.3 : Let S be a smooth surface contained in an hypersurface I, of
degree o, of P4, but not contained in the singular locus of X.

Let N be the normal bundle of S in Py.

(1) If £ is smooth along S, then c;(N(—0)) = 0.

(i) If © has isolated singularities, then c3(N(—c)) < (o — 1)*.

(ii1) If the singularities of & are not isolated, c3(N(—0c)) < (o — 1)2d°(S).

Proof : The embedding S C ¥ induce an homomorphism N — Os(o) whose
vanishing locus is the intersection of S and the singular locus of X (scheme
theoretically defined by the partial derivatives of the equation of X). This
proves (i).

If ¥ has isolated singularities, the singular locus of X is a dimension 0 scheme
of degree < (o — 1)*, by Bezout’s Theorem, and (i2) is obvious.

For (#12), note that if S and the singular locus of ¥ intersect in a dimension
0 scheme, this scheme is contained in the proper intersection of S and of the
hypersurfaces, of degree o — 1, defined by two general partial derivatives of the
equation of ¥ and we are done, by Bezout’s Theorem.

If there is a singular curve of ¥ in S, one has to work a bit more. Let D be

this curve and Z the vanishing locus of the induced homomorphism
N(—o) — Os(-D).
One has (by staightforward computations) :
c2(N(—0) = d°(Z) + (20 — 5)d°(D) + D* + KD,

and

d°(Z) < (o —1)*d°(S) — 2(c — 1)d°(D) + D2

Combining these two inequalities and using Kodaira vanishing, we get the an-

nouced bound.
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Remark : If ¥ is non singular we get
d(d + o(o — 4)) — (27 — 2) = ¢3(N(—0)) = 0.

Using the bound of the genus for space curves, we see that in this case a hyper-
plane section of S is a complete intersection of the corresponding hyperplane
section of ¥ and another space surface. In this case S has to be the complete

intersection of ¥ and another hypersurface.

Proof of the key Lerlnma : For the sake of simplicity, we shall assume that
d, the degree of S, is a multiple of o. The proof is easier to follow in this special
case, but is of the same nature in the general case.

In view of Proposition 2.1, we can obviously assume that S is not a complete
intersection of ¥ and another hypersurface.

We first compute x(Os((d + o(o — 5))/), using Riemann-Roch and the

adjonction formula for surfaces.
x(0s((d+0(0—5))/o) = [(d+0(0—5))/20][d(d+ (o —4))/o — (27 —2)]+x(Os)

= [(d+o(0 - 5))/0][ca(N(~0)/20] + x(O).

Let Y be the complete intersection, in Py, of a hypersurface of degree o and
a hypersurface of degree d/o. Since Oy((d + (o — 5))/0) is the dualizing line

bundle on Y, we have
1+ h%(Oy((d + o(c - 5))/)) = P, (d).
By our Proposition 3.1, we get
h°(Os((d + o(o — 5))/)) > P,(d) — 1.
Hence we find
1+x(05) 2 14 k°(0s((d + o(0 - 5))/7)) — h*(Os((d + o(o — 5))/c))

~[(d+ o(o = 5))/0][cs(N(~0)/20]
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> P.(d) — h*(Os((d + o(0 — 5))/0)) = [(d + (o = 5))/e][es(N(=0)/20].

To conclude the proof of our key Lemma, we need to bound

' (0s((d + o(o - 5))/7))

)

according to the assertion. This can be done easily, ” 4 la Castelnuovo”.

Let H be a general hyperplane and C = H N S. There is an obvious exact

sequence
H®(Os((d+0o(0—5))/7)) = H*(Os((d+o(0—4))/e)) = H(Oc((d+o(r—4))/7))

— H'(0s((d+0(c—5))/0)) = H'(Os((d+0o(0—4))/0)) = H'(Oc((d+0(c—4))/7))-

Now by our Proposition 3.1, we know that if H*(Oc((d+ o(o—4))/a)) # 0,
then C is a complete intersection (of £ N H and ...), hence S is a complete
intersection of ¥ and another hypersurface.

We can therefore assume H'(Og¢(n) = 0 for n > (d + o(o — 4))/0).

If T is the sheaf of ideals of C in Pj, it is clear that

rh(coker[H°(Os(n)) — H*(Ocg(n))]) < h'(Z(n)),

for all n.
Combining these informations in a straightforward way, one is left with the
following inequality :
k' (Os((d + o(o —5))/0)) < > k()
n>(d+o(c-4))/7)
Let us be artless, once more, to bound A'(Z(n)) for n > (d + o(o — 4))/0).
Since H}(O¢(n)) =0 for n > (d + o(o — 4))/0), we have

H°(O¢(n))=nd+1—7 for n>(d+o(c—4))/0).

But if A is the graded ring of the embedding C C P3, we know, by Propo-
sition 3.1, that

rk(An) > nd — (d + o(o — 4))/20),
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since (d + (o — 4))/20) + 1 is the genus of a complete intersection (in Pj3) of

surfaces of degrees o and d/o. We find therefore
R (Z(n)) < (d+ o(o — 4))/20) — (1 — 1) = ¢3(N(—0))/20.

It is well known (see [11] for example), that H*(Z(n)) = 0 for n > d — 2.

Hence we have proved
KH(Os((d+ o - 5))/a)) < (d— 3 - (d+ o(c — 5))/o))ea(N(~)) /26,

and this is enough for our key Lemma. When the singularities of ¥ are isolated,
as well as when they are not.

Combining all our inequalities, we proved

14 x(0s) > P,(d) — (d — 3)cz(N(—0))/20.

Since c;(N(—0)) is bounded independantly of d when the singularities of ¥ are
isolated, and by (o — 1)?d when they are not, the Lemma is established.
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