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These notes provide a short self-contained introduction to Ludwig Brocker's
theory of complexity of constructible sets in the real spectrum of a ring and
to the associated theory of complexity of semi-algebraic sets in real algebraic
varieties. The theory has only just recently evolved to the point where this sort
of presentation is possible [12], [13], [20], [21], [22], [24], the main breakthrough
being due to Ludwig Brocker and Claus Scheiderer in 1987.

This material is accessible to anyone familiar with elementary commutative
algebra, as presented in [2], say, and the theory of real closed fields ( including
quantifier elimination and the transfer principle), as in [5, Chapters 1 and 5],
say.

A basic difference between the real spectrum and the ordinary (prime) spec-
trum of a ring is seen vividly by looking at the field case. The prime spectrum
of a field is a trivial object (just a single point) but the real spectrum of a field
can be highly non-trivial. Thus the reader should not be surprised to find that
about half of the presentation is field theory. The main tool to be developed
here is the interrelationship between orderings, valuations, and quadratic forms
(4], [6], [17], [23]; see Part III.

The presentation is divided into five parts. Parts I and II introduce the
reader to the real spectrum, and establish the relationship between constructible
sets and semi-algebraic sets. Most of this material is found in [3], [5], [16], [18],
but in a slightly different form. Parts I and III, when taken together, contain the
prerequisites to Part IV which is the heart of the subject. In Part IV one learns
(in summary) that the complexity of constructible sets depends only on certain
“stability indices” of the residue fields and further, that these indices can be
computed by valuation theory. Part V gives the application o semi-algebraic
sets.

In the interests of brevity, many important parts of the theory are not in-
cluded (e.g., the application to complexity of semi-analytic sets [1]). The Au-
thor decided that the goal of making available a short self-contained introduc-
tion should override other considerations. In any case, the book by Andradas,

Brocker, and Ruiz which is scheduled to appear soon will make up for these
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deficiencies.

The Author wishes to thank the organizers for inviting him to present this
material at the XII Escola de Algebra, Diamantina, Brasil, 1992. The Author
also wishes to thank Leslie Walter for her contribution to these notes.

This latest version of these notes grew out of a seminar given at the Univer-
sity of Saskatchewan in 1993. It contains an introduction which was not present
in some of the earlier versions, and the order in which topics are presented has

been changed.

1. Introduction

Let K be a field, ' C K any subfield. Denote the polynomial ring F[X,,..., Xy]
by F[X] for short. Let V be an algebraic set in K" defined over F, so V has

the form

V={zec K" :h(z)=0,i=1,..k}

for some polynomials hy,...,he € F[X],k > 0. Recall: algebraic sets are also
called algebraic varieties.

In algebraic geometry one usually assumes K is algebraically closed (e.g.,
K = @) and one is interested in subsets of V defined by polynomial equations
f = 0 and polynomial inequalities f # 0, f € F[X]. These are studied by
looking at the F-algebra

FX]

" (hry ey b
Each point ¢ € V determines a ring homomorphism A — K, f — f(z). This
has image F[z] C K and kernel p, := {f € A: f(z) = 0}. Thus A/p. = F[z],
so the residue field at =z, i.e., the field of quotients of the domain A/p., is

A

isomorphic to the finitely generated field extension F(z) C K. Spec 4 denotes
the ( prime) specirum of A, i.e., the set of prime ideals of 4. Since p, is a prime

ideal for each = € V, we have a mapping

U :V — Spec4, =+ p,.
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Various properties of V are reflected by properties of SpecA. For example, if
f € A, the set of solutions of the equation f = 0 in Spec A is (by definition)
the set .

{p € SpecA : f € p}.

In real algebraic geometry, on the other hand, one assumes K is real closed
( e.g., K = R) and one is interested in subsets of V defined by polynomial
equations f = 0 and inequalities f > 0, f € F[X)]. These are the so-called semi-
algebraic sets (more precisely, semi-algebraic sets defined over F'). To study
these one needs the real spectrum of A. This is denoted by Sper A. The key
here is to observe that, for ¢ € V, the residue field F'(z) is ordered by the natural
ordering P, := F(z)N K? induced by F(z) C K. Motivated by this, one defines
the real spectrum of A to be the set of all pairs (g, @), where ¢ C A is a prime
ideal and @ is an ordering on the residue field at g (= the quotient field of the
domain A/q ). Thus, we have a mapping

®:V — Sper A, z — (p, Pz).

Now various properties of V, including “real” properties, are reflected by prop-
erties of Sper A. For example, for f € A, it makes sense to talk about the set of
solutions of the inequality f > 0 in Sper A. In this way, we have a certain class of
subsets of Sper A, called constructible sets, corresponding to the semi-algebraic
sets in V.

It turns out that, to get an accurate reflection of the properties of V, the
real spectrum is a bit too large. Let P denote the ordering on F induced by K,
i.e., P = FN K2 Then we have a certain subset Xp C Sper A corresponding
to the preordering T := 3 A?P. This terminology will be explained later. In
concrete terms, Xz consists of all pairs (g, Q) as above, but with @ extending

P. For each =z € V, P, extends P, so we have
®:V — Xr CSper 4, =+ (pg, P:).

Of course, if F is uniquely ordered, then X1 = Sper A, so there is no need for

this extra adjustment.
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Remark Actually, the proof that Xr “accurately reflects” properties of V' is
quite complicated: it uses Tarski’s transfer principle for real closed fields; see
Theorems 2.1 and 2.4 below.

Hopefully, the above discussion will serve to motivate the reader to learn

more about the real spectrum and to understand how this knowledge can be
applied to study problems in real algebraic geometry.
" The special problem we have in mind (and the main problem being con-
sidered in these notes) is the problem of minimal generation of semi-algebraic
sets. This is described nicely in Brécker’s survey article [12]. We conclude this
introduction by giving a partial description of this problem.

We continue to assume that K is real closed. If one is given a subset of V

of the form
S: ‘{1: € \ . f,(a:) = U,i = 1,...,1],}, f], ---1fr| (= A,

then one can ask for the minimum number of equations required to describe S.
The answer is trivial: S = {z € V : f(z) = 0}, where f = &,2, 7, so S can be
described by a single polynomial equation. Similarly, the set

S={zeV:fi(z)#0,i=1,..,n}

can be described by a single inequality: S = {z € V : f(z) # 0}, where f =
Hi:1 fi.

On the other hand, if one replaces =,# by > or >, the question is highly
non-trivial. For example, what is the minimal number of inequalities f > 0

required to describe a basic open set

S={zeV:fil)>0,i=1,..,0}, fi,m fo€ Al

Examples

(1) The triangle in IR* defined by the three inequalities = > 0,y > 0,1 > z+y
can be described equally well by two inequalities zy > 0, (z+y—1)(z+y) <
0.
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(2) The half-line in IR defined by z? > 2,z > 0 can be described by a single
inequality z > +/2 over IR but, over @, two inequalities are required.

The reader might guess that the nul'nber of inequalities required is bounded
above by the dimension d of V. After all, in Example (1), V = R? is 2-
dimensional, and, in Example (2), V = IR is 1-dimensional. On the other
hand, in Example (2), if F = @, then two inequalities are required (since the
polynomials in question are required to have coefficients in F').

It turns out that the bound is d+3p+8p, where 3p, 8p are certain invariants
of the ordered field (F, P); see Theorem 5.6 (1) below. If (F, P) is real closed,
then 5p = &p = 0. On the other hand, if F = @, then 5p = 0, §p = 1. This
explains the slightly bigger bound required in Example (2) in case F' = @.

This is a very nice result but, at the same time, it is perhaps somewhat
surprising since, intuitively, it is not clear why such a bound should even exist.

e.g., consider the following:

Question. In IR?, how does one go about describing the interior of a given
convex polygon using just two polynomial inequalities?

From the viewpoint of algebraic geometry, Theorem 5.6 is the main theorem
proved in these notes. The reader will observe that Theorem 5.6 has four parts
(all equally interesting) and that we have only looked at one of these parts here.
But hopefully this is enough to give the reader some idea of what these notes
are about.

As one might expect, the proof of Theorem 5.6 is also interesting. This proof
is carried out entirely in the context of constructible sets, working in the subset
Xz C Sper A discussed above (i.e., T = ¥, A’P) , and is then transferred back
to V via the mapping ® : V — Xr. Actually, most of this theory of minimal
generation of constructible sets holds for any ring A, commutative with 1, and
any preordering T' C A; see Part IV. It is only in Part V that specialization is
made to the case where A is a finitely generated F-algebra, and T = 3 A?P.
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I THE REAL SPECTRUM OF A COMMUTATIVE RING

1. Preorderings, semi-preorderings

Throughout, A denotes a ring (always assumed to be commutative with 1). For
a prime p C A, F(p) denotes the residue field of A at p, i.e., the quotient field
of the domain A/p.

Note

(1) Primes in a localization Z~'A (where £ C A is a multiplicative set) have
the form ©~'p where p C A is prime, pN X = @, and, in this situation,
F(27'p) = F(p)-

(2) Similarly, primes in a factor ring A/I have the form § = p/I where p C A
is a prime containing I, and F(F) & F(p).

A subset T C A is called a preorderingif T+ T C T, TT C T,and A’ CT.
(Here, A? := {a®: ¢ € A}). T is called properif —1 ¢ T. 3 A? denotes the set
of all finite sums a? + ++- + a2, a1,:++,a8, € A, n > 1. This is a preordering.
Moreover, 3~ A? C T holds for any preordering T' C A.

Note. If A has a proper preordering then —1 ¢ Y A? (so, in particular,
Char A = 0). Conversely, if —1 € 3° A?, then 3 A? itself is a proper preordering
in A.

More generally, a subset S of A will be called a semi-preorderingif S+5 C S,
A’S C S,and 1 € S. S is said to be it proper if —1 ¢ S. Note: Since 1 € §
and A?S C 5, 3> A% C § holds for any semi-preordering S. A preordering is
just a semi-preordering which happens to be closed under multiplication.

If pC Ais a prime and S C A is a semi-preordering,

S(p) = {af—z teS,ae A\p} C F(p).

(Here, ~: A — A/p C F(p) denotes the natural homomorphism). One checks
easily that S(p) is a semi-preordering of F(p).
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If S C Ais a preordering, then the semi-preordering S(p) C F(p) is actually
a preordering. This is easy to check. Also, if S = ¥ A?, then S(p) = & F(p)*.

Theorem 1.1. (Brocker) If S C A is a proper semi-preordering then there
exists a prime p C A such that the semi-preordering S(p) C F(p) is proper.

Proof. Let A[}]:= {& : a € A,k > 0} (localization of A at the multiplicative
set generated by 2) and let S[1] := {& : t € S,k > 0}. S[]] is easily checked
to be a semi-preordering in A[1]. Moreover, S[}] is proper. (If —1 € S[3], then
—2k =t € § for some k> 0so —1 = (2* — 1) +¢ € 5.) Thus, replacing A by
A[}] and S by S[%], we can assume } € A. Thus we are free to use the identity
(%) Tz = (%5)2— (’—;1)2, z €A

Also, by Zorn’s Lemma, we can assume S is maximal (proper) with respect to
inclusion. Look at p := § N —§. This is a additive group (since S + S C §)
and A?p C p (since A’S C S). Using (*) one deduces that Ap C p, i.e., pis an
ideal. The main step in the proof is to show that p is prime.

Claim: @® € p = a € p. For suppose a®> € p, a ¢ p. Replacing a by
—a if necessary, we can suppose a € S. Consider the semi-preordering S’ :=
S + 3 A%a. By maximality of §,—1€ §' so -1 =t+as,t € 5,8 € £ A%, Let
c:=as. Thus ¢ = a®s? € p (since a? € p), 50 1 +2c = (1 +¢)* + (—c?) € S.
Since ¢ +t = —1, this means —1 = (1 + 2¢) + 2t € 5, a contradiction. This

proves the claim.

Suppose now that a,b € A,ab € p. We want to show a € p or b € p. By the
claim, it suffices to show that one of a?,b? is in p. Suppose a & p (so a® & —5).
Thus, by maximality of §, -1 € § — 3 A%a? say —1 =t —a’s,t € S,s € L A%
Then —5 = b’ — (ab)’s € S so b> € p. This completes the proof that p is
prime.

Suppose —1 € S(p). Then —1 = gir for some t € S, a € A\p. Clearing
fractions, —a® € S 8o a® € p, i.e., a € p, a contradiction. This completes the

proof. O
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Later, in Part IV, §3, we use the full strength of Theorem 1.1. But, for now,
we will be applying Theorem 1.1 only in the case where S C A is a preordering.

2. Orderings and semi-orderings

Suppose F' is a field of characteristic 0 and T' C F is a preordering. If a €
T & # 0, then 1 = (1)%2a € T. This implies that T := T'\{0} is a subgroup of
the multiplicative group F* := F\{0}. Since F?> C T, the factor group F* /T~
has exponent 2. Note' also that if s = —t,s,t € T, then —1 = s/t € T". Thus,
if T is proper, then TN —T = {0}. This can also be deduced from the fact that
T N —T is an ideal; see the proof of Theorem 1.1.

Orderings on fields were considered by Hilbert and later, in more detail, by
Artin and Schreier. A subset P C F' (F a field) is called an ordering if P is a
proper preordering and PU—P = F. Thus, for an ordering P, the factor group
F*/P* has order 2.

Sper F' denotes the set of all orderings of F'. This is called the real spectrum
of F. T C F is a preordering, Xr := {P € SperF : P 2 T}. Thus, for
example, if T = ¥ F?, then X7 = Sper F.

Theorem 1.2. (Artin) For any proper preordering T C F, Xt # 0 and,
moreover, T' = N{P : P € Xr}.

Proof. We begin by proving the following Claim: if a ¢ T then the preordering
T — aT is proper. For otherwise —1 = s — at for some s,£ € T s0 at = 1 + s.
This is not zero (since —1 ¢ T')sot # 0. Thusa = (1+s)/t € T, contradicting
our assumption. This proves the claim.

To prove Xr # 0, use Zorn’s Lemma to pick a maximal proper preordering
PDOT.Hfac€ F and a € P then, by the claim (applied to the preordering P)
P — aP is proper so, by the maximal choice of P, we must have P = P —aP
and consequently —a € P. This proves F = PU —P so P is an ordering. Thus
P e Xr, 50 Xr # 0.

To prove T = N{P : P € Xr}, it suffices to show that if a € F\T, then
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3 P € Xy with @ ¢ P. But, by the claim, T — aT is proper, 8o Xr_ar #
@ by what we have already proved. Any P € Xr_,r satisfies —a € P and
consequently a ¢ P (since PN —P = {0}) o

Semi-orderings on fields were introduced by Prestel. We will need these
later, in proving the Isotropy Theorem in Part III. A subset S C F, is called
a semi-ordering if S is a proper semi-preordering (i.e., §+5 C S, F?S C §,
1€S5,-1¢ S)and SU-S = F. Thus, an ordering is just a semi-ordering
which happens to be closed under multiplication.

Note. If § C F is a semi-preordering, then § N —§ is an ideal of F (see the
proof of Theorem 1.1) so § N —§ = {0} if S is proper.

We restrict our attention here to semi-preorderings, etc., on F' satisfying
TS C S for some preordering T' C F. These will be referred to as T'-sem:-
preorderings, etc. (Of course, there is no loss of generality in this: we can always
take T = 3. F2.) Note: Since1 € S, T € TS C § for any T-semi-preordering

S. In particular, a T-ordering is just an element of Xr.

Theorem 1.3. Any T-semi-preordering is the intersection of the T-semi-

orderings containing it.

Proof. One verifies, if S is a T-semi-preordering and a ¢ S, then S — aT is
proper T-semi-preordering. The result follows from this, exactly as in the proof
of Artin’s Theorem. (m]

For the rest of this section and the next, fix a T-semi-ordering S C F and
denote by < the associated linear ordering on (F,+) (so a < b just means
b—a € S,b# a). Since we are not assuming §5 C S, it is necessary to exercise

caution in dealing with <.
Lemma 1.4. For anya,be F

()0<a=>0<a!

(2) 0<a<b= ab < ab?
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(B)0<a<b=bl<a
() 0<a<bandbeT = a’<b?

(5) O<a<bandaeT=ad®>< ¥

Proof.
(1) a7t = (a7")%e.
(2) ab® — a? = b’((l;— ) gt N
(3) follows from (2), multiplying each side by a=2b72.

(4) By (2) 2?6 < ab® and b~! € T so scaling, we get a? < ab. Also, a < b and
b € T so scaling by b, we get ab < b2

(5) Similar to (4). O

Lemma 1.5. If S is Archimedian (i.e., 0 < a = a < n for some n € IN) then

S 1s an ordering.

Proof. Suppose a < b. Then In € IV such that 0 < (b—a)™! < n so by (3),
0 <n ! <b—a Choose m € Z so that m —1 < na < m. Then m < nb.
(Otherwise, 1 —n(b—a)=(m —nb) + (na— (m —1)) € Sson(b—a) <1 and
therefore b — a < n™!, a contradiction.) Thus na < m < nb, so a < m/n < b.
This proves Qis dense. Now suppose a,b € 5*. We must show ab € S. We can
assume a < b. Then0 < b—a <b+tasoIrec@QwithO<b—a<r<b+a.

Since r € T', we can apply parts (4) and (5) to obtain (b —a)? < 7 < (b+ a)?.
Thus ab = Etel-(-af ¢ g O

Remark. If P C F is an Archimedian ordering, then there exists a unique

embedding 7p : F < IR such that P = v45"(IR*). This is well known.
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3. Semi-orderings and valuations

The connection between orderings and valuations was noticed first by Baer and
Krull. The more complicated connection between semi-orderings and valuations
is due to Prestel.

We continue to assume § is a T-semi-ordering on a field F. Let B C F be a
valuation ring. Let M = Mp C B be the maximal ideal, B* := B\ M the group
of units of B, and let ~: B — F := B/M be the natural homomorphism. For
any set Q C F, denote by Q the pushdown of Q to F i.e.,

0:=Q0nB={a:acQnB}CF.

With this notation, it should be clear that 5 is a T-semi-preordering on F' and
SU—5=TFso S is an semi-ordering iff -1 ¢ 5.

Lemma 1.6. The following are equivalent:
(1) —1 ¢ 5 (so S is a T-semi-ordering).
(2) {ec B :a€ S} CS.

(3) 1+ M)(B*nS)CS.

(4) 1+ MCS.

Proof.

(1) =(2). Suppose @ € S5, a € B*. Then a € §, since otherwise a € —5 so
@ € §N —3 contradicting 5N -8 = {0}.

(2) =(3) and (3)=(4) are clear.

(3) =(1). f —1 € S then we havea € SN B* with —1 =a +z, £ € M. But
then —a=14+z€ Ssoaec SN-S. ]
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We say B, S are compatible if one of the equivalent conditions of Lemma 1.6
holds.

Note.

(1) If S is an ordering and B, S are compatible, then the push-down of § to

F is an ordering (not just a semi-ordering).

(2) The valuation rings of F' lying over a given valuation ring B are linearly
ordered by inclusi'on. Moreover, if C D B then Mg C Mg so if B is
compatible with S then sois C.

Theorem 1.7. There ezists a unique smallest valuation ring B of F' compalible
with §. Consequently, the valuation rings of F' compatible with S are linearly

ordered by inclusion.

Proof. The convez hull of Qin F is
B=Bs:={zc F:3rc @ suchthat —r <z <r}.

Clearly B is closed under subtraction and @ C B. Also, using Lemma 1.4 (4),
we see that .z € B = z? € B. Since zy = @P—:L’J’L’, this implies B is a ring.
Using Lemma 1.4 (3), it is clear that B is a valuation ring with maximal ideal

M=Ms:={zcF:-r<z<rforallre@}.

Thus, if £ € M then —1 < z < 1s0o 1+z € S. This proves B, S are compatible.
Now let C be any valuation ring of F' compatible with S. If ¢ € Mg then
l1+tnzel+McC S foranyne IN soz € M = Mp. This proves Mg C Mp
so BCC. a

Remark.

(1) If B C F is a valuation ring and D C F is any subring, then BD (= the
set of all products bd, b € B, d € D) is a valuation ring. It is the smallest

valuation ring containing B and D.
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(2) Thus, by Theorem 1.7, if D C F is any subring, then
B=BsD={z€F:-1<z/d<1forsomed¢€ D)\ {0}}

(called the convezr hull of D in F) is the smallest valuation ring in F
containing D and compatible with S. This has maximal ideal

M={zeF:-1<dz<1forall de D}

(3) The pushdown § C F = Bs/Ms is Archimedian (by definition of Bs) so,
by Lemma 1.5, 5 is an Archimedian ordering. Thus 3 a unique embedding
95 : F — R with § = y5'([R?). Thus we have a real place As : F' —
IR U {oo} defined by composition.

(4) Using Lemma 1.8 below, one can show that every real place a : F' —
R U {co} has the form a = Ap for some (generally non-unique) P €
Sper F.

Lemma 1.8. Suppose B is a valuation ring of F' with mazimal ideal M and
restdue field F = B/M. Suppose P = P* U {0} where P* C F* is a subgroup
of index 2 such that the pushdown P := PN B is an ordering on F'. Then P is

an ordering on F.

Proof. Since P* has index 2, F? C P and clearly —1 ¢ P (since —1 ¢ P).
Thus it suffices to show =,y € P* = z 4y € P*. By symmetry, we can suppose
z-ly € B. Since z + y = z(1 + =7 'y) and P* is closed under multiplication,
it suffices to show 1 4+ 7'y € P*. Thus we are reduced fo the case where
z=1landye€ BNP. Butif 1+y ¢ P*, then —(1 +y) € P so, applying
~:B — F,-1 € P, a contradiction. Thus 1+ y € P*. This completes the
proof. O

Lemma 1.9. Suppose F is real closed with (unique) ordering P. Then, for any
P-compatible valuation ring B C F, the value group F*/B* is divistble and the
residue field F' is real closed (with unique ordering P).
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Proof. If z € F*, n € IN, then £z € P so £z = y" for some y € F*. This
proves F'*/B* is divisible. If £ € B*N P, z = y? for some y € B*. Thus
P=F. 1 f(t) = B qa;t’, n odd, a; € B, a, =1, then f(t) has a root y € B
(since F is real closed and B is integrally closed in F'). Thus 7 € F is a root of
f(t) = B y@:t'. This proves (F, P) is real closed. o

4. Nullstellensatz, positivstellensatz

The real spectrum of a'ring was introduced by Coste and Roy. For a ring A
(commutative with 1), an ordering on A is a pair P = (p, P), wherep C Aisa
prime and P is an ordering on the residue field F(p). Sper A denotes the set of
all orderings of 4, i.e.,

Sper A := U, Sper F(p) (disjoint union)

p running through the prime ideals of A. This is called the real spectrum of A.
If P € Sper A, then P € Sper F(p) for some unique prime ideal p C A. p is
called the support of P and we write Supp(P) = p. If T C A is a preordering,
we define

Xr :=U,Xr(@;) (disjoint union)
p running through the prime ideals of A. Note: If T = 3 A?, then T(p) =
> F(p)?, so Xr = Sper A.

Corollary 1.10. For any proper preordering T C A, Xr # 0.
Proof. Combine Theorems 1.1 and 1.2. O

We have obvious functorial properties: Each ring homomorphism f: A — B
induces a map Sper f : SperB — Sper A4, (¢,Q) — (p, P) where p = f~'(q)
and P = T_l(Q), where f : F(p) — F(q) is the embedding induced by f. Each
preordering T' C A induces a preordering Ty = ¥ B>f(T) = {X b?f(t:)|b: €
B,t; € T} in B (Tp = the smallest preordering in B containing f(T')), and
Sper f maps Xr, into Xr.
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Important Examples:

(1) If A — E7'A is a localization, then £7?T := {5 : t € T,a € L} is the

(2)

preordering on £~'4 induced by T. The functorial map Xg-27 — Xr is

injective and identifies Xg-27 with
{P € X7 :Supp(P)NE =0} .

This follows from the relationship between residue fields of £-'A and
residue fields of A. If ¥ is the multiplicative set generated by some f € A,
then we denote 74 by A[%] and 72T by T[?’;]

If A— A/I is a factor ring then T/I := {t+ I : t € T'} is the preordering
on A/I induced by T'. Again, the functorial map Xr/; — Xr is injective
and identifies X7/; with

{P € Xy : Supp(P) 2 I} .

This follows from the relationship between residue fields of A/I and residue
fields of A.

Notation.

(1)

(2)

If P € Sper I/, F a field, >p denotes the associated linear ordering on F,

ie.,a>pbmeansa—bec P a>pbmeansa—be Pa#b.

If f,ge A and P € Sper A, we define

f=pg (resp; f >pg, resp; f >p g)
to mean that
f=7 (resp; f>p 3, resp; F >p 3)

where ~: A — A/p C F(p) is the natural mapping, and p = Supp(P).

Note. If P € X7 then f >p 0 holds for all f € T'. This is clear.
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Corollaries 1.11, 1.12 which follow are abstract versions of classical results
in real algebraic geometry due to Dubois and Risler and Stengle respectively.

For the concrete versions of these results, see Corollaries 2.2, 2.3.

Corollary 1.11. (Nullstellensatz) Let T C A be a preordering and suppose
f € A satisfies f =p 0 for all P € Xr. Then —f** € T holds for some integer
k 2 0 (and conversely).

Proof. Consider the localization A[}] of A and the preordering T(#) € Aff]

generated by T. The hypothesis implies Xry = @. Thus, by Corollary 1.10,
’

-l€e T[%] Sorting this out yields —f** € T for some integer k > 0. O

Corollary 1.12. (Positivstellensatz) Let T C A be a preordering and sup-
pose f € A. Then

(1) f>p0VP e Xy = (1+3)f =1+t for some s,t € T (and conversely).

(2) f2p0YP € Xr = (f*+8)f = f* 4+t for some s5,t € T and some
integer k > 0 (and conversely).

Proof.

(1) Look at the preordering T'— fT C A. By the hypothesis, Xr_¢r = 0 and
consequently, by Corollary 1.10, -1 € T — fT. Also, 1 — f € T — fT.
Thus —(1—f) € T— fT so we have —(1—f) =t — fs,ie, (1+s)f =1+t

for some s,t € T.

(2) Look at the preordering T[!l—,] Cc A[}], as in Corollary 1.11. Then f >p 0
on XT[;‘:I so, by (1) 3 51, € T[fl—,] such that (1 + s;)f =1+ ¢, holds in
the ring A[7]. Clearing fractions, this yields (F*+s)f = f* +t (in A)

for some s,t € T and some integer k > 0. o
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5. Compactness

For a € A let

Z(a) = Zr(a):={P € Xr:a=p 0},
U(a) — Ur(a) ={PecXr:a>p 0},
W(a) = Wr(a) := {P € X7 :a 2>p 0}.

There are three natural topologies on Xr:

(1)

(2)

(3)

the Zariski topology. The sets Xr\Z(a) = {P € Xr : a #p 0} =
U(a?),a € A, form a basis for a topology on Xr called the Zariski topol-
ogy. This is generally not Hausdorff. Closed sets in this topology have
the form
Z(N)=2¢(I):={P€Xr:a=p0Vacl}

for some set ] C A (and we can take I to be an ideal if we want). If
A is Noetherian and I C A is an ideal, then I = (by,-+-,be) for some
by, -+ b € A, s0o Z(I) = Z(by,++,bx) = Z(b) where b= b} +--- + b}.

the Harrison topology. The sets U(a),a € A, form a subbasis for a topol-
ogy on Xr called the Harrison topology. This topology is clearly finer
than the Zariski topology. Again, the Harrison topology is generally not
Hausdorff.

the Tychonoff topology. The sets U(a), Z(a),e € A, form a subbasis for
a topology on Xr called the Tychonoff topology. Of course, this is finer
than the Harrison topology. In the Tychonoff topology, compliments of

subbasic open sets are open:
Xr\Z(a) = U(a®) and X7\U(a) = W(—a) = U(—a)U Z(a) ,

so the Tychonoff topology is totally disconnected. The reader can check
that the Tychonoff topology is Hausdorff.

Note. In the case of a field, all orderings have support 0, so Z{a) = Xr or @

depending on whether @ = 0 or not. Thus, in this case, the Zariski topology is

trivial, and the Harrison and Tychonoff topologies coincide.
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Theorem 1.13. Xr is compact in the Tychonoff topology (and hence also in

the Harrison and Zariski topologies).

Proof. According to Alexander’s Theorem [15], it suffices to show that any

cover of Xt by subbasic open sets has a finite subcover. Suppose
(*) .XT = U;_EIU(E.') u Ujejz(bj).

Let T’ C A be the preordering generated by T and the —a;,i € I. Let 1A
be the localization of A at the multiplicative set = generated by the b;,j € J.
Consider the preordering £72T" C £7'A induced by T'. By (%), Xg-27r = 0.
Thus, by Corollary 1.10, —1 € £72T" so —c? = 5 for some ¢ € £,5 € T'. But
c= b;‘ -+« b5 for some finite set {ji,---,j:} C J and s is in the preordering
generated by T and —a;,,-- -, —a;, for some finite set {i;,---,2,} C I. Thus

the equation —c? = s has the form

BB = e (—) e (—a, )

(finite sum) where the coefficients t.,..., are in T and (ey,---,e,) € {0,1}".

But this implies

Ky =0 Tlag YU UE . 20, -
This completes the proof. a

Remark. This is almost certainly not the “best” proof of Theorem 1.13. The
reader is encouraged to look at [18] for a more elementary proof which does not

use Alexander’s Theorem.

A subset S C Xr is called constructible if it is clopen (= both open and
closed) in the Tychonoff topology. The set of all constructible sets in Xr forms
a Boolean algebra (i.e., it is closed under taking complements, finite unions,

and finite intersections).
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To describe constructible sets we need some additional notation. For a;,---,
a, € A let
Ulas,++,an) = e, U(as) = {P € Xr :0;>p 0, i=1,---,n}
W(a1, -+ an) =N, W(a)) ={P € Xr:a; 2p0,i=1,--- ,n}
Z(ay,+y0n) =Ny Z(a;) = {PE€Xr:a;=p0, i= 1,--+,n}.
These sets are constructible sets. The sets U(ay, -+, a,) (resp; W(ay, *+,x))
are called basic open (resp; basic closed) in Xr. Of course, basic open sets
are a basis for the Harrison topology. Also, Z(by,:--,bs) = Z(b) where b =
bf+- --+b%, 50 sets of the form U(ay, -+ , 8,)NZ(b) are a basis for the Tychonoff
topology.

Corollary 1.14.

(1) Any constructible which is Harrison open is a finite union of basic open

sets.

(2) Any constructible which is Harrison closed is a finite union of basic closed

sets.
(3) Any constructible is a finite union of sets of the form

U(ul,---,an)ﬂZ(b),a.l,---,a.,,,bE A.

Proof. (1) and (3) follow from the compactness of constructible sets; see The-
orem 1.13. (2) follows from (1) by taking complements, observing that the
complement of U(a) is W(—a). O

6. Description of closure

Because of the 3 topologies on X, one must use the terms open, closed, interior,
closure, etc; with some care. The standard convention is the following: When

these terms are used without modifier, they always refer to the Harrison topology.
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For 5§ C Xr1,5 denotes the closure and z-cl(S) denotes the Zariski-closure.
We want to describe S and z-cl(S) in case S C X7 is Tychonoff closed. We

begin with z-cl(S) since this is easier.

Corollary 1.15. Suppose S C X is Tychonoff closed. Then any minimal
prime p lying over the ideal

I=n{Supp(P): PeS}={e€A:a=p0VPeS}

has the form p = Supp(P) for some P € §.

Proof. If a € A\p, then a ¢ I so 3 P € § such that a #p 0, ie., the set
{P € S:a#p 0} is not empty. The sets of this type are Tychonoff closed and
form a nested family so, by Theorem 1.13,

Nacarp{P € S:a#p 0} #0.

Any P in this intersection satisfies Supp(P) C p so, by minimality of p, Supp(P) =
p. o

The Zariski closure of S C Xr is z-cl(S) := Z(I) where I is defined as
in Corollary 1.15. This is the smallest Zariski closed set in Xt containing S.
According to Corollary 1.15, if S is Tychonoff closed, then

z-cl(S) = {Q € Xr : Supp(Q) 2 Supp(P) for some P € S} .

The dimension of S is defined to be the (Krull) dimension of the ring A/I.
Thus dim § = dim z-cl(S) and, if S is Tychonoff closed then, by Corollary 1.15,

dimS = dimA/J
sup{dim A/Supp(P): P € S}
sup{dim A/p : SN Xq() # 0} .

(Usual convention: dim A/I = —1i{IT=A).
If P,Q € Sper A we say @ specializes P (or P generalizes Q) and we write

Il

I

@ = P (or P < Q) to indicate that @ >p 0 = a >¢ 0 (equivalently, that
a>q0=a>p0).

Note:
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(1) If @ = P then Supp(@) 2 Supp(P).
(2) If @ > P and Supp(Q) = Supp(P), then Q = P.
(3) U@ > Pand P> @, then P = Q.

Analogously to Corollary 1.15, one has the following:

Corollary 1.16. For any Tychonoff closed set S C Xr,

S5={QeXr:Q>=P forsome PeS}.

Proof. (D) is clear: If @ > P, then every neighbourhood of @ contains P, so
Q € {P}, and {P} C § since P € S.

(S). Let @ € §. Then, for each ay,+++,a, € A satisfying a; >¢ 0,2 =
1,---,n 3 P € S such that a; >p 0,7,---,n i.e.,, the Tychonoff closed set
{PeS:e >p0,i=1,---,n} is non-empty. Again, sets of this type form a
nested family, so by Theorem 1.13,

ﬂﬂ>qo{P€S!a>p0}-}é@-

Any P in this intersection satisfies @ > P. =]

Corollary 1.17. Suppose S C X7 is constructible and dim Xy < oo. Then the
boundary 8S = 8rS : = SN X7\S satisfies dim 85 < dim Xr.

Proof. Let I={a € A:a=p 0V P € 35}, so dimdS = dim A/I. Let p
be a minimal prime lying over I. Then p = Supp(P) for some P € 85 (by
Corollary 1.15). Thus we have Q; € §,Q, € Xr\S with Q; < P,z = 1,2 (by
Corollary 1.16). But then one of the @; has support strictly smaller than p
(since otherwise @ = P = Q,). a

Theorem 1.18. For P € Xr, the set {P} = {Q € Xr : P < Q} is linearly

ordered by <. Moreover, {P} has a unique mazimal element.
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Proof. Suppose P < Q;,i = 1,2 but @; A Q2 and Q2 4 Q1. Thus we have
a,b € A satisfying a >g, 0,a <gq, 0,b >q, 0,b <q, 0. Interchanging a,bif
necessary, we can assume a >p b. But thena —b 2p 0 and consequently
a—b>g,0and b>g, 050 a=(a—b)+b>g, 0, a contradiction.

For the second assertion, look at 7/ = {a € A : a 2¢ 0 for some Qe
Xr,Q = P} . This is a proper preordering so 3 @ € X (Corollary 1.10).
Clearly Q is the unique maximal element of {P}. m]

Caution. Supp(@) need not be a maximal ideal.

Remark. Specializations of P € Sper A are related in a natural way to valua-

tion rings on the residue field:

(1) Specializations of P can be produced by the following process: let p =
Supp(P) and suppose B is any valuation ring on F(p) containing A/p
and compatible with P. Let g be the prime ideal in A defined by ¢/p =
Mg N A/p. Then F(q) C F = B/Mp and the ordering Q € Sper F(q)
defined by Q = PN F(g) (where P is the pushdown of P to F) specializes
P.

(2) Conversely, using Theorem 1.7, one can show that any specialization of P
arises in this way [3]: suppose @ € Sper A is a specialization of P and let
g = Supp(Q). Then g 2 p, so we can look at the local ring

D ={afb:a,b€ A/p,b¢ q/p} C F(p) -
Let B be the smallest valuation ring in F'(p) containing D and compatible
with P. Then is easy to show that Mg N A/p = q/p (s0 F(q) S F) and

that @ = P N F(q).

Thus Theorem 1.18 is completely “explained” by Theorem 1.7.
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7. The Hormander-Lojasiewicz inequality

In this section, we prove an abstract version of a classical inequality for semi-
algebraic functions. This seems to be due to Coste. The proof given here is

taken from [1].

Theorem 1.19 Suppose S C Xg is any closed constructible set and f,g € A
are such that g=0 on SN Z(f). Then I p€ A,p>0 on Xr and m > 0 such
that |g|>™*! < p|f| on S. (i.e., |g|*™*' <p P|f| for each P€ S.)

Proof. Since W(by,--+,b,) = Xr(s,,...5,) Where T'(by, -, b,) denotes the small-
est preordering containing T and by,---,b,, Corollary 1.14 (2) implies that
there exist preorderings T1,---,T, 2 T such that S = Xg, U:-- U X1,. Thus
X1, N Z(f) € Z(g) so, applying the Nullstellensatz (Corollary 1.11) to the
preordering T; = T/(f) in A/(f) induced by T}, we have —g 2™ € T; so
—g*™ = 5; — a;f for some m; > 0,s; € T;,a; € A. Multiplying by a suitable

even power of g, we can assume mq = --- = m, = m. Thus, on X7,
g™ = —si+aif < aif = |ai |f] s0 |g™* < |gai| |f] < plf]

where p = 1+ g*(al + -+ - + a?). Since § = UY_, X7, this implies |g|*™*! < p|f]
on S. m|

Note. It is easy to arrange things so that |g|*™*! < p|f| on S\ Z(f). (e.g., just
replace p by p + f2). Once this is done, f; := pf + g°™*! and f have the same
sign on S.

We use Theorem 1.19 several times, but always in the following special form:

Theorem 1.20. Suppose S C Xr is a closed constructible set and f > 0 on
SNZ(g)NU(h?) for some g,h € A. Then 3 f1 € A such that f; >0 on S and
f1, f have the same sign on Z(g) N U(h?).

Proof. Let §'=SNW(—f). Then fh?> =0 on S'N Z(g). Of course, Z(g*) =
Z(g). Thus, by Theorem 1.19 and the Note following, 3 p > 0 on X7 and
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m > 0 such that f; := pg? + (fh?)*™*+! has the same sign as g* on 5'. Now
f1 >0 on Sis clear. Also, f; and f have the same sign on Z(g) N U(h?) so the

proof is complete. o

Notation. For S C X7 and p C A a prime, let S(p) := {P € S : Supp(P) =
p} = 5N Xr(p). Thus S decomposes as S = U, S(p) (disjoint union).

Corollary 1.21. Suppose S C Xr is a closed constructible, p C A is a prime,
and f € A satisfies f > 0 on S(p). Then 3 g € A such that g > 0 on § and

f,g have the same sign on Xr(p)-

Proof. X7, is the intersection of the sets Z(g) N U(k?®),g € p,h € A\p. Thus
S(p) is the intersection of the sets SN Z(g) N U(k?),g € p,h € A\p, and these
form a nested family. Also, f > 0 on S(p) so, by compactness, 3 g € p,h € A\p
such that f > 0 on SN Z(g) N U(k?). Thus the result follows from Theorem
1.20. o

8. Basic constructible sets

The material in this section is taken from [21]. It generalizes results in real
algebraic geometry due to Brocker. Recall that constructible sets S € Xg of

the form
(*) S=U(al,---,am)ﬂZ(b),al,-.-,am,bEA,

form a basis for the Tychonoff topology; see section 5. More generally, we say

that a constructible set S C X7 is basic if
(**) 5= U(als"'la'rﬂ)nW(bll"':bﬂ)ralr"')amrbls"‘:bn € A

As in section 5, we say S is basic open (resp; basic closed) if S is expressible as
in (**) but with n = 0 (resp., with m = 0). (Of course, in the field case, basic

= basic open = basic closed).
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Note:

(1) Z(b) = W(b, —b) so sets of the form (*) are basic (but not conversely).

(2) ;>0,i=1,---,m&a; 20,i=1,---,mand ﬁ a; # 0 so any basic set

i=1
S C X7 has the form S = U(a?)NW(cy, -+ -, cx) for some a, ¢1,++,cx € A.

Corollary 1.22. For any constructible S C Xr, the following are equivalent:

(1) S is basic closed in X7.

(2) S is basic and closed in Xr.

(3) S is closed in X1 and S(p) is basic in Xq(y) for each prime p.
Proof. (1) = (2) and (2) = (3) are trivial. To prove (3) = (1), apply Corollary
1.21 to obtain, for each p and for each P € X1(;)\S(p), an element f € A such
that f > O0Oon S and f <p 0. Thus S = N{W(f): f € A,f > 0on S} so, by

compactness of X7\S, § = W(fi1,---, f.) for some finite set {f,-, f,} C A.
||

Corollary 1.23. For any constructible S C Xr, the following are equivalent:
(1) S is basic in Xr.
(2) SNz-cl(S\S) =0 and S(p) is basic in Xr(y) for each prime p.

Note:

(1) If S is closed in Xr, then § = S so the condition SNz-cl(S\S) = 0 is
vacuous, so condition (2) of Corollary 1.23 is just condition (3) of Corollary
1.22.

(2) If S is open in X7, then 5\§ = 85 (the boundary of S in Xr).
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Proof. (1) = (2). Suppose § = U(a?)NW(by,+++,b,). Thus, if P € §\S, then
a =p 0. Thus S\S C Z(a) and clearly SN Z(a) = 0.

(2) = (1). By compactness of S, 3 a € A such that S\S C Z(a) and
5N Z(a) = 0. Look at the localization A[2] and the preordering T[] C A[1].
XT[;I.!_] is identified with U(a?) € X7. Thus § C XT[;’,] C X7 and S is closed
in XT[;‘,] by choice of a. Thus, by Corollary 1.22,

S= Wr[:‘,](bl, +++ybn) = Ur(a®) N Wr(by, -+ -, ba)

for some by, -- -, b, which (after clearing denominators) are elements of A. O

Theorem 1.24. For any constructible S C Xy, the following are equivalent:
(1) S is basic open in X7.
(2) S is basic and open in Xr.

(3) S is open in Xr and SN z-cl(AS) = 0 and S(p) is basic in Xy for each

prime p.

Proof. (1) = (2) is clear and (2) > (3) is immediate from Corollary 1.23.
Thus it only remains to establish (2) = (1). By (2) S = U N W(cy, -+, cn)
for some b,c;,-+-,cn € A. Look at the localization A[}] and the preordering
T[bl—,] G A[%]. Then S C XTlfs] = Up(b*) C Xr and S is clopen in XT'[,"T]'
To prove (1) it suffices (by compactness of X7\S5) to show that, for each P &
X7\S, 3a € A,a > 0o0n S,a <p 0. This is clear if P ¢ XT{il!] (take a = b?),
50 we can assume P € XT[;%]. Thus, replacing A by A[%] and T by T[], we
are reduced to the case where S is clopen in Xt and § = W(c;,---,¢,). Let
@ € Xr be the ordering maximal such that @ = P (See Theorem 1.18). Since
Xr\S is closed and P ¢ S, it follows from Corollary 1.16 that Q ¢ S. Since
S =Wi(ci, ++,ca), 3 ¢ such that ¢; <g 0. Applying the Positivstellensatz to
T'={ac A:a>q 0}, wehavec; <0 on Xpv = {Q}, 50 —¢;(1 +3) =1+t for
some s,t € T'. But then

a:=1+2¢(1 +.s¢)2 =—(1+2(s+t+st))
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satisfies @ > 0 on S and a < 0 (so a <p 0). This completes the proof. D

II CONSTRUCTIBLE SETS AND SEMI-ALGEBRAIC SETS

In this part, it is assumed the reader is familiar with basic results from the
theory of real closed fields, in particular, with quantifier elimination and the

transfer principle [5].

1. The basic correspondence

In the definition of constructible sets, A is any ring (commutative with 1) and
T is any preordering of A. To get the connection between constructible sets
and semi-algebraic sets, we have to specialize to the set-up considered in the
introduction:

Fix an ordered field (F, P) and a real closed field exiension R of (F, P) (so
P = F N R?). We consider algebraic sets and semi-algebraic sets in RV which
are defined over F. Denote the polynomial ring F[X;,---,Xn] by F[X] for
short. Fix hy,---, e € F[X] and consider the algebraic set

Vi={zeR" :hy(z)=0 for i=1,---,k}
and the finitely generated F-algebra
A:=F[X]/(h1, -, &) .
(For example, we could take k =0,s0 V = R¥ A = F[X].) Let T := _ A?P
(all finite sums 3 a?t;, a; € A, t; € P). If p C A is a prime, then F(p) is

a finitely generated field extension of F and T(p) = ¥ F(p)’P. Thus Xr(,
consists of all orderings on F'(p) extending the ordering P on F.

Note. We could take R to be the real closure of (F,P) but this is a bit
restrictive (since we might want to take F = @, R = R, for example). To
obtain the classical case, take (F,P) real closed and R = F. In this case,
T =3 A% so X7 = Sper A.
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Each ¢ = (z1,---,zx) € V induces a homomorphism A — R defined by
evaluation, i.e., f — f(z). This has kernel p, := {f € A: f(z) = 0} and image
F[z], so F(p.) = F(z) C R. Thus we have an ordering P, on A with support
P. obtained by pulling back the ordering F(z) N B? on F(z). Thus we have a
mepping

®:.V—-Xr,z— P, .

Observe that f =p, 0 & f(z) =0, f>p, 0& f(z) >0, and f >p 0 &
f(z) > 0. Consequently, for any f € A,

#73(2(f) = {z € V : f(z) = 0}

e U(f)) ={z € V: f(z) >0}
e (W(f)={z€V:f(z) 20}.

Sets of the form ®(S) C V where S C Xy is constructible will be called
semi-algebraic sets (more precisely, semi-algebraic sets defined over F'). Since
S + @& !(S) preserves complements, finite unions, and finite intersections, the
set of all semi-algebraic sets in V is a Boolean algebra. According to Corollary

1.14 (3), any semi-algebraic set in V is expressible as
U,ir;l{z eVa fl'.i(m) >0, 5= 1,--,my, gl(z) = 0}

for some integers m, n; > 0 and some f;;, i € A(i=1,---,m, j=1,---,m).

Semi-algebraic sets in V can also be described more directly as follows: they
are just the subsets of V which are describable in the elementary language of
real closed fields. That is, they are the sets of the form {z € V : ¥(a, z) holds in
R} where ¥ = ¥(a, z) is an elementary statement in the language of real closed
fields. Here, ¢ = (z1,---2y) and a = (a1,-+-,an) is any array of elements of

F. This follows from quantifier elimination.

Remark. A semi-algebraic set is defined over the real closure of (F, P) in R iff
it is defined over F. This follows from quantifier elimination, since each a € R
which is algebraic over F' is described by some elementary statement ¥, with
coefficients in I (the coefficients of the minimal polynomial of a).

The basic connection between semi-algebraic sets and constructible sets is

given by the following:
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Theorem 2.1. The image of ® : V — Xr is dense in the Tychonoff topol-
ogy (and hence also in the Harrison and Zariski lopology). Consequently, the
mapping S — ®71(S) is injective on construclible sets. i.e., if 5,5; C Xr are
constructible then 71(5;) = ®71(52) = S1 = Sa.

Proof. Let § = (51\52) U (S2\S1). Then showing
S ) =07(S:) = 51 =S:
is equivalent to showing
S =025=10.

Thus we are reduced to proving the first assertion. Sets of the form U(fy,-++, fm)
NZ(g) are a basis for the Tychonoff topology so we are reduced further to show-
ing that if the system

(*) fl(x)>0#"':.fm(’:)>01 g(:::):O

has no solution =z € V, then U(f1, -+, fm)NZ(g) = 0. This follows from Tarski’s
transfer principle: Suppose @ € U(f1,++, fm)NZ(g) and let R, denote the real
closure of (F(g), @) where ¢ = Supp(@). Thus the system

(**) .fl(m) > 0: i :fm(x) > 0: g(m) = 0: hl(z) = 0:' = '1hk(=) =0

has a solution z € R)'. (Just take z; to be the image of X; via the composite
map F[X] - A— A/qgC F(qg) C Ry, t = 1,---,N). Since R and R, both
contain (F, P), this implies (*+) has a solution in RY and consequently that (%)
has a solution in V. o

As an example of how Theorem 2.1 can be applied we now rewrite the

Nullstellensatz (Corollary 1.11) in a more concrete form:

Corollary 2.2. If f € A satisfies f(z) =0Y z € V, then —f?* € T (= ¥ A?P)

for some integer k > 0 (and conversely).

Proof. According to Corollary 1.11, it suffices to show that f =p 0V P € X7.
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But this follows from Theorem 2.1 by considering the constructible sets
S1={P€Xr:f=p0}, S;=Xr.

a

Similarly, we have the following concrete version of the Positivstellensatz

(Corollary 1.12):

Corollary 2.3. For fec A

(1) f(g) >0Vz eV =(1+38)f =1+t for some s,t €T (and con-
versely).

(2) f(z)20Vz €V = (f*+a)f = f*+t for somes,t € T and some k>
0 (and conversely).

2. Finiteness theorem

By the Euclidean topology on V, we mean the topology induced by the product
topology on R¥, where R is given the order topology.

It is clear that @ : V' — Xr is continuous, giving V the Euclidean topology
and X7 the Harrison topology (since polynomial functions are continuocus in
the Euclidean topology). But, to be able to interpret our results properly, we

need a deeper result:

Theorem 2.4. (Finiteness Theorem) If S C X7 is constructible and $~(S)
is open (resp., closed) in V in the Euclidean topology, then S is open (resp.,
closed) in Xr.

This has been proved by several people. The proof given here is due to van

den Dries; see [3].

Proof. Taking complements, it suffices to consider the case where ®7(5) is

closed in V. According to Corollary 1.16, we have to show

Q,Q€eXr, Q<Q,QeS=>Q'€S.
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Let ¢ = Supp(Q) and let z = (z4,+,zy) where z; € A/q is the image of
Xy, i =1,---,N. Thus A/q = F[z], F(q) = F(z). Let F[z] C B C F(z)
be a @-compatible valuation ring in F(z) defining @’. (See the Remark after
Theorem 1.18). Let R; be the real closure of (F(z), @) and let C be the convex
hull of B in R;. This is a valuation ring in R; compatible with the ordering on
R, (Remark after Theorem 1.7) and R, := C/Mc is real closed (Lemma 1.9),
let — : C — R; be the natural homomorphism. Let R3 be any maximal subfield
of C containing F. Then Ra N Mg =0 so — : R3 — R; is an embedding.

We claim Ry is real closed and — : R3 — Rj is an isomorphism. Since Rj has
a real closure in R; and C is integrally closed, it is clear that Rj is real closed.
Thus R, cannot be algebraic over the image of R3. On the other hand, if T € R,
is transcendental over the image of Rj, then Ry C Ra(t) C C, contradicting the
maximality of Rz. This proves the claim.

Of course, since B is a valuation ring in F(z) compatible with @, B is its
own convex hull in F(z). Thus C N F(z) = B so B/Mg C C/M¢ = R, and Q'
is the ordering on A induced by the homomorphism A — F[z] C F(T) C R,
where T := (Ty,---,Zn).

Now, for i € {1,2,3}, F C R; so we can form the algebraic set V; C RV and
the mapping ®; : V; — Xr as in section 1. Moreover, by the transfer principle,
®;1(S) is closed in V; (since ®~!(S) is closed in V). Assume now that Q € S
but @' ¢ S. Then z € ®*(S5) but 7 ¢ ®;'(S). Consequently, y ¢ ®5(5)
wherey € Vyis defined by 3; =%;, i=1,---,N. Thus wehavee € R3, € > 0
such that

z€V4, |lyi—z|<e, i=1,---,N=z¢&;'(5).
But K3 C R, so, by the transfer principle,
ze€W, lyi—z|<e, i=1,---,N=>2z¢&(5).

On the other hand, y; — z; € M¢ by definition of y;, so we can apply this with

z =z to conclude = & &7'(S). This contradicts our assumption. O
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Corollary 2.5 Any semi-algebraic set in V which is open in V is expressible

as a union of basic open sels
Ut {eeV: fij(z)>0, j=1,---,n3}

for some integers m, n; > 0 and some f;; € 4, i=1,---,m, j=1,---,n;

{ar_;d similarly for closed).

Proof. Combine the finiteness theorem with Corollary 1.14 (1) (2). o

Theorems 2.1 and 2.4, when combined, allow us to transfer results back
and forth between serm'-:a.lgebra.ic sets in V' and constructible sets in X7 in a
most satisfactory manner. The reader can check this, by stating and proving
the semi-algebraic analogues of Theorem 1.19 and Corollaries 1.22 and 1.23, for

example. In this regard, the following result is also useful:

Theorem 2.6. The closure (resp., interior) of a semi-algebraic set in V is
semi-algebraic. Consequently (using Theorems 2.1 and 2.4) the closure (resp.

interior) of a constructible set in Xr is constructible.

Proof. Again, we only need deal with the assertion concerning closure. Let
S C Xr be constructible. By definition of closure, the closure of 7'(S) is
described by an elementary formula ¥ = ¥(a,z) in the language of real closed
fields: here, z = (x4, --,2n) and @ = (a1,---,ap) is an array of constants from
F (= the coefficients of the various polynomials in the description of §). Thus,

by elimination of quantifiers, the set

®-1(S)={z € V:¥a,z) holdsin R}

is semi-algebraic. o

Remark. ¢ : V — Xy is not injective in general. On the other hand, if the real
closure of (F, P) is dense in R, one can show that @ is injective and, moreover,
that the topology on V obtained by pulling back the Harrison topology is just
the Euclidean topology on V.
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3. Dimension

To complete our study of the relationship between constructible sets and semi-
algebraic sets, we need to know the meaning of the dimension of a constructible
set, as defined in Part I, section 6. We begin by recalling a standard result from
algebraic geometry:

Theorem 2.7 Suppose D is a finitely generated F-algebra which is a domain
and K is the quotient field of D. Then dim D = trdeg(K : F).

Proof. The inequality dim D < trdeg(K : F) is an immediate consequence of
the following:

Claim: Suppose gq CnG G m is a chain of primes in D and z; €
gi\gi-1, ¢ = 1,---,m. Then z,-+,z,, are algebraically independent over F'
The proof is by induction on m. Suppose f(zi1,:-+,zm) = 0 for some non-zero
polynomial f with coefficients in F'. Dividing by a suitable power of z,, we
can assume z; does not appear in some term. Applying the homomorphism
—:D — D/q, yields f(0,%2,-++,%m) = 0. But this is a contradiction since, by
induction on m, Ty, -+, T, are algebraically independent over F'.

The other inequality, dim D > trdeg(K : F), is less trivial. (For example,
if dim D = 0, this is Hilbert’s Nullstellensatz). It can be proved as follows: By
Noether normalization (2], 3 z1,--+,z, € D algebraically independent over F
with D integral over F[z;,--+,z,]. Then K is algebraic over F(z1,:-:,2,) 80
trdeg(K : F) = n. Clearly 3 a chain of primes of length n in Flzy,-- -, z,].
(e.g., take g; = (z1,+++,zi), 1=0,-+-,n). By “going up” (2], this extends to a
chain of primes of length n in D. O

Thus, dim A/p = trdeg(F(p) : F) for any prime p C Aso,if §S C Xrisa
constructible set, then, using the result in Part I, section 6,

dim § max{dim A/p : § N Xz # 0}
max{trdeg(F(p) : F'): SN Xz # 0}

But we would also like to know that the dimension of S coincides with the

geometric dimension of ®1(5), as defined in [5), for example (so, in particular,
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dim Xy = dim V). For completeness, we outline the proof of this: Let 5; C RM
be semi-algebraic sets, 1 = 1,2. A function f: §; — 5, is called semi-algebraic

if the graph
Gr(f) :={(z,y) e RM*M .z € 81,9 € 53, f(z) = 4}

is a semi-algebraic set. As usual, the semi-algebraic sets we consider are required
to be defined over F. f is said to be a semi-algebraic homeomorphism if f is

semi-algebraic, bijective, and bicontinuous in the Euclidean topology.

Theorem 2.8. Suppose 5 C V is semi-algebraic. Then

(1) There ezist semi-algebraic sets Sy, ..., 5, in V such that § = §; U..U §,
( disjoint union) and 5; is semi-algebraically homeomorphic to the open

d;-cube
10,1[%={ze R¥:0<z;<1,i= Liooydd, i=1.,p

(2) In this situation, if S C Xr is the unique constructible such that ®'(5) =
S, then dim S = maz{d,,...,d, }.

Proof. If F = R this follows from results on cylindrical decomposition in
[5, Chapter 2|; specifically, [5, Corollaries 2.3.6 and 2.8.9]. The general case
can be derived from this in a standard way [22, Lemma 1.5]: By the transfer
principle, we can reduce to the case where R is the real closure of (F, P). In
this situation, a semi-algebraic set in RN is defined over F iff it is defined over
R, so this completes (1). For (2), use the fact that dimension doesn't change
under integral extension (by “ going up”) plus the fact that orderings in Xy
extend uniquely to orderings on the ring R[X]/(h, ..., hs). m,

III ORDERINGS, VALUATIONS, AND QUADRATIC FORMS

[17] and [23] are excellent references for the material covered in Part IIL
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1. Quadratic forms

Let F be a field of characteristic 0. By a (non-degenerate diagonal quadratic)
form of dimension m over F is meant an m-tuple p = (a1, ,@m), @1,°**,8m €
F*. Operations on forms are defined in the usual way [17]. Namely, if p =
(@1, 8m)y ¥ = (b1,*+-,ba), c € F*, k € IN, we define

p®Y = (ais"'laM= bl:"':bn)

ep = {cas, -, cam)
PRY = oY ® - Dany
kxp = p®---®p (k times) .

For a proper preordering T' C F', the T-value set of pis Dr(p) := ayT+---+
amT. pis T-isotropicif 3 ty,--,tm € T not all zero such that L%, ait; = 0.

A form p which is not T-isotropic is said to be T-anisoiropic.
Theorem 3.1

(1) Dr(p) = F & Dr(p) N —Dz(p) # {0} & p is T-isotropic.
(2) Dr(p) = Dr(k x p). In particular, p is T-isotropic iff k X p is T-isotropic.
(3) Forbe F*, b€ Dr(p) & (—b) @ p is T-tsotropic.

(4) a € Dr(p®¥), a #0, == 3 be Dr(p),c € Dr(¥), b,c # 0 such that
a € Dr(b,c).

(Actually, it is possible to choose b, c so that a = b+ ¢, but this is another
story.)

Proof. (1) Let p = (a1, ,@,). Replacing p by ai’p, we can assume a; = 1.
Thus S := Dr(p) is a T-semi-preordering so SN—S is an ideal in the field F' (see
proof of Theorem 1.1). This proves Dr(p) = F < Dr(p)N—Dr(p) # {0}. Now
suppose b € Dr(p) N —Dx(p), b # 0. Then b = Ta;s;, —b = Tait;, s;,ti € T
and s;,t; are not all zero (since b # 0). Then 0 = Ta;(s; +¢;) and the s;+4; € T
are not all zero (since TN —T = {0}). Thus p is T-isotropic. Conversely,
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if 0 = Za;t; with ¢y,--+,¢, € T and ¢; # 0 say, then —a; = I0,a;tit;" so
a1 € Dr(p) N —Dr(p).

(2) is clear.

(3)Ifb = Zat;, t1,---,tm € T, then —b+Ta;t; = 050 (—b)p is T-isotropic.
Conversely, suppose —btg + a1ty + -+ + amtm = 0 for some ¢y, -+, t,n € T not
all zero. If to # 0, this yields b = Da;t;t;" so b € Dr(p). If to = 0, then p is
T;isotropic so Dr(p) = F by (1) so b € Dr(p) holds in this case too.

(4) Suppose p = (b1, --,bm), ¥ = (c1,"*",¢a), a = Bbis; + Be;t; with
s;,t; € T. Since a # 0, one of the Xb;s;, Te;t; is # 0. If they are both not zero,
take b = Zb;s;, ¢ = Ec;t;: If one of them is zero, say Tc;t; = 0, take b = Tb;s;
and take ¢ € Dy(1) arbitrary # 0. a

For an ordering P € Sper F, we define ap : F* — {+1} by

1 ife €P
"“’(“):{ -1 ifa ¢P.

The (Sylvester) signature of p = {(ay,++-,a,) at P € Sper F is defined by
op(p) := X, 0p(a;) € Z. (Hopefully, this multiple use of the op notation will
cause no confusion). T-equivalence and T-isometry of forms p,v over F are
defined as follows:

p ~r ¥ means op(p) = ap(yp) V P € Xr ,
p =r 3 means p ~7 v and dim(p) = dim(¢) .

Examples:
(1) (a) =p (at)if t € T™.
(2) {a,b) =1 (a+b,(a+b)ab)ifa+b+#0.

(3) {a,—a) ~r 0. (Here, 0 := (), the zero dimensional form.)

Note:

(1) op(p) = dim(p) (mod 2). Thus p ~r ¥ = dim(p) = dim(¢) (mod 2)
(since X7 # 0).
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(2) In particular, if p ~7 9 and dim(p) > dim(y}), then p Zr k x (1,-1) B ¢
where k := ﬂw;d’J(ﬂ.

Theorem 3.2
(1) p is T-isotropic iff 3 a form ¢ with dim(y) < dim(p) and ¥ ~7 p.

(2) Suppose be F*. Then be Dr(p) iff 3 a form 1 with p =5 (b) ® .

Proof. It is easy to prove (2) from (1) (or the other way around). Also, the
implication (=) is easy. The implication (<) is not so easy.

We begin by proving the implication (=) of (2) by induction on dim(p) = m.
It is clear if m = 1, so we assume m > 1. Say p = (a1, *+,@m). By Theorem
3.1(4), 3=z € Dr(az, -+, am),z # 0, such that b € Dr(a;,z) and, by induction
on m,{az,-++,am) =1 (z) ® ¥, for some form 3; of dimension m — 2. But
then p =7 (a1, -+ ,am) =1 {a1,z) ®¢n = (b,a1bz) ® 91, so we can take
P = (a1bz) ® Y.

We use this to prove the implication (=) of (1). Suppose p = (a1, ,am)
is T-isotropic. By Theorem 3.1 (3), —a; € Dr{as,*+,0m), 50 (a2, +,am) Zr
{—a1) @ for some form 9 of dimension m — 2. But then p ~r {(a;, —a1) @9 ~p
V.

We now prove the implication (<=) of (2), assuming the implication (<) of
(1). Suppose p =1 (b) @ %. Then (-b) & p r (~b,b) @Y ~r 1y so (-b)@pis
T-isotropic and consequently, by Theorem 3.1 (3), b € Dr(p).

The implication (<) of (1) can be proved using Pfister’s local-global prin-
ciple [17]. Since we do not want to assume this here, we defer the proof until
the end of §3 at which time we will have the Isotropy Theorem and the Baer-

Krull-Springer theorem at our disposal. o

Corollary 3.3 If p =1 9 then Dr(p) = Dr(v) and p is T-isotropic iff ¢ is

T-isotropic.



MINIMAL GENERATION OF CONSTRUCTIBLE SETS 99

Proof. This is immediate from the characterization of isotropy and value sets
given in Theorem 3.2. O
The Witt ring Wr(F') is defined to be the set of T—equivalence classes of

forms (ai,...,a,), a1,...,a, € F*,n > 0 with operations induced by @ and ®.

Remark. The reader familiar with quadratic form theory will know that Wr(F)
is a quotient of the usual Witt ring W(F) [4], [17]. The kernel of the natu-
ral surjection W(F) — Wr(F) is generated as an ideal by the binary forms
(1,—t),te T I T = ¥ F?, the kernel of W(F) — Wr(F) is just the torsion
part of W(F).

2. Baer-Krull-Springer theorem

If v is a valuation on F, denote by B,, M,, F, the valuation ring, maximal
ideal, and residue field respectively and by ~ : B, — B,/M, = F, the natural
homomorphism. B; denotes the unit group, i.e., B; := B,\M,. Let T C F be
a proper preordering. T, denotes the pushdown of T to F,,ie., T, := T B,.
This is a preordering in F,. T" denotes the smallest preordering in F* containing

T and 14 M,.
Lemma 3.4. The following are equivalent:
(1) T is proper.
(2) Ty is proper.
(3) v(ts+---+tn) = min{v(t;) :i=1,---,n} for all ty,---,t, € T".
Moreover, in this case, T* = T(1 + M,).

Proof. (1) = (2) : If T is proper then 3 P € X+ (Theorem 1.2) so 14+ M, C P
and consequently, the pushdown P, is proper (Lemma 1.6). Since T, C P,, this

implies T, is proper.
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(2) = (3) : fv(EL,t) > min{v(t):i =1,--+,n} then, dividing by a term
of lowest value and applying ~ : B, — F,, we obtain —1 € T, contradicting
(2).

(3) = (1) : Suppose y = Tti(1 + z;),t € T",z; € M,. Theny = t(1 +z)
where t = Tt; and = = (Zt;2;)(3t;) " and, by (3) , z € M,. Thus T*(1+ M,) is
closed under addition so T(1+M,) is a preordering. This proves T = T'(1+M,).
If -1 € T* then —1 = (1 + =) for some t € T*,z € M,. This forces v(t) =0
and v(1 4+ t) = v(—=t) > min{v(1),v(t)} = 0. This contradicts (3). m]

We say T,v are compatible if T" is proper (equivalently, if T, is proper).
In terms of orderings, this just means that there exists an ordering P € Xr

compatible with v (Theorem 1.2).
Suppose now that v is T-compatible (so T = T'(1+M,)). We have a natural

short exact sequence.
(*) 0 — F3 /Ty & F*T" 5 o(F*)[v(T") — 0.

This is easy to check. p is given by @7, — aT"", and q is induced by v).
pPi1s g y al, q

Note. If T = 3 F?, Lemma 3.4 (3) gives T, = ¥ F? and v(T") = 2v(F").

For a group G of exponent 2 (i.e., a® = 1 for all a € G), a character on
G is a group homomorphism ¢ : G — {+1} . The character group x(G) of
G is the set of all characters ¢ : G — {&1} with multiplication defined by
(o7)(a) = o(a)r(a). x(G) is a topological group, giving it the coarsest topology
such that the mappings ¢ — o(a) (o € x(G)) are continuous for all e € G.
This topology is compact, Hausdorff, and totally disconnected. Also, G — x(G)
is a contravariant functor: If f : G — H is a group homomorphism of groups of
exponent 2, then x(f) : x(H) — x(G) is given by (x(f)(7))(e) = o(f(a)) for
all o € x(H) and all e € G.

We identify Xg — x(F*/T") by identifying each P € Xt with the character
on F*/T* induced by op. The Harrison (=Tychonoff) topology on X7 is induced
by the topology on x(F*/T*). By Artin’s Theorem (Theorem 1.2) Xr generates
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x(F*/T*) as a topological group.
Applying the functor G — x(G) to (*) yields the exact sequence of character
groups:

(++) 0 — x(u(F*)/u(T*)) 2B y(F/7v) X8 3 (Fz/T2) = 0.

We refer to x(p) as restriction and denote x(p)(c) by @ for short. Thus 7(al’) =
o(aT"*) for a € B;. After identifying Xq» C x(F*/T"*), X1, C x(F;/T;), one
checks easily that the pushdown P — P, from Xr to X7, is identified with the
restriction map x(p). .

Also, using (%), for each form p over F, 3 a form j obtained from p by
permuting the entries and scaling the entries by suitable elements of T of the

shape
ﬁ — (mlall'p el ',121(1]““' Ty, 7ml’a'ﬂ1;) =y, @D -- " TaPs

with z1,.+-,2, € F*,v(z,),--+,v(z,) distinct modulo v(7") and with the

Pi = (ailn"':aini)m t=1,---,8

forms with entries in B;. The induced forms g; := (@i, ..., @n;), i = 1, ..., s over

F, are called the residue forms of p with respect to T, v.
Theorem 3.5. (Baer-Krull-Springer) If v is T-compatible, then

(1) X+ — X7, is surjective. X1+ consists of all characters on F* /T whose

restriction to F,, [T, lies in Xr,.
(2) P ~Te 04#?1" el Dfori: 1,.‘.,5_
(3) p is T¥-isotropic < p; is T,-isotropic for some i € {1,---,s}.

In the literature, Part (1) of Theorem 3.5 is usually referred to as the Baer-
Krull Theorem. Parts (2) and (3) generalize a result for discrete valuations due

to Springer.
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Proof. (See [4]). (1) is immediate from Lemma 1.8. (2): for o € Xrv,

o(p) = o(p) = LiZjo(ziai;) = Tio(z:)Tj0(as)
= Tio(2:)E;0(ai;) = Tio(z:)7(p;)

where @ € X7, denotes the restriction of o to F;/T;. Thus, if 7(5;) =0, i =
1,---,a, then o(p) = 0 so the implication (<=) is clear using (1). To prove the
other implication, suppose p ~r+ 0. Fix ¢ € X7+ and suppose v € x(F*/T"")
satisfies ¥ = I. Then 77 = &5 = 7 so we also have oy € X7v by (1). Thus, as

before,
0= (o7)(p) = -+ = Lio(x:)y(2:)7(p:) -

This holds for all v € Ker x(p). By linear independence of characters [19]
(zy,--,x, act as distinct characters on Ker x(p) ), this means (p;) = 0,
t=1,---,s. But Xr» — Xy, is surjective, so this holds for any & € X7, and
consequently g, ~g, 0, 2 =1,---,3.

(3) (=): I pis T"-isotropic then we have ¢;; € T' not all zero and y;; € M,
with

(*) X maiiti(1 + i) = 0.

Say zja11t11(1 + ¥11) is a non-zero term with minimum value. Since v(24),---,
v(z,) are distinct modulo v(T"), the other terms of minimum value (if any) are
of the form zyayt:1;(1 + v15), 7 € {2,---,n1}. Thus, dividing (*) by =1¢;; and
applying ~: B, — F, we see that p, is T\-isotropic. (<«): Conversely, suppose
P, (say) is T,-isotropic. Then we have t;; € T, j = 1,---,n; with #;; not all
zero and Z;&;;; = 0. Say 11 # 0. Thus ¢ = Zjai;t; € M, so Djar58,; =0
where s1; = t11(1 — z(t11811)7") and 815 = &5 if 7 > 2. Thus X;X;z;a;58:; = 0

with s;; =0, 7 > 2. This completes the proof. O

Remark. If one chooses a splitting for the exact sequence (), then the Witt
ring Wr+(F) is identified with the group ring Wr, (F,)[v(F*)/v(T*)]. This is an

immediate consequence of Theorem 3.5 (2).
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3. Criterion for T-isotropy

This criterion was proved, originally, by Brocker and Prestel (independently).

The special version given here is taken from [4], [17].

Theorem 3.6 (Isotropy Theorem) Suppose T C F is a proper preordering

and p = (a1,---,a,) is a form over F which is T- anisotropic. Then either

(1) pis P-definite, i.e. , |op(p)| = dim(p), for some P € Xy or

(2) 3 a valuation v on F such that T* is proper, p is T"-anisotropic, and not
all of the v(a,),---,v(an) are in the same coset modulo v(T*) (so p has

at least 2 residue forms with respect to T,v).

Proof. Replacing p by a;'p, we can assume a, = 1. Thus Dz(p) is a proper T-
semi-preordering so, by Theorem 1.3, 3 a T-semi-ordering S C F with Dr(p) C
S. Let < denote the associated linear ordering on (F,+). Let v be the finest
valuation on F' compatible with S. By Theorem 1.7,

By={z€F:-r<z<r forsome re @},

M,={zeF:—r<z<r foral req@'}.

Of course, 1+ M, C S so, by Lemma 1.6, S induces a T,-semi-ordering S, =
B, NS on the residue field F, = B,/M,. But S, is Archimedian so, by Lemma
1.5, S, is an ordering. Thus, by Theorem 3.5(1), 3 P € X¢., P, = S,. If
v(a;) € v(T") for all i = 1,---,n then ay,++-,a, € (B; N §*)T* C P* (since
ay,'**,an € § and T'S C S) so op(p) = dim(p) and we are done.

This leaves the case where v(a;) # v(a;) = v(1) mod v(T*) for some i > 2.
The problem is that p may not be T"-anisotropic. To rectify this we go to a
coarser valuation w. Take w to be the coarsest valuation coarser that v such
that w(a;) & w(T~) for some i € {2,--,n}.

Claim 1. If w(z) > 0 then for each i = 1,---,n It € T* such that
0 < w(ait) < w(z). For let B, = By[l/z]. u is strictly coarser than w so
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there exists 8 € T* with a;s € B. (a;8)™! = a;s' where s’ = (a?s)™! € T" so,
replacing s by s' if necessary, we can assume a;8 € B,. Also, (a;s)! € B, so
(a;8)™* = bz~ for some b € B,,, k > 1. Thus 0 < w(a;s) < w(z*). Choose
k > 1 minimal so that this is so. Then 0 < w(z*') < w(ais) < w(z*). If
k=2m + 1, take ¢ = sz~?™. If k = 2m take t = z*™(als)~ .

Of course, w is coarser than v so B, 2 B,,M,, C M, so T* C T". Also,
by construction, 3 i > 2 with w(a;) # w(a;) = w(l) mod w(T*). Also,
14+ M, C1+M,C S so, by Lemma 1.6, (B, N 5)(1 + Mu) C §. We show p
is T¥-anisotropic by means of the following:

Clatm 2. (14 My)e; C Sfori=1,--,n.

Once this is established then 3> T%a; = S T(14+ My)a; C LTS C Ssopis
T™-anisotropic and we are done.

Suppose, to the contrary, that ¢ € M,,,(1 — z)e; < 0s0 0 < a; < za;. By
claim 1, 3¢ € T* such that 0 < w(a;t) < w(z). Dividing by a?t € T* we obtain

(%) 0 < (a:it)™! < z(ait)™".

If w(z(a;t)™!) > 0 then v(z(a;t)™!) > 0 so z(ait)™ € M, so (ait)™' € M, C
B, C B, (by(x), looking at the definition of M,). This forces w(a;t) = 0
so (1 — z)a;t € (1 4+ My,)(B, NS*) C 5", a contradiction. This leaves the
case w(z(a;t)™!) = 0. But then aitz~'(1 —z) € (B, N S")(1+ M,) C S* so
a;tz™! > a;t > 0 contradicting (*) (using Lemma 1.4(3) ). m|

The Baer-Krull-Springer Theorem and the Isotropy Theorem can be com-
bined nicely to prove facts about quadratic forms by induction on the dimension.

As an example, we now give the long promised proof of Theorem 3.2:

Proof of Theorem 3.2. It remains to show that if p, % are forms over F' with
p T-anisotropic, ¥ ~7 p, then dim(t) > dim(p). The proof is by induction on
n = dim(p). By Theorem 3.6, there are two possibilities:

(1) lop(p)| = dim(p) for some P € Xr. In this case
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dim(4) 2 |op()| = |op(p)| = dim(p).

2) 3 a T-compatible valuation v with p T"-anisotropic, and p has a least
p

two residue forms with respect to T, v. Let

PET:EI.F']@"‘GB:.P.; ¢2Tzl¢l®-.'®m‘¢l

be the residue form decompositions of p,3 with respect to v,T. By Theo-
rem 3.5 (2) (applied to 3 @ —p), ¥; ~1, 7; and, by Theorem 3.5 (3) each
p: is T,-anisotropic (or 0-dimensional). Thus, by induction on n, dim(¥;) >
dim(p;), i=1,---,s, so dim(¢)) > dim(p). O

The next result, although not used in what follows, is another application

of the method:

Theorem 3.7. If p is T-anisotropic, then 3 a preordering T C T C F with
p T-anisotropic and |[F*/T*| < .

Proof. (See [4]). By induction on n = dim(p). If |op(p)| = dim(p) for some
P € Xr, take T = P. Otherwise 3 a T-compatible valuation v such that
p is T"-anisotropic and has at least two residue forms. Say p =r x,p, ®
1 Zyp,, 8 2 2, is the decomposition into residue forms. By Theorem 3.5, the
residue forms 7,,---,p, are T\-anisotropic. By induction on n 3 preorderings
Si, i=1,--,8 T,CS;CF, |F;/Si|<ocowithp; Si-anisotropic. Thus
P1, ", P, are all NI, Si-anisotropic and |F/(N;S7)| < IL|F;/Si| < oo. Pick
T 2 T* maximal such that (1) T, = N;S; and (2) v(ey), -+, v(z,) are still
distinct modulo w(T™). It is pretty clear that such a preordering T exists and
that it has all the required properties. (T = T and p is T"-anisotropic by
Theorem 3.5: the residue forms of p with respect to T',v are the same as the

residue forms of p with respect to T, v). D

Remark. Looking ahead a bit, in Part IV we will be using this same combi-

nation of the Baer-Krull-Springer Theorem and the Isotropy Theorem:
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(1) to get a valuation-theoretic description of the stability index sr; see The-
orems 4.4, 4.5 and Corollaries 4.6, 4.7

(2) to get a bound for the t-invariant in terms of the stability index; see
Theorem 4.15 and Corollary 4.16.

At the same time, it is worth mentioning that there are other important

applications which will not be discussed here, e.g.,

(3) to the description of the Witt ring Wr(F) as a subring of the ring of all

continuous functions from Xr to Z; see [4].

IV MINIMAL GENERATION OF CONSTRUCTIBLE SETS

1. Pfister forms

Let T be a (proper) preordering in a field F'. X7 with the Harrison (=Tychonoff)
topology is compact Hausdorff and totally disconnected. Basic clopen sets in

Xr have the form
U(ﬂ.],"‘,ﬂrn):UT(G'l,"',an):{PEXT:ﬂ.i >p 01 izlj.--ln}l

n>1, aj,--+,a, € F". These are closely related to n-fold Pfister forms which

are defined as follows:

Definition. An n-fold Pfister form over F is a form of the type
(a1, - an)) :i=(1,81) ® - @ (1,8,), n > 1, a1,---,an € F".

The derived form ((a,,---,an))’' of the Pfister form {{a;,---,a,)} is defined by
((a1,+++,an)) = (1> @ ((a1, . -,a."))'.

(Thus ({a)) = (1,a), ((a,8)) = (1,a,b,ab), ((a))' = {a), {(a,B))" = (a,b, ab),
etc.). Convention: (1) is the unique O-fold Pfister form. The derived form in

this case is the empty (0-dimensional) form.

Theorem 4.1 If P € Xr, p = {{a1,+--,a,)), then
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U)“ﬂﬁzﬂmJ1+qﬂmn:{gn iﬁiégmn-ﬂg

(2) P = ((bls S ":bﬂ)) i.ﬂ- U(ah . --,u,,) = U(bla ' "an)'

(3) p is T-isotropic iff p~7 0 iff U(ay,--- yan) = 0.

Proof. (1) is clear and (2) is immediate from (1). (3): It is clear from (1)
that p ~r 0iff U(ay,-+,a,) = 0. If U(ay,---,a,) # 0 then 3 P € Xy with
op(p) = 2" = dim(p) (so p is P-definite). Consequently, p is T-anisotropic
in this case. On the other hand, if U(ay,+--,a,) = 0 then p ~1 0, so p is
T-isotropic (by Theorem 3.2). O

Theorem 4.2 Ifb € Dr((ay,---,a,))!, b#0, then 3 by, -+, b, € F* such that
U(asy oy 8) = U(b; by, - -+, ba).

Proof. By induction on n. If n = 1, {(a,))' = (a1) so b =ta;, t € T, t #0.
The result is clear in this case. Suppose n > 2. Decompose p = ((ay, - “y@n))
as p = (1,81) ® Y = ¥ @ a;3 where ¢ = ((ay,-+,a,)). Thus p' = ' ® a,9 so,
by Theorem 3.1(4), b € Dr(c,a;d) for some non-zero c € Dr(y'), d € Dr(3).
By induction 3 by, ---,b, € F* with

(%) Ulaz,+,an) =U(c,ba, =+, by).

We claim this implies U(ay,---,a,) = U(b, ascd, bs, - -+,b,) (so we are done,
taking b, = ajed). Let P € Xr. Suppose first that a; >p 0,i=1---,n
Then b,c,d >p 0 (since b,c,d € Dr(p)) and bg,---,b, >p 0 by (), so P €
U(b, axcd, by, - -, b,). Conversely, suppose b,a;cd, bs,- -+, b, >p 0. Then, since
b € Dr(c,ayd), bc € Dr(c? ajcd) so be >p 0 and hence ¢ >p 0. Thus
@z, *,an >p 0 using (x) sod >p 0 ( since d € Dr(¢)). Finally, from a;cd >p 0
it follows that a; >p 0 too. 0o

Corollary 4.3. For ay,---,a, € F*, n > 1, the following are equivalent:

(1) 3 bz, -+, b € F* such that U(ay, -+, a,) = U(ba, -+, bn).



108 M.A. MARSHALL

(2) 1€ Dr({a1,-+-,a,)), e, (=1) & {{a1,- -+, a,))" is T-isotropic.

Proof. If(1) holds, then {(a;,---, an)). = 2% {(bg,- -+, b,)) (by Theorem 4.1) so
{(a1,-+,an)) =7 (1) ®2 x ({bz, -+, b,))". Thus (2) holds (using Theorem 3.2).
Conversely, if (2) holds, then U(ay,+--,an) = U(1,bs,+++,b,) = U(bz, -, bn)
by Theorem 4.2. o

2. The stability index

We continue with the assumptions of §1, i.e., F' is a field and T' C F is a proper
preordering. S = U(as, -+, an), @1,*+,a, € F*, is a fixed basic clopen set in
Xr and p = ({81, -+, a,)).

We say the presentation § = U(ay,---,a,) is minimalif J by,---,b, € F*
such that S = U(b,,---,b,). According to Corollary 4.3, this occurs iff (—1)@p’

is T-anisotropic.

Theorem 4.4

(1) Suppose the presentation S = Ur(a,,:--,a,) is minimal. Then either
n < 1 or 3 a T-compatible valuation v on F' such that the presentation
S = Ups(@1,+++,a,) is minimal and ai least one of v(ay),---,v(a.) is

not in v(T™).

(2) Suppose v is any T-compatible valuation and ay,- -+ ,a, are such that
v(a1),---,v(ax) are Z,-independent modulo v(T*) and ar4q,---,a, € B;.
Then the presentation S¥ = Ur+(aq,- -+, an) is minimal iff the presentation

Sy = Ur,(@k41,- -, Bn) is minimal (assuming S, # 0).

Proof. (1) We can suppose n > 2. By Corollary 4.3, (—1) @ p' is T-anisotropic.
For any P € Xr, at least one of a4, a3, a,a; is positive at P, so {—1) @ p’ is
P-indefinite. Thus, by Theorem 3.6, 3 a T-compatible valuation v such that
(—1) @ p' is T*-anisotropic and the v(a;) are not all in v(T™).
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(2) Let p = ((@ks1,*+,@n)). Since
(= ((all"'=ak)) ® ((a‘k+li"':aﬂ)) = Z:a':tll "'a:c*((ak+h"':aﬂ)> )

(t1,+-+,tx) running through {0, 1}*, the residue forms of (—1) @ p' are

(-1)®p' (occurring once)
P (occurring 2* — 1 times) .
Thus, if (—1) @ p' is T"-anisotropic, then these forms are T,-anisotropic (The-
orem 3.5). In particular, (—1) @ 7' is T},-anisotropic. Conversely, if (—1) &7 '
is T-anisotropic, then so is g. (Use Theorem 4.1(3)ifn > k+ 2. Iin=Fk+1,

use S, # 0). But then, by Theorem 3.5, (—1) @ p' is T~ anisotropic. O

Remark. The special hypothesis on ay,:--,a, in Theorem 4.4 (2) is not re-
strictive. We can always rearrange a;,:--,a, so that v(a1),---,v(ai) are Z,—

independent modulo v(T*) and, for j =k +1,---,n,
a; = b;II%  a;" (mod T*), s;; € {0,1}, b; € B: .

Then, modulo T, ay,---,ak, biy1, -+, b, generate the same group as a;, -, a,

so § = UT(als"'aﬂn) = UT(alz"'7akrbk-l—1:"'rbn) .

Theorem 4.5. Suppose the presentation S = Ur(ay,---,a,) is minimal. Then
3 a T'-compatible valuation v on F' such that the presentation remains minimal
over TV and such that at least n — 1 of the v(a;) are Z;-independent modulo
v(T™).

Proof. If n < 1, take v to be the trivial valuation. Assume n > 2. By
Theorem 4.4 (1), 3 a T-compatible valuation v such that the presentation re-
mains minimal over T and at least one of the v(a;) is not in v(T"). By the
Remark, we can assume v(a;),---,v(ax) are Z,-independent modulo »(T*)
and @g41,---,8, € B;. Thus, by Theorem 4.4(2), the presentation S, =
Ur,(@k41,***,8n) is minimal. By induction on n, we have a T,-compatible
valuation w on F, and s € {n — 1,n} such that this presentation of 5, re-

mains minimal over (T,)* and, after reindexing, w(g@:), i = k+ 1,---,s are
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Z y-independent modulo w(T}). Looking at the valuation u on F associated to

w, we have F, = (F,)w, Tu = (Tv)w and we have the natural exact sequence
(*) 0 — w(Fy)/w(Ty) — uw(F*)/uw(T*) — v(F*)/v(T*) — 0.

Now one checks immediately that the presentation S* = Ur«(ay,- -+, an) is min-
imal and the w(a;), ¢ = 1,--+,3 are Z,-independent modulo u(T*). O

The stability indez sr is defined as follows: If |Xp| = 1, then sr := 0.
If | Xr| > 2, then sr is the least integer s > 1 such that each basic clopen set
S C Xr is expressible as § = U(ay,: -+, a,) for some ay,:--,a, € F* (or s7 = 00

if no such finite s exists).

Corollary 4.6. (Brocker)
(1) If | Xz| > 1, then
s = sup{l, ar~ : v is a T'-compatible valuation on F, v(T*) # v(F")}.

(2) sr+ = dimyv(F*)/v(T*) + sr,. (Here, dim, denotes dimension as a

Z 3-vector space).

Proof. This is immediate from Theorem 4.4. O

Also, we define

5y := sup{dimz v(F*)/v(T*) : v is a T- compatible valuation on F} .

Corollary 4.7. sr is finite iff 37 is finite. Moreover, in this case sy = 51 + e
where er € {0,1} is defined as follows: er = 0 iff |Xr,| = 1 holds for all

T'-compatible valuations v with dim, v(F*)/v(T*) = 8r. Otherwise, er = 1.
Proof. Immediate from Theorem 4.5. o

Remark. There are various other characterizations of sy [4], [17]. For exam-
ple, 2'7 is the exponent of the cokernel of the natural embedding Wr(F) —
Cont(Xr, Z). This will not be proved here (even though the ingredients are all

close at hand; see Theorem 4.2 and Lemma 4.14 below).
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3. Complexity of basic open sets

In Part V we will come back to Corollary 4.7, using it to study the behaviour
of the stability index under field extension (see Theorem 5.1).

But, for now, we return to the general situation considered in Part I. i.e.,
A is a ring (commutative with 1), T C A is a proper preordering, and X :=
UpXr(p), p running through the primes of A with T(p) € F(p) proper. For
§C Xy, 5(p) := 5N Xrp).

The following result was proved first by Brocker and Scheiderer in the case

of the coordinate ring of a real variety. The general version presented here is
taken from [21].

Theorem 4.8. Suppose S C Xy is basic open. Suppose 3 k > 0 such that,
for each prime p C A with T(p) proper, 3 by,---, by € F(p)* such that S(p) =
Ur()(by, - +,b). Then 3 ay,--,ax € A such that § = Ur(ay,--- » k).

The proof is similar to the proof in [20]. We use a little notation from the the-
ory of quadratic forms: A* := the unit group of A. If p = (ay,+,a,), ay,---,
an € A* (or A), the T-value set of p is Dr(p) := ¥; &;T. The operations @, ®,
etc; on forms are defined as in the field case. As usual, ((a,,-- ,an)) denotes

the n-fold Pfister form (1,2,) ® --- ® (1, ).

Proof of Theorem 4.8 The case k = 0 is trivial. (If S(p) = Xrp(p) for all
p, then S = Xr). Assume k > 1. By hypothesis, 3 a1,:-+,a, € A such that
S =Ur(as,-+-,an). i n < k we are done. Thus we assume n > k and try to

reduce from n to n — 1.

Claim : We can assume each a € A satisfying ¢ # 0 on § is in A*. For,

consider the localization B = £-14 where
E={ecA:a#00nS}=A\U{Supp(P): P S}.

Let 72T denote the extension of T' to B, ie., T7IT = {t/a® 1t €T, ac
Z}. After identifying Xg-ap C X7, Xg-2p is identified with Ur(Z?) € Xr
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and § C Ur(X?) by definition of £. Thus it suffices to prove the result for
S C Xg-ir. For suppose we have proved § = Ug-ar(bs,---b,) for some
by,«++,bn € B. Clearing fractions, we can suppose by, :-,b, € A so then
S = Ur(bz,---,bs) N Ur(E?). Thus, by compactness of Xr\S in the Tychonoff
topology, S = Ur(bz,---,bn,a?) = Ur(a®bs, b, ,by,) for some a € X. Thus,
replacing A by B =X A and T by £72T', we can assume £ C A*. This proves

the claim.

Thus, for example, since 2 > 0 and a; > 0 on S, we have 2, ay,---,a, € A"
Now set p = ({a1,--,an)) and consider the semi-preordering M := Dr((1) ®
—p') where p' is the derived form, e, p = (1) ®p'. If —1 ¢ M, then M is
proper so, by Theorem 1.1, —1 ¢ M(p) = Dr(,)({1) ® —p') for some prime
p € A. This contradicts our hypothesis. After all, S(p) = Urg)(a1,--+,a.) =
Ury(b1, - -+, by) for some by, .-, b € F(p)*, k < n, so, by Corollary 4.3, (1) &
—p' is T(p)-isotropic. Thus —1 € M so —1 =t — b, i.e., b = 1 + ¢ for some
b e Dr(p'), t € T. We now prove the following generalization of Theorem 4.2

by induction on n:

Theorem 4.9. Suppose S = Ur(ay, ..., a,), p = ({21, ...,@n)), for some ay,...,
an € A and suppose b € Dr(p') satisfies b# 0 on S. Then 3 by, -b, € A such
that § = Up(b, by, -- -, by).

Applying this with b = 1+¢ gives the desired reduction: S = Ur(a;,--+,a,) =
Ur(bz,-++,bn) (since b > 0 on Xr). Thus it only remains to prove Theorem
4.9.

Proof of Theorem 4.9. This is clear if n = 1, so we assumen > 2. If & =
{a€A:a#0onS}and S = Ug-p(b,by,---,b,) then, by compactness, § =
Ur(b,bz, -+, bn,a?®) = Ur(b,a®bs,bs,---,b,) for some a € B. Thus, replacing
Aby B=3"1'4and T by 72T, we may as well assume to begin with that
X C A*. Write p = v @ a,9 where ¢ = {(a3,--+,8a,)), 50 p' = ' ® ¢13. Thus
b= c+ da; with ¢ € Dr(¥’), d € Dr(¢)). We can assume ¢,d € A*. To prove

this use the identity z = (2£2)* — (252)? to write 2142 =2 — 42 1, s € A. Thus
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r?b = s%b+ ay + a; so
(1+7%)0b (14+8*)b+a+a;=(1+s)(c+da)+as+az

(14 s¥)c+az+((1 4 s*)d+ 1)ay .

Il

Thus b = ¢’ + d'ay where
, (1+8%)c+a, 7 (1+s)d+1

1472 7 1472

Thus ¢’ € Dr(y’),d’ € Dr(v). The point is, ¢/, d’ are strictly positive on S so
c',d' € A*. Thus, replacing c,d by ¢',d' we can assume c,d € A*. Thus, by
induction on n, 3 bg,--+, b, € A such that

UT(ﬂz, U 3an) = UT(C: 631 L 1bn) .

But now we see, exactly as in the proof of Theorem 4.2, that S = Ur(b, a;ed, b, - - -,

b,) so we are done, taking b; = ajcd. m|

Corollary 4.10 For any proper preordering T' in any ring A, each basic open

set S C Xr is expressible as S = Ur(ay,- -+, an) for some ay, -, am € A,

m < sup{l, s7(p) : p a prime of A with Xr(;) # 0}.

4. Complexity of basic closed sets

The result presented here is a general version of a result for real varieties proved
first by Brocker. Again, the proof is taken from [21].
We continue to assume that A is an arbitrary ring and T' C A is a proper

preordering. Assume though that
d = dim X7 := sup{dim A/p : X7(p) # 0} < o0
and for 1 =0,..-,d define

si == sup{l,sr(): Xr(p) #0, dimA/p <i}.
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Then we have the following:

Theorem 4.11. If dim Xr = d < oo and 3o, -+ -, 84 are defined as above, then
each basic closed set S C Xt i3 expressible as § = Wr(a1,:++,8,),81,"**,2n €
A, n<sp+---8q.

For the proof we use the following:

Lemma 4.12. Suppose S C Xr is basic and clopen and suppose 3 ay,--+,a, €
A such that S = Ur(ay,---,a,). Then 3 by,---,b, € A (same s) such that
S = Ur(by,++,bs) = Wr(by, -+, b,).

Proof. By hypothesis and Corollary 1.22, S = Wr(cy,- -, ) for some ¢1,--+,
¢t € A, Thus § = Xq, where T} O T is the preordering generated by T
and ¢;,--+,¢. But a; > 0 on § so, by the Positivstellensatz (Corollary 1.12),
ai(1 + 8;) = 1 + ¢; for some 3;,t; € T;. Thus

bi = =1+ 2a;(1+ 8;)" = 1+ 2(s; + t; + 8it;)
satisfies b; > 0 on S and b; < 0 on W(—a;), i =1,:-,s. This means
S C Up(by,-++,b,) € Wr(by,--+,b,) C Ur(ay,--,a,) =5,
so the proof is complete. o

Proof of Theorem of 4.11 By induction on d. The boundary of S is 85 :=
SNXr\S. Let I:={a € A:a=0on 85} so z-cl(3S) = Zr(I). By Corollary
1.17, dim Z7(I) = dim8S < dim Xr = d. On the other hand, Zr(I) = Xz
where T = T'/1 is the preordering in A/ generated by T. Thus, by induction

on d,

SN Zy(I) = Wr(by,-++,b,) N Zp(I)

for some by, -+ b, € A, n < 89+---+54_1. By compactness, 3 b € I such that

SN Zp(b) = Wr(by, -+, bx) N Zr(b) .
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The point is, b vanishes on 85 so SNUr(b?) is clopen in Ur(b?). Thus, applying
Lemma 4.12 to the ring B = A[1/b] and the preordering T'[1/b°] C B and using
the Corollary 4.10, 3 a,,---,am € A, m < 34 such that

SN Up(b?) = Wr(ay, -+, am) N Ur(b?) .

Now, b; > 0 on SNZr(b), so we can apply the Hormander-Lojasiewiez inequality
(specifically, Theorem 1.20) to obtain ¢; € A, ¢; > 0 on S such that b;, ¢; have
the same sign on Zz(b). Thus

S5 = WT(bzah'":bzﬂmzcli"'7c'ﬂ) g

Since m +n < 89 + + -+ + 384, this completes the proof. O

5. Brocker’s t-invariant

Let T be a proper preordering in a field F'. Xr is compact so each constructible
(=clopen) set S C X7 is expressible as a finite union of basic clopen sets (Corol-
lary 1.14(1)). It is easy to arrange things so the basic clopen sets appearing are
pairwise disjoint: If $ = § U ---U S,, where §; = U(ai1,*"+,ain), @i; € F~,
then Xr is the disjoint union of the basic clopen sets N;; U(eijaij), € = (&;)
running through all possible choices of 1, and each S; is a union of sets of this

type.
Lemma 4.13. If sy <1 then each clopen S C Xr is basic.

Proof. Write § = §;U---US,, (disjoint union) where each S; is basic clopen,
say S; = U(a;). Then use U(a)U U(b) = U(—ab) to reduce the number of terms.
O

Lemma 4.14. Suppose S C Xr is clopen and s = sy > 1 . Then there exists
a T'-anisotropic form 1) = 3, satisfying:

2° foroesS
cr(@b):{ 0 foroe Xr\S.
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Proof. Decompose S as S = S1U---US,, where §; is basic, say S; = U(ai1, .-, @is),
and take

".b ~MT 2((‘1'1'1'1 "':a‘il)) #

Taking dim(%) as small as possible, we can assume ) is T-anisotropic (Theorem
3.2). O

Remark.
(1) If S # 0, then dim(y) > 2°.
(2) Actually, it is possible to show that dim(t) = 2* iff S is basic.

(3) Using this along with Theorem 3.7, one sees that S is basic in X iff
SN Xy is basic in Xz for all preorderings T C T C F with (F*/T*) < oo.
See [12] for more details and for other characterizations of basic sets in
the field case.

Theorem 4.15. (Brécker) Suppose s = sy > 1 and S C X7 is clopen. Then
3 a form p over F such that

(@) dim(p) <41 (b)) o(p)= { 2_';—1 ;Z:ggf(r\s ,

Proof. Take p ~r ¥ @ 2°°! x (—1), 9 as in Lemma 4.14. This satisfies (b).
Taking dim(p) as small as possible, we can assume p is T-anisotropic (Theorem
3.2). It remains to show dim(p) < 4°~!. This is clear if |o(p)| = dim(p) for some
o € Xg. Thus, by Theorem 3.6, we can assume p is T"-anisotropic for some
T-compatible valuation v on F with v(T") # v(F*). Let t = dimp v(F*)/v(T"),
sot > 1. Then sr, + ¢ < 875 < sr = 5 (Corollary 4.6(2)), so s, < s —1t < 3.
Let S* = SN X7v. The idea is a build a form i over F satisfying

- -1 f U
(a) dim(y) <4 (b) o(9) ={ 2_2-—1 fﬁiiiif.\sv.
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Then 1 ~r+ p and, since p is T"-anisotropic, dim(p) < dim(v) by Theorem 3.2,
and we are done.
Choose z;,:+-,2z € F*/T"" independent modulo F;/T;. Then

F*[T = F;/T; x{l,z1} x---x {1,2} and

X1s = XT- X {1:’71} Xorer X {1171}
where 71, -+,7; is the dual basis to z;,--+,2,. Let 7 : Xp. — Xr, denote the
pushdown (restriction), m(c) = 7. For each choice of £ = (g1,-++, &) € {£1},

let
g Sg = 'ﬂ'(S“ n U(e;zl, ¥ e rEng))
so 5. € X7, 15 clopen. By induction on s we have a form p, over F, such that

e S 21  forzveS.
dim(p,) = 4", o(p.) = { =21 for7 e Xp,\S. .

Then 9 := 3.7, ® ({121, ,£c2:)) satisfies (a) and (b). This breaks down if
s=1t. In this case sy, <s—t =050 |Xr,|=1, |Xr+|=2" In this case, take

X'=Xr, x{1,m}, G ={1,-1}x{l,n}, 7 :Xr.— X' the projection,

and take 1 = Y5 a5{(6222,- -+, 8:2:)) where a5 € G' is defined by

(5 NU(8222,- -+, 8z)) = {0 € X' : o(as) = 1}.
El
Now define 7(s), s > 1 as follows: If s € {1,2}, define 7(s) = 5. If s > 3,

define 7(s) to be the number of ways of choosing (p(s) +1)/2 things from a set
of p(s) things, where p(s) := 4*~ —2*-1 4 1.

Corollary 4.16. If s = sy > 1, then each clopen set § C Xt is ezpressible as

a union of < 7(s) basic clopen sets.

Proof. This is true by Lemma 4.13 if s = 1. If s > 2 then, by Theorem 4.15,

we have a form p = (@1, +,am), m =4""" with

() = 271 foroceS
API=1 =2t forae Xr\S .
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This means o € S iff exactly (p — 1)/2 of the a; are negative at o, and o ¢ S
iff exactly (p — 1)/2 of the g; are positive at o, where p = p(s). Thus we need
only look at the first p entries of p: o € S iff at least (p + 1)/2 of the entries
ay,...,0, are positive at o. This proves the result if s > 3. If 3 = 2, then
p = {(a1,a2,a3,a4), o(p) =2 ¢ € S, o(p) = —2if ¢ ¢ S. In this case it is
easy to check that § = U(a1,a2)0U(as, a4). m

The t-invariant is defined to be the least positive integer ¢ such that each
clopen set in Xt is expressible as a union of < ¢ basic clopen sets. Corollary

4.16 proves that ¢t < 7(s) but this bound is probably not best possible for s > 3.

s 1 2 3 4
t 1 2 < 1716 < 1.50336 x 101®

Remark. Actually there is a much better bound for ¢ if | Xr| < oo (namely
t < 2°71) but the Isotropy Theorem is not strong enough to pull this back to

the case of arbitrary Xr.

6. Complexity of arbitrary constructible sets
We return to the case where 4 is a ring and T C A is a proper preordering.

Theorem 4.17. Assume that A is Noetherian and that d := dim X7 < oo.
Then any constructible set in S C Xr is expressible as a union of m basic sels
S§=58U---USn, m < 1(s9) + -+ 1(s4) where sq,+--,54 are defined as in
Theorem 4.11.

Remark. Actually, we only need A/I Noetherian where I = N{Supp(P): P €
Xr}. Also (as one sees from the proof) we can always choose the basic sets S;
of the special form S; = U(ai1, - -+, ain;) N Z(b;). Recall: basic sets of this type
are a basis for the Tychonoff topology.

Proof. Let pi,---,p, be the primes in A lying over I = N{Supp(P) : P € Xr}
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with dim A/p; = d. By Corollary 4.16, we have m < 7(ss) and elements
aijr €A, i=1,-+,v,j=1,--+, s=84, k=1,..+,m such that

S(p.) = U}?:lUT(p.')(a'ilh B :a'l'lk)s i=1-,v.

Pick z; € (Nazi pr)\piy ¢ = 1,---,v, and define aj = Z;zla;j and let
§' = UL, Ur(ek, -+, ). Thus
(*) S(p.‘) = S’(Pi)r i= 1:' Ty U

Consider SAS" := (S\5")U(S5'\S) and let J := N{Supp(P) : P € SAS'}. Thus
Zr(J) = z-cl(SAS'). According to Corollary 1.15, the minimal primes lying
over J have the form p = Supp(P), P € SAS' so by (*), dim A/p < d for all
such p. Thus dim A/J < d so by induction, we have n < 7(sp) + -~ + 7(84-1)
basic sets Sy,-++, S, C Xr such that

5N Z(J) = UL, 8:n 2(J) .

Choose b € A such that Z(J) = Z(b). (J is finitely generated, so we can take
b=>b}+---+ b2 where by,---,b, generate J). Thus

SNZb)=Ur,S:nZ(b).
Also, by definition of J and b,
SNU(B*) = §' NUB*) = U, U(ask, -+, ak) NU(B?) .

Since § = (5N Z(b)) U (S NU(b*)), this completes the proof. o
Modifying the construction just a bit, using the Hormander-Lojasiewicz in-

equality, we obtain the following refinement:

Theorem 4.18. (Brocker) Set-up as in Theorem {.17. Then each open
constructible set in Xr is ezpressible as a union of m basic open sets, m <

7(s0) + -+ + 7(5a).

Proof. Begin exactly as in the proof of Theorem 4.17. Say S; = U(by;, -+ -, byi).
We modify b;; so that S; € S . Consider the closed constructible set
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W (baiy ..., bsi)\S. Then by; < 0 on (W(bs,--+,b:)\S) N U(b) N Z(b) where
b; := Ij_,b;i. Thus, by Theorem 1.20, 3 ¢; < 0 on W(byi,--+,b,)\S such that

by, ¢; have the same sign on U(b?) N Z(b). Then
SiNZ(b) CU(ci, bai,-+-,b) C S .
Thus, replacing S; by U(c;, by, « -+, bs:), we have
8= UL S U UR U (Gapy v =5 8 b)) 5
a union of m 4+ n < 7(sg) + - - - + 7(s4) basic open sets. o

Remark.

(1) Using Theorem 4.18 and taking complements, one also gets a bound for
the number of basic closed sets required to describe a closed constructible,

but this bound is very large.

(2) It is not known if Theorems 4.17, 4.18 hold if the assumption that A is
Noetherian is dropped. The method of Theorem 4.11 is not quite strong

enough to handle this.

V APPLICATION TO REAL ALGEBRAIC GEOMETRY

1. Behaviour of stability under field extension

To get the desired application to semi-algebraic sets we need to consider the
following set-up: let P C F be a preordering (F' a field). We are interested
in the case where P is an ordering, but there is no need to assume this to
begin with. Let K O F be an extension field, and consider the preordering
T:=3Y K?P C K. Assume T is proper. Define

5p := sup{dim, v(F"*)/2v(F") : v is a P-compatible valuation on F} .



MINIMAL GENERATION OF CONSTRUCTIBLE SETS 121

Example. If P is an ordering, then 5p = dim, vp(F~)/2vp(F*) where vp is
the unique finest valuation on F compatible with P; see Theorem 1.7.

We use Corollary 4.7 to prove the following estimate for sp:

Theorem 5.1. Set-up as above. Then
st < trdeg(K:F)—|—3p+6p

where 8§p € {0,1} is defined as follows: §p = 0 iff for all P-compatible val-
uations v on F with dim;v(F*)/2v(F*) = 3p, |Xp,| = 1 and morecover, if
the unique ordering in Xp, eztends to some algebraic eztension of F,, then it
extends uniquely. Otherwise p = 1.

We use two Lemmas in the proof:

Lemma 5.2 Suppose v is a valuation on K and w is the restriction of v to
F'. Suppose ay,---,am € K* are such that v(ay),-+,v(am) are Z-independent
modulo w(F*) and by, -+, b, € B: are such thatby,--- b, € K are algebraically

independent over F,,. Then ay,+++,apm,by,--- b, are algebraically independent
over F. '
Proof. This is a standard exercise in valuation theory. O

Lemma 5.3 Suppose U C W are torsion free abelian groups and W/U is 2-
primary torsion and dim; U/2U < oo. Then dim, W/2W < dim, U/2U (with
equality if |[W/U| < c0).

Proof. If &1,---, 0, € W are Z,-independent modulo 2W, then ay,- -+, o, are
also Z-independent modulo 2W’ where W' C W is the subgroup generated by
ay, -+, an and U. Thus, replacing W by W', we are reduced to the case where
W/U is finite. By induction, we can even assume [W/U| = 2. But in this case
W 2UD2W 22U and W/U = 2W/2U (via a+ U — 2a + 2U) so the result

is clear. O

Proof of Theorem 5.1 (See [6, 22].) We can assume trdeg(K : F)+3p+6p <
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oo. Let v be any T-compatible valuation on K and let w denote the restriction

of v to F. Since v is T-compatible, Lemma 3.4 implies
v (ibft;) = min {v (b?t;) :i=1,---,n}, for b€ K, t;€ P*.
i=1
Thus v(T") = v(K*?P*) = 2v(K") + w(P~). Define
W ={a€v(K*): 2'a € w(F~) {or some integer 7 > 0} .

Thus
") = dima v(K")/(20(K~) + w(P*))
oK)+ W) +dima (3ol + WY (o) 0P

Ifa; € K*, n; € Z not all zero are such that ¥n;v(e;) € w(F*) then, dividing by

dim;v( )/(

N

the highest power of 2 common to the n; we have Im;u(a;) € W wherem; € Z
and at least one of the m; is odd. This shows that dimzv(K")/w(F*) >
dim; v(K*)/(2v(K*) + W) and hence, using Lemma 5.2, that

trdeg(K : F) > dimgv(K*)/w(F*)+ trdeg(K, : Fy)

> dimgv(K*)/(2v(K*) + W) + trdeg(K, : Fu) . (2)

Also, (20(K=) + W)/(2v(K*) 4+ w(P*)) = W/(2W + w(P")) so, using Lemma
5.3,

dim, (20(K*) + W)/(20(K”) + w(P")) = dim, W/(2W + w(P"))  (3)
< dimy W/2W < dim, w(F*)/2w(F") .
Putting (1), (2), (3) together, we obtain
dim, v(K*)/v(T*) < trdeg(K : F) + dim, w(F"*)/2w(F") . (4)

Thus we see that sr is finite (using (4) and Corollary 4.7). Now, using Corollary
4.7, choose v so that dimgv(K*)/v(T*) = ér, |Xt,| > 1 if er = 1. Thus
sy = dim, %éf—)l + e so we are done by (4) except possibly if er = 1 and we
have equality in (4) and dimw(F*)/2w(F*) = 5p. It remains to show that

§p = 1 in this case. But this is pretty clear. Since we have equality in (4) we



MINIMAL GENERATION OF CONSTRUCTIBLE SETS 123

must also have trdeg(K, : F,) =0 in (2) so K, is an algebraic extension of F,
with at least two orderings extending orderings in Xp, (namely, the orderings
in Xr, ), 50 §p = 1. c

2. Application to finitely generated algebras

Suppose now that A is any finitely generated F-algebra. Thus
A= F[X,,...,Xn]/I for some N > 0 and some ideal I C F[X;, ..., Xy]

and, by the Hilbert basis theorem, I = (hy, - y hi) for some finite set of poly-
nomials hy,---,hi. Let P C F be a preordering and let T' := SAPC A If
p C Ais a prime, then F(p) is a finitely generated field extension of F' and
trdeg(F(p) : F) = dim A/p by Theorem 2.7. Also, T(p) = ¥ F(p)*P so we

have the estimate for 81(p) given in Theorem 5.1.

Theorem 5.4. Set-up as above, if d := dim X7, then

(1) Each basic open set S C Xr is ezpressible as S = U(ay, -, am), a1,-..,am
€ A, m < max{l, d+3p+6p}.

(2) FEach basic closed set S C Xy is ezpressible as S = W(ay, -, an), a,...,an
€ A, n <max{l, d(d+1)/2 + (d+ 1)(3p + 6p)}.

(3) Each constructible set in X1 is expressible as a union of p basic sets,
P < Bi,7(i +3p + bp).

(4) Each open constructible set in X is expressible as a union of p basic open

sets, p < max{l, ¢ 7(i +3p + 5p)}.
(Here, 7 is the function defined in part IV. r(0) := 1 in (3), 7(0) := 0 in
(4).)
Proof. (See [22].) If p C A, Xr(,) # 0, dim A/p < i, then, by Theorem 5.1,

87(p) < trdeg(F(p) : F)+3p + 6p =dim A/p + 5p + 8p <i+3p + 6p .
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Thus (almost) everything follows from Corollary 4.10 and Theorems 4.11, 4.17,
4.18. Note, in regard to (2), that BL (i +3p+6p) = d(d+1)/2+(d+1)(5p+6p)-
Unfortunately, so > 1 by definition, so there is a problem with (2) and (4) when
3p + 6p = 0. To fix this, since Theorems 4.11 and 4.18 are proved by induction
on d, it suffices to handle the case d < 1. In this case, we have the following

result.

Lemma 5.5. Set-up as in 5.4 but suppose d < 1 and 5p + ép = 0. Then each
open constructible S C Xp has the form S = U(a). (Equivalently, each closed
constructible S C Xr has the form § = W(a). )

Proof. Suppose S C X7 is open and constructible. For any prime p C A
with X7y # 0, s7(p) < dim A/p € {0,1}, so S(p) = Ury)(b) by Lemma 4.13.
Thus, we can conclude S = U(a) by Theorem 4.8 as soon as we establish that
S is basic open. According to Theorem 1.24, to do this, we need only establish
that SN z-cl(8S) = 0. But dimdS < dimXr < 1 by Corollary 1.17 and
consequently z-cl(85) = 85 so this is clear. (Use the fact that |Xrpy| = 1if
dim A/p=0.) |

Finally, we apply Theorem 5.4 to the geometric set-up considered in Part
IL i.e., we take P C F to be an ordering, R a real closed extension of (F, P),
and

V={eeRY¥:h(z)=0, i=1,..,k}
Then, combining various results proved so far, we have proved the following:
Theorem 5.6. Suppose d = dim V. Then

(1) Each basic open set in V is describable by m inequalities fi(z) > 0, fi,..., fm
€ A, m S ma.x{l,d+§p + 5P}-

(2) Each basic closed set in V is describable by n inequalities fi(z) >0, fi,..., fa
€ A, n <max{1,d(d + 1)/2 + (d + 1)(3p + ép)}.

(3) Each semi-algebraic set in V is expressible as the union of p basic sets,



MINIMAL GENERATION OF CONSTRUCTIBLE SETS 125

P S E:-{zu‘l'(t' +3p + 6}3)

(4) Each open semi-algebraic set in V is expressible as a union of p basic open

sets, p < max{1, L 7(i +3p + 8p)}.

(Here, T is the function defined in Part IV. 7(0) := 1 in (3), 7(0) := 0 in

(4)).

Proof. This is immediate from Theorem 5.4, using Theorems 2.1, 2.4, and 2.8.
O

If (F,P) is real closed, we obtain from Theorem 5.6 the classical bounds

obtained by Brécker and Scheiderer [12, 20, 24] as a consequence of:
Lemma 5.7 Suppose (F, P) is real closed. Then 3p =0 = §p.

Proof. See Lemma 1.9. O

For another case where the bounds in Theorem 5.6 are small, note the fol-

lowing:

Lemma 5.8 If (F, P) is Archimedian, then the only P-compatible valuation on

F' is the trivial valuation (so 5p =0).
Proof. The unique finest valuation on F' compatible with P is trivial. O

Remark:

(1) If (F, P) is real closed (so 5p + 6p = 0), then the bounds in Theorem 5.6
(1), (2) are best possible: i.e., there do exist basic open sets (resp; basic
closed sets) in V' requiring d (resp; d(d + 1)/2) inequalities [12, 24].

(2) If (F, P) is not real closed, the bounds in Theorem 5.6 (1), (2) are still best
possible if V' = RY | ie, if Ais the polynomial algebra F[Xj,--- y Xn]
(22] (and d = NV in this case).
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