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LIMITS OF GRAPHS

Bonaventure Loo* Israel Vainsencher* ®

Abstract

We show that the variety parametrizing graphs of maps of P, into P1xP;
of bidegree (1,1) admits a compactification closely related to the classical
construction of complete quadrics. We conjecture a similar behavior
holds for higher bidegrees.

The space of harmonic maps (i.e., branched minimal immersions) of S? into
S?" is described in [2] as a union of moduli spaces labelled by the harmonic
degree d > 0. It was shown in [6] that their study may be reduced to that of
the moduli space My of pairs of meromorphic functions of degree d with the
same ramification divisor. Since the space of meromorphic functions of degree
d is not compact, neither is M.

In [7] a natural compactification of My was introduced and the boundary
of this compactified space was studied by considering limits of graphs of maps.
The inadequacy of this natural compactification was illustrated by numerous
examples regarding limits of one-parameter families of graphs. For example,
some points in the boundary were found to correspond to various possible limit
graphs. To resolve the ambiguity of assigning to each point p in the boundary
a unique limit graph, we consider all germs of smooth curves in M4 emanating
from p which intersect the boundary of My only at p. Let v be such a germ.
Then v — {p} parametrizes a flat family of curves in P;xP;xP;. Since flatness
extends uniquely across the puncture, we obtain a unique limit curve associated
to the germ. The limit curve so obtained depends on the choice of the parameter
curve emanating from p. Intuitively, one should be able to separate these limit

curves by separating the normal directions to the boundary at p. Classical
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algebro-geometric techniques tell us that this idea is captured in a suitable
blow-up process.

In this paper we study a simpler compactification problem. We show that
the variety parametrizing graphs of maps of P, into P;xP; of bidegree (1,1) ad-
mits a compactification closely related to other classical limit problems such as
complete linear maps, complete quadrics etc. .. (cf. [4] and references therein).
See Prop. 3.1. We conjecture a similar behavior holds for higher bidegrees.
An understanding of this simpler problem will be of great help in tackling the
problem of compactifying My, with the above mentioned ambiguities resolved.

Heartfelt thanks are due to the referee and Dan Laksov for helping us make

a rough draft into a, hopefully, less unreadable paper.

1. Preliminaries

Recall that a morphism (or holomorphic map) of degree d, f : P; — Py, is
defined by f(z) = P(z)/Q(z) where P and Q are polynomials of degree at most
d, either P or Q has degree d, and where P and Q have no factors in common.
In homogeneous form, we can write F(z) = (Fo(z) : Fi(z)) where Fy and
F, are homogeneous polynomials of degree d in the homogeneous coordinates
20, 21, with ged(Fo, F1) = 1. Observe that if we relax the gcd condition, say
gcd(Fo, F1) = F; where F, is a homogeneous polynomial of degree k, then F
can be considered as a map of degree d — k, together with “extra information”
encapsulated by the polynomial F,. Note that gcd = 1 is an open condition.
Now let

w= (F, G) H P1 — PIXPI
be a map of bidegree (d, d), defined by
#(z) = ((Fo(2) : Fi(2)),(Gol2) : Ga(2)))

where Fy, F;, Go and G, are homogeneous polynomials of degree d in the

homogeneous coordinates zy, z; with gcd(Fy, Fi) = gcd(Go, G1) = 1. The graph,
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I, C P1xP;xPy, is defined by a pair of bihomogeneous equations:
{ 31Fo(zo, 21) == zoFl(Zo, zl) (1)
¥1Go(20, 21) = YoG1(20, 21)-

Our aim is to describe a compactification of the space of graphs. An obvious
way to compactify the space of graphs is to drop the gcd condition. Namely,
we include pairs (F, G) where either gcd(Fo, F1) # 1 or ged(Go, G1) # 1, and
where equation (1) holds. Let us begin by considering two simplé examples
where the gcd condition is relaxed. These examples will illustrate that such a
naive compactification is inadequate. In Proposition 3.1, we will state our result
in precise terms via the appropriate Hilbert scheme (see [8] for foundational
material) of curves in PyxP;xP;.

We will adopt the convention that the variables for the first, second and
third factors of Py xP,xP; are given by z, ¢ and y respectively.

Example 1.1. Let ¢, = (F, G) where Fy(2) = z, F1(z) = 20+ tz1, and G and
G, are homogeneous polynomials of degree 1 in z and 2, (and independent of
the parameter t) subject to the condition that Go(0 : 1) # 0 or G4(0: 1) # 0.
For t # 0 let T, denote the graph of ;. Setting t = 0, we have ged(Fo, F1) = 2
and the first equation in (1) becomes z,29 = zg2o. At the point (2o :2;) = (0:
1), the second equation in (1) tells us that (yo : y1) = (Go(0 : 1) : G1(0 : 1)).
Thus at ¢ = 0 the curve described by (1) is

(0:1)x Py x(Go(0:1) : G1(0:1))) U({(2, (1:1), (Gol2) : Gi(2))) | = € P1})-

Observe that the first term in the union is no longer a graph. Nevertheless, we
still get a curve in PyxP;xP;—albeit a reducible curve with two components.
We may thus say that as t approaches 0 the graph ¢, approaches the above curve
(the “limit graph”). Note that this example will work even if gcd(Go, G1) # 1—
provided that gcd(Go, G1) # zo. Indeed, equation 1 implies that the limit graph
will have three components. Let us suppose that Go(2o : 21) = Gi(20 : 21) = 2.
For t # 0 we obtain from (1) the curve

((0:1) x (1:1) x P1) U ({( (Fol2) : Fi(2)),(1:1)) | z € Py}).
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In view of the first term, this is not a graph. However, as we shall see in Lemma

2.1, it has the “correct” Hilbert polynomial. Now at ¢ = 0 we obtain the curve
((0:1)xPrx(1:1)) U ((1:0)x (1:1) x Py) U (Pyx (1:1)x (1:1)),

which also has the correct Hilbert polynomial by Lemma 2.1. Note that in this
example, at ¢ = 0, we have ged(Fo, F1, Go, G1) = 1. Thus the acceptance of such
non-graph curves to our space of graphs does not create any real problems, in

the precise sense that the extended family of curves remains flat.

Example 1.2. Let ¢, be as in Example 1.1 except that ged(Go, G1) = 2o, t.e.,
Go(20,21) = azo and G1(20,21) = Bzo, where (o : B) € P;. From (1) we obtain

T120 = zo(20 +tz1) (2)
Y1020 = Yof2o.
In this case if we simply set ¢ = 0 we would have
Ti129 = To20
yiazo = yoPzo.

Here ged(Fo, F1, Go, G1) = z9. We could thus be led to say that as t approaches
0, I',, approaches

((0:1)xP1xPy) U (Py x (1:1) x (a:4)).

Note that the (0 : 1) x P;xP; term above is of dimension two. Since the least
we should expect from a “good” notion of limit in the present setting is that
it preserve dimension, this naive procedure must be refined: limits of equations
may not correspond to limits of curves.

This example illustrates that in the naive compactification, it is precisely
along the subset of the boundary where gcd(Fy, Fy,Go,G1) # 1 that we need
to perform modifications in order to obtain the desired decent behaviour, i.e.,
a complete, flat family. We will explore this further in section 2.

Continuing with Example 1.2, we now discuss how one can obtain the “le-
gitimate” limit of a 1-parameter family of graphs from a 1-parameter family of

equations as above. Set

S = C[“"Oy 1, Yo, Y1, 20, 21].
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For each constant t, let I; = (F;,G) C S denote the ideal generated by F; =
zo(z1 — To) — tzo2z1 and G = zo(y1a — yof3). Then the graph described by the
equations (2) is just the variety V(I;) for ¢ # 0. Observe that

(z1 — 20)G — (1 — yoPB) Ft = tzoz1(y10 — yof3).

Let I = (F, G,zoz1(y10c — yof)). Off t = 0 we have V(1) = V(I]). Att =0,
we get Iy = (20(21 — Zo), 2o(¥12 — YofB), Toz1(y1@ — YoB)). From the two charts
20 # 0 and z; # 0 we may convince ourselves that a better candidate for the

limit graph as ¢ — 0 is 'given by
V(L) = (P1x (1:1) x (a:8)) U ((0:1) x (0:1) x P,) U ((0:1) x Py x (a:4)),

which is indeed a curve—with three irreducible components.

The algebraic process for producing I; from I, is usually referred to as sat-
uration. One thinks of £ as a new variable and one enlarges I; by including all
polynomials f € S[t] such that t"f € I; for some n. The enlarged ideal I] will
eventually have the property that

(i) t is not a zero divisor mod. I] and
(i) I, = I} at each t # 0.

The first turns out to be the condition of flatness, the algebraic translation of
the notion of continuity for a family of varieties, (cf. [3], Prop. 9.7, p. 257).
Condition (ii) tells us that the families V(I;) and V(I}) coincide off ¢ = 0. At
t = 0, V(Io) presents a jump of dimension, whereas V/(Ij) is not only of the
right dimension but, in fact, it has the same Hilbert polynomial as all the other
V(I;), t # 0. This is a useful criterion for flatness. See Prop. 3.1 below.

We recall from (3] (loc. cit.) that for a smooth curve 4 and a point 0 € 7, if
S is a scheme and W C (y — {0}) x S is a closed subscheme flat over v — {0},
there exists a unique closed subscheme W' C 4 x § flat over v such that W’
restricted over 7 — {0} coincides with W. In fact, one takes for W' the closure of

Win v x S. We refer to W as the limit of the family {W:}ic(y—{0}) as t—0 and
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we write W = lim;_,oW;. Thus, in the examples above, the reader may check
that V(I}) C C x P;xP;xP, is the closure of V(I;) N ((C — {0}) x P1xP1xP,).

We can generalize the above example to the following limit equations:

leoD = :BQF = F1D (3)
¥1GoD = yoG1D,

where D, F;, G; denote homogeneous polynomials in 2z, 2;, with

ged(Fo, Fy,Go,G1) = 1. Set deg(D) = §,deg(F;) = deg(G:) = d — 6§, F° =
z,Fy — zoF? and G° = 3Gy — ¥0G1. Then the graph of the map (F°,G°),
T(po,G0), is of tri-degree (1,d — 6,d — §). The variety obtained from (3) is then
the union of I'(fo goy with Ur; x PyxPy, the r; denoting the roots of D. By
taking 1-parameter families and a saturation of ideals as before, we would expect
to “complete” the above picture by adding to each r; x P;xP; an appropriate
curve, 7,;, such that I'(go go) U U;7,; makes a one dimensional subscheme of
P;xP;xP; with the “right” Hilbert polynomial h(t) = (2d + 1)t + 1 with
respect to the ample line bundle O(1,1,1). See Lemma 2.1 below.

Instead of merely taking specific 1-parameter limits we will try a global
approach. We will start from a suitable parameter space, 4, (cf. 5) and
dominate the component of Hilb of curves in P;xP;xP; containing the graphs
by modifications of ¥4. The technique we employ is suggested by the winning
strategy of a similar case for codimension 2 complete intersection (2,2) in P,
(cf. [1]). Perhaps, much too optimistically, it may shed some light on a more
serious question as to whether a smooth specialization of a family of g.c.i. curves

in P3 may not be a g.c.i. (cf. [5] in characteristic p, [9] in higher dimension).

2. The space of graphs

Let S? denote the space of homogeneous polynomials of degree d in the variables

zo, z1. Set
4
G := ylGo = ‘_I,l()Gl ( )

where F;,G; € S?. Then the graph defined by equations (1) is just the sub-
variety of PyxP;xP; of the ideal of S generated by F and G. Note that at

{ F= ZlFo—ZoFl
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the beginning of §1 we used the pair (F,G) to indicate a holomorphic map of
bidegree (d,d). This pair was later expressed in terms of Fy, Fy, Go and Gy,
with some gcd conditions. We will abuse notation and sometimes refer to the
polynomials F, G in (4) and the pair (F,G) as “maps”. Notice that F' is an
element of S¢S! and likewise G € S¢S]. Conversely, any element of SS% can
be written in the form z, Fy — zoF; for suitable F; € S¢.

For a vector space V, we let P(V) denote the projective space of lines
through the origin in V. For simplicity of expression, we will often abuse nota-
tion as well as language, denoting a nonzero F' and the corresponding point in
projective space by the same letter. It should be clear from the context whether
we are referring to the polynomial or its equivalence class.

We also note, once and for all, that since F' is of degree 1 in the z’s and G
is of degree 1 in the y’s, gcd(F, G) must be a purely z—factor common to all
Fo, F1, Gy, G;.

We define

4 := P(5¢51) x P(Sij). (5)

Fori=1,...,d, let

ﬁdF G) € Su| F=DF®, G=DG® with D € §,(F°, %) € 84}, (O
The space of graphs of maps of P, to P;xP; of bidegree (d, d) is the open subset
of 3y consisting of pairs (F, G) such that F' and G are irreducible (and hence
ged(F,G) = 1). Now consider the open subset, ﬁd , of B consisting of pairs
(F, G) such that gcd(F, G) = 1. Observe that ¥4 contains non-graph elements:
in Example 1.1, for t = 0, we have (F,G) € 4 , but the corresponding curve
in.PyxP;xP; has two components, one of which is of tri-degree (0, 1,0) thereby
making the curve a non-graph. Nevertheless, every element in Io}d corresponds
to a curve in P;xP1xP;. We will abuse language and refer to the curve corre-
sponding to a pair (F,G) € X4 as the “graph” of (F,G) and, as before, denote
it by I'(r,q).
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Lemma 2.1.

1. For each (F,G) € éd, the Hilbert polynomial of the curve I'\rg) C
P, xP,xP; with respect to the ample sheaf O(1,1,1) is equal to (2d+1)t+1.

2. The family of curves {T'r) | (F,G) € P } is flat.

3. The induced map T : ¢ — Hilb@HDH defined by (F,G)— T'(rg) isa
monomorphism. In particular, for (Fy,G1) # (F2, G,) we have I'p, ¢,) #

I‘(F, .G,) .

Proof. Since the graph, v, of a pair (F,G) € 3 isa complete intersection in
P,xP,xP,, its Hilbert polynomial with respect to O(1,1,1) is easily computed

via the Koszul resolution,
(F,G)
00,0 "’ O(-d,-1,0) ® O(—d,0,—1)—0O(-2d,—1,—1)«0

and checked to be A(t) := (2d + 1)t + 1. Since a family parametrized by an
integral scheme is flat if and only if the Hilbert polynomial is the same for all
members ([3] p. 261), it follows that (F,G) — I'() indeed defines a morphism

T: 34 — HilbCHH,
The assertion that I' is in fact a monomorphism means the following:

Let T be a scheme and for 1 = 1,2 let ¢; : T' — zo)d be maps such that
Fotl :FOtz. Then 121 =t2.

Since t; = t; holds if their restrictions to open subsets covering T' are equal, we
may assume T’ = Spec(R). Recall that, for a vector space V, there is a natural

bijection
{T—P(V)} & {L = locally split rank 1 R-submodule of V ® R},

(cf. [8] pp. 1-3). Shrinking T if needed to trivialize L, we may assume that the

so called R—valued point ¢ : T—P(V) is in fact given by an element in a free
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R—basis of V @ R . Presently, let R be a local ring and for i = 1,2 let

{ F; = Fy(2)zo + Fu(2)z1,
G; = Gio(2)yo + Gua(2)n1
be in the polynomial ring R[zo, 1, Yo, Y1, 20, 21). Assume that the coefficients of
Fy (resp. Fy) generate R (this hypothesis means that Fy defines an R-valued
point of P(5252) because it generates a split R—submodule of S¢S} ® R) and
likewise for G;. We now assume that the tri-homogeneous ideals I; = (F1,Gy)
and I, = (F3, G;) define the same closed subscheme of (P1xP1XPy)g. It follows
from Serre’s correspondence between homogeneous modules and sheaves on a
projective space that there is some n such that z7I; C I fori = 0,1; j,k = 1,2
(and similarly with y’s in place of the 2’s ... ). Without loss of generality,
we may assume a coefficient of Fy;(z) is a unit in R. We have a relation
zpFy = AF, 4+ BG,, whence (setting y’s equal to 0) a relation zgFy = AF;.
Setting zo = 0 in the last equation we obtain 0 = A((0, 1), z) Fz1(2)z:. Since
Fy1(2)z; is not a zero divisor, we deduce a relation F; = AF;. Comparing
contents (= ideal of coefficients) on both sides, it follows that A must be a unit
in R. We have proven the equality of R-submodules, (F;) = (F;) and likewise
for the G’s.

O

Remark 2.2. Let (F,G) € ¥4 and let v = I'(r,). From the diagram of tangent

bundles sequence,

7|1|—1 — (TPlel’lel)l'r — N =N, p,xp,xP,
|
0@2) — 0(2)®0(2d)® 0(2d)

we have H(N) = S @ S%, h°(N) = 4d + 2 and h*(N) = 0. Thus
dim, Hilb(®#H! — 44 4 2 = dim 3.

This implies that By is a “good” approximation to Hilb(Z#+)1 (cf. [8] pp. 10-5,
10-8, Remark (10.4)(iii)).
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Remark 2.3. In the case of maps from P; to PyxP;, of bidegree (1,0), the

space of graphs is just
{(F,G) € P(S!S5}) x P(S,) | F is irreducible}.

For each (F,G) € P(S}S}) x P(S}), it is easily checked by a Koszul resolution
that the Hilbert polynomial of its graph I'(r,) is h(t) = 2t + 1. Thus the (com-
plete) family of curves, {I'rq) | (F,G) € P(S}S;) x P(S})}, is flat. Similarly,
for maps from P, to P;xPy, of bidegree (0,1), we obtain a complete, flat family
of curves, {I'(r) | (F,G) € P(S52) x P(S15,)}.

The reason why we consider maps from P, to Py xPy, of bidegree (d, d) rather
than the more general bidegree (m,n) maps is that the intricacies involved in
studying the boundary of the corresponding space of graphs are the same as
that in the bidegree (d, d) case. Moreover, the indexation of the various spaces

used in our construction is vastly simplified in the bidegree (d, d) case.

3. Compactifying
We wish to resolve the indeterminacies of the rational map (2.1)
I3y — HilbG4HH,

Of course one knows from general principles that the indeterminacies of any
rational map may be solved by a sequence of blbwing ups along smooth centres
(at least in char. 0). The point here is to make the resolution explicit so as to
shed light on the boundary. We shall consider only the case d = 1 in detail.

The main result is the following.

Proposition 3.1. Let 3} be the blowup of 34 along Byq.

1. The rational map T : B, -+ — Hilb®**! fails to be defined precisely along
21'1 and

2. T extends to a morphism 1 — Hilb®t!,
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Some preliminary results will be stated for general d. Our first task is to exhibit
B4q (see (6)) as the locus where a certain map of locally free Og,—modules

drops rank.

Lemma 3.2. Let O,,(—1) — 525! ® Op(sss1) denote the tautological line
subbundle over the projective space P(S2S!) and likewise for O,,(—1) — sisle
Op(sg_g}). Tensoring the first by S; ® Og, and likewise the second by S} ® Ox,
and taking direct sums defines the map of locally free Oxg,—modules,

p:0(—1)® Sl ®0,(-1)® S5 — 5:5.5,® Oz,

z¥zVy

(F® A,G® B) — AF + BG.

4
Then Ap vanishes precisely along 344 (see (5)). Furthermore we have a natural

identification a4 = P(S?) x P(S2) x P(S}).

Proof. Let Z denote the scheme of zeros of ;\p.. Let Z' be the image of the
map ¢ : P(S%) x P(S2) x P(S})>3y defined by (D, F°,G°) — (DF°, DG°).
One checks easily that ¢ is a closed embedding. The existence of a non-trivial
relation AF + BG = 0 with (F,G) € 24, A € S}, B € S, is quickly seen to
be equivalent to gcd(F,G) = D for some D € P(5¢). This proves Z = Z' at
least set-theoretically. To complete the verification, it suffices to show that Z
is smooth. For this, we argue with a local matrix representation of p. First
notice that the group G = GL(S!) x GL(S2) x GL(S}) acts naturally on
%4 and P(SY) x P(S1) x P(S}). Clearly, the map ¢ is G-equivariant and p is
G-invariant. If sing(Z) were non-empty, it would contain a closed orbit. The
sole closed G-orbit in P(S) x P(S};) x P(S}) can be checked to be the orbit
of (2¢, o, ¥o). Write

F = zo(2g + ar2§ tzy e+ a4z) + z1(@as125 + -+ + @24112})
G = yo(28 4 61287 2y + -+ 4 baz®) + y1(bay128 + - + baat12y).

Thus, F'is a local basis of O,,(—1), the a’s denote affine coordinates and likewise

for G and b’s. Multiplying F' (resp. G) by yo,y:1 (resp. To,z1) we find a local
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representation of p by a 4 x (4d + 4) matrix,

d-1 d d d d
Zgzoyo,zo 21T0Y0, ---zi’zoyo,zgzlyo, --~11=1!Io,23110y1, <21 ZT0Y1, Z9Z1Y1, - - - 21 Z1 Y1

1 ay FY ¥1 441 ...a2q41 O wenl) 0 ...0
0 0 ...0 0 o | 1 ol Qd41 ceeB2d41
1 by .. b 0 ...0 bd+1 ...bgd+1 0 )
0 0 ...0 1 ... ba [1} vzl bat1 coobags

where the top row of zzy’s indicates the ordered basis we have chosen for
SfS},S;. Performing row operations modulo the square of the ideal generated
by the a,b’s, we obtain a matrix with the third row presenting the nonzero
entries,

by —ay,...,ba — ag, —agyq,..., —a2d+1,bd+2, oy D2dyr-
This yields a total of 3d = dim 24— (d+2) elements in the ideal of 4 x 4 minors
of the matrix that have independent differentials at the origin, as desired.
(m]
The proof of the above Lemma shows that 4 > rank(x) > 3 and that
rank(p) < 4 precisely along ¥44. We thus have a rational map

p:Xq-- — Gr(4,5I5151) (M

y Mz Mgy

given by image(p|(r,)) = span(yoF, y1 F, oG, 1G) for (F,G) € By — Tyga.

We include a proof of the Lemma below for lack of a reference.

Lemma 3.3. Let X be a scheme and let 1 : E—F be a generically surjective
map of locally free Ox —modules. Put r = rank F and let Y be the scheme of
zeros of /'\1[; Let X' be the blowup of X along Y. Let m : G"(E)—X be the
Grassmann bundle over X with tautological exact sequence 0 » & — n*E —
Q — 0, where Q denotes the universal locally free quotient sheaf of rank = r.
Then

1. The restriction of 1 over X — Y defines a section of the structure map

TX-Y,

2. X' embeds in G"(E) as the closure of the image of the aforementioned

section;
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3. Y\x factors as Ejx1 — Qix+ — Fix'.

Proof. Set E' := AE ® AF* (* indicating dual). The ideal I of ¥ is the
image of the natural map, 9’ := ;\¢ ® AF* : E'=0Ox. It induces a surjection of
sheaves of graded O x —algebras, Sym,E'— @ I", whence a closed embedding ¢ :
X' = Proj(®I™) C Proj(Sym.E') = G'(E') = G'(AE) of schemes over X. By
construction, the tautological 1-quotient of E’ over G*(E') restricts to X' as the
composition E'Q O x1—I®Ox—Ox:(1), the latter being equal to the invertible
exceptional ideal. We further remark that, off the exceptional divisor, this
composition coincides with 1’. On the other hand, since 1x_y is surjective, we
obtain a section o : X —Y—G"(E). Composing it with the Plicker embedding
G'(E) C G'(AE), we obtain that the tautological 1-quotient of AE restricts
to X —Y as At. Taking into account the identification G*(E') = Gl(/r\E), we
see that « = o holds over X — Y. Hence ¢x_y factors through G"(E). The
hypothesis on 1 says X — Y is schematically dense in X. Consequently, ¢ also
factors through G™(E). Finally, since Sjx» — Ejx+ — Fix: is zero over X — Y,

it vanishes everywhere, thereby producing the factorization stated for %)x.

Lemma 3.4. Notation as in Prop. (3.1), we have:

1. B} embeds into B4 x Gr(4, S¢51S5!) as the closure of the graph of p (7);

t B
2. p extends to a morphism (still denoted by the same letter)

p: Bi—Gr(4, 52518,

)y Mty

3. for all g € X1 lying over (F,G) € 24, the 4-dimensional vector space p(n)

contains the image of p(rc).

Proof. The assertions follow from the previous Lemma by taking 1 as the dual
of p in the notation of Lemma 3.2, X = 3, and noticing that G*((S¢S1S} ®
Ox)*) = B4 x Gr(4, 525281).

) MMty
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Remark 3.5. It follows from the above that any point in ¥} can be written as
a triplet (F, G,w), where (F,G) is in B4 and w € Gr(4, S¢S1S}) is a subspace
of SfS:S: of dimension 4 containing ‘the span of y;F,z;G. The next result

gives a description of the exceptional divisor of ¥}. It also informs us what the

subspace w may look like.

Lemma 3.6. Fiz nonzero polynomials F = DF°,G = DG® with D € S?,
F°¢ S}, G° € S}. Denote by V the quotient of the vector space,

(57/(D) ® S5, @ (57/(D) ® 5,

by the subspace consisting of pairs (A, B) of the form A = G°C, B = —F°C,
with C € S%/(D). Then:
1. the map
V. — (S5¢/(D))®SLS}

(8)
(A,B) — H=AF"+ BG®

18 tnjective;
2. zfﬁ € SfS:,S; 1s a representative of any nonzero H as above, the subspace
of 5SS} spanned by (yoF y1 F, oG, z:G, H) is independent of the choice

of the representative and is of dimension 4;

3. the fibre of the exceptional divisor of B above (F,G) is isomorphic to
P(V). '

Proof. We may assume (changing variables, i.e., via the group action) that
F® = zq and G° = yo. Pick A € SYS}, B € S¢S%. Let

Suppose H represents the zero class in (5¢/(D)) ® S1S}. Then we may write
H = AD for some ) € S1S}. Say A = azo + Byo + kT1y1, where a € S, B € S

and & is a constant. Since there is no z;y; term in ﬁ, therefore k = 0. From

Azo + Byo = (azo + Byo)D (10)
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we get A —aD = Cyo, B— 8D = —Cx, for some C € S?, whence (4, B)
represents the zero class in V.

Let H be a nonzero class in the image of of the map in (8). By item 1 just
proved, there exists a unique nonzero class v in V such that H is the image of v.
Let (A, B) be a representative of v. Let H be as in equation (9). Let a € SyB €
S! and C € §%. Put A" = aD + Cyo, B' = BD — Cxo so that (A’, B') represents
the zero class in V. Put H' = (A + A')zo + (B + B')yo. One checks at once
that H' — H is in the span(yoF, v F, 20G, z:G) = span(zoyo D, zoy1 D, 2150 D).
Moreover, if H were in this 3-dimensional space, we would have a relation as
in (10) which is impossible since H is a nonzero class. By the same token,
one checks that for any H' of the form (9), if span(yoF, y: F, 20G, .G, H) =
span(yoF, y1 F, oG, 1 G, Ff’) then H and H' yield the same element in P(V).
Hence, we have an injective map

P(V) — Gr(4, 55181

1Mz ¥y

(A1 B) — Spa‘n(yOFa yle mDG) $1G, H)
We now prove 8. Say B = fBozo + Bz, with §; € S2. Since (A + Boyo, iz1)
and (A, B) represent the same class in V, we may assume B = Byz;. If Ais
divisible by D, we may set A = 0 (hence §; # 0 mod (D)). With these choices,

we now consider the curve
{’)’t = (Ft = I!DD + tB, Gg = yoD e tA)} C Ed.

We claim that 4, ¢ 44 for t # 0. Indeed, if 4, were in 3qg4, there would be a
z-factor of degree d in zoD + tz;0;. This forces t(3; and A to be both divisible
by D, contradicting the assumption that (A, B) represents a nonzero class. It
follows that {v.} lifts to a curve {7;} in X}. Since 7o = (oD, yoD) lies in Xya,
it follows that g is in the exceptional divisor X} ;. We proceed to identify the
“w”-component (cf. Remark 3.5) of 7§ in Gr(4, 5¢5.5}). Computing

YoF, — 20Gy = yo(zoD + tB) — zo(yoD — tA) = tH
shows that for all £ # 0 we have

H € p(Ft, Gt) = span(yoFy, y1 Ft, oG, 21 Ge).
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By continuity, we also get H € p(7}).

Since the argument above shows in fact that P(V) is mapped to the image
of the fibre of the exceptional divisor ovc;.r (F, G), the lemma follows by counting
the dimension of the space V in (8): dimV = 2d + 2d — d = codim(Z44, Za).

a

Remarks 3.7. 1. The reader may recognize V as the normal space to 44 at
the point (F°D,G°D).

2. We also observe for later use that, for H as in (8), we have that gcd(yoF,
¥1F, 20G, z,G, H) is a polynomial involving no z’s or y’s and of z-degree at
most d — 1.

Let us now return to the d = 1 case and proceed to the

Proof of (3.1). We may think of a point in X} as a triplet (F,G,w), where
w denotes a 4-dimensional subspace of S} S1S} containing the span of y;F, z;G.
Away from the exceptional divisor, 2%,1: we have that w is completely deter-
mined by F' and G whereas on the exceptional divisor, w requires the extra
generator H as in (8). Let I, denote the ideal of S spanned by w. The map
w — I, clearly restricts to the rational map I’ we had to Hilb**! from Lemma
2.1, and will henceforth be denoted by the same letter.

To see that ' cannot extend to X, it suffices to exhibit one-parameter
families v;; emanating from the same point, say (2021, 20y1) € X1,1, such that
the corresponding limit curves ;0 and 4, are distinct points in Hilb®*!. For

instance, consider the one-parameter families,

T, = (2021 + tz120, 20Y1)
Y20 = (201, 201 + t21Y0).

Proceeding as we did in (1.2), we get
M0 = lim o1 = (201‘1, Zoy1,11130!/1)
Y20 = lim 072, = (2021, 2oy1, Zlfﬂlyo)
which are easily seen to be distinct curves in P;xP;xP;.
To prove assertion (2) of (3.1), it suffices to check the constancy of the
Hilbert polynomial (h(t) = 3t + 1). We know from Lemma (2.1) that the
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Hilbert polynomial is correct on the complement, f}l, of the exceptional divisor
%1, Let (F,G, H) € X}, with H as in (8). Without loss of generality we may
choose coordinates such that F' = 229 and G = y92o. We compute a resolution
for the ideal I := (F,G, H) in S. Let S*#* denote S:S5iS¥*. Assuming a relation
AF + BG+ CH =0 with A, B,C € S, we may write

Zo(AEo + Byo) = —-CH.

Since ged(zo, H) = 1 (cf. Remark 3.7), we obtain C = C'z for some C' € S.

Substituting this into the previous equation and cancelling out zo we have
Azo + Byo = —C'H.
Now H = azoyo + Bzroy: + 7Z1¥0 With a, 8,7 € S1. So
zo(A + C'ayo + C'By1) = —yo(B + C'yz:)

and hence B + C'yz; = B'z, for some B’ € S. Putting all these together we

obtain
A= —C'ayo — C'By: — B'yo
B = B'zg — C'yz, (11)
C = C'z.

thus producing the resolution,
0—SeS—SeSeS—I—0,

where the first map is given by (B',C') — (4, B,C) as in (11) and the second
map is given by (4,B,C)— AF + BG + CH. Now dim §*** = (¢ + 1). Also

from
0-—>St_1'2_1"—1 ® St—z,t—l,t-l_)st—l,t—l,t @ S!—I,t,t—l o) St—l,t—l,t—l_)It,t,t__)O
we obtain
dim I*** = 263(¢ + 1) +¢3 — (¢ + (¢ — 1)) = t* + 3¢?

and thus
h(t) = dim S** — dim I*** = 3t 4+ 1
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as desired. This shows that X} parametrizes a flat family, thereby producing
the morphism T into Hilb%*?,

Remarks.
(1) We believe I' : £} -Hilb**! is in fact an isomorphism onto its image.
(2) In a preliminary version of this note we had conjectured the following to be
true:
There is a sequence of blowups along smooth centres:

Ty « B} « ..« 3
1
Hilb(2d+1)t+l

where the vertical arrow extends the rational map I' defined in (2.1). How-
ever, we have checked that for d = 2 one needs in fact two more blowups. In
this case the centres are again smooth and defined by the singularities of an
appropriate multiplication map. Blowing up X¥;; C X; produces (as in the
d =1 case) a rank 4 locally split subbundle A, C S2S15]. Next, we look at
the multiplication map A4 ® S} —S2S.S; and check that it drops rank on the
proper transform X3, of X, ;. Blowing it up, produces £3 endowed with a rank
8 locally split subbundle 4g C S2S.S). In order to produce a flat family of
curves in P;xP1xP; completing the family of graphs of bidegree (2,2) one still
needs to blowup the loci where multiplication by S} and then by S} (in either
order) drops rank. It turns out that the map from the resulting parameter space
to the appropriate Hilb contracts certain loci. In fact, it is not clear yet what
kind of extra structure has been added to the boundary elements. We hope to

report on this elsewhere.
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