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E-IDEALS IN BARIC ALGEBRAS

Abdén Catalan S.*

1. Introduction

Let F be a field of characteristic zero, A an algebra over F, not necessarily
associative but commutative. If w : A — F is a nonzero homomorphism,
the ordered pair (4,w) is a (commutative) baric algebra over F,w its weight
function and for each z € A,w(z) is its weight. Elements of weight 0 form an
ideal NV of codimension 1. The concept of baric algebra has been introduced by
L.M.H.Etherington [3]. We define two classes of basic algebras.

I) Let 71, ...,7n—1 be arbitrary elements in the field F such that

1+'Yl +---+7n—l =0.
The formal expression
p(z) = 2" + yw(z)z" ! + ... + pprw(z)" e, (1)

is called a train polynomial with coefficients 71, ..., 7,_1 and degree n. If a baric

algebra (A,w) satisfies identically
p(a) = a" + nw(a)a™ ' + ...+ yo_yw(a)* e =0, alla € A (2)

it is called a train algebra. Here a* is defined by a! = a and a* = a*'a for
k > 2. If p(z) has mininal degree among those train polynomials satisfied by A,
it is called the train equation of A and n is the rank of A. For these algebras,
N = {a | w(a) = 0} is a nil ideal.

“The results presented in this talk are contained in the paper “E-ideals in basic algebras”,
by myself and R. Costa. This author was supported by financial support from the projet
DIUFRO 9204, Temuco, Chile.
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IT) Recently, Walcher [4] proved some results about baric algebras satisfying

(a®)" = w(a)’a ©)

These algebras have a Peirce decomposition A = Fe & N% ® N_% relative to

an idempotent e, where N% ={a€ N |ea= %a},N_% ={a € N|ea=—3a}.
It is not hard to prove that the dimensions of these subspace are independent

of e and so the type can be defined as (1 + dimN%, dimN_;). Moreover

N:gN_l,NlN_l__Nl_ andNE:_gN_x_ (4)

2 2 2 3 2 2 2
The following set of equations hold for v € N 1 and v € N_% :

)ut=0 vi) v (uv) =0

i1) 2u(uv) = u?v  vii) 2(wv)? + uPv? =0

111) 2(uv)v = wv?  viis) (uv)v? =0 (5)
w)v®=0 iz) (v2)?2 =0

0) (@) =0

For this, impose the identity (z?)* = w(z)z to a generic vector ¢ = w(z)e+
Au+pv, where A, p € F and equate like powers of A and p. Let now z = aetu+v
be an element of 4, so a = w(z). Then for k > 1,

z* = afe+ a7 (u+ apv) + aF 2 (b’ 4 cruv + dpv?) + 3 (erulv + fruv?) (6)

where ay, ..., fi are suitable rational numbers. Monomials in u and v of degree

k+1 k

at least 4 will disappear, due to relations (5). By imposing that z*** = z*z, we

get the following system of difference equations, with initial values a; = 1,b; =
Cl=d1=€1=f1=01

2ap41+ar+1=0
2bk+1+bk—2=0
2ck+1—ck—2ak—2=0
2dk+1 +dy —2a, =0
2ek+1+ek—2bk—ck=0
2fkp1 — fe —ce—2d =0

It is easy to prove by induction (but we do not do the details here) that:

ak+ck=1,ak+2bk=1,2dk+2ek+ak=1,ek=f,¢‘v’k21 (7)
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Definition 1. The generalized Etherington’s ideal (in short, E-ideal) of the
baric algebra (4,w), associated to the train polynomial p(z), is the ideal of A
generated by all p(a) = a” + nw(a)a™ ! + ... + Ya_1w(a)"'a,a € A. This ideal
will be denoted E4(1,m,...,¥n-1) or E4(p)

The Etherington’s ideal is E4(1, —1)(see[3]).
Observe that E4(p) C ker w, A/E4(p) satisfies p(z) = 0 and E(p) is the
smallest ideal 7 C N such that A/I satisfies p(z) = 0. Moreover, (A4,w) is a

train algebra when some of its E-ideals is zero.

Proposition 2. For every baric algebra (A,w) and every train polynomial p(z),
Ea(p) C Ea(1,-1) .

Proof: Let E4(n,k) be the E-ideal associated to the train polynomial z" —
w(z)**z*¥(1 < k < n—1). For any given train polynomial (1), we have for
a € A:p(a) =a"+y w(a)a ' 4.+ yqw(@)* la = a"— (1472 4 ... + Yn1)
w(a)a™ ' +.. +yn-1w(a)* e = (a" —w(a)a™!) — yaw(a)a™ ! —w(a)a™?) —...—
Yn-1w(a)(a™ ! —w(a)"2a) € Eq(n,n—1)+Eq(n—1,n—2)+...+ E4(n—1,1)
which implies that

EA(p) C EA(n,n - 1) + "izEA(‘n - l,k)
k=1

Similarly, for every k = 1,2,..,n — 2, E4q(n — 1,k) C Ex(n — 1,n —
n-3

2) + ¥ E4(n — 2,r). By repeated application, we get finally that Ea(p) C
r=1

i E4(k,k —1). But each of the ideals E4(k,k — 1) is contained in E4(1,—1),
k=2
according to

a* — w(a)a*! = (...(a* — w(a)a)...)a € E4(1,-1).0

As a rule, different train polynomials may give rise to the same E-ideals, so

we introduce the following equivalencia relation.
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Definition 2. Let Q be a fixed class of baric algebras over the field F. Two
train polynomials p(z) and g(z) are equivalent modulo  when E4(p) = Ea(q)
for every A € Q. '

2. E-ideals for algebras satisfying (z%)? = w(z)%z

Denote by A, ..., F the sequences (ak)kear, -, (fi)kenr so that (7) means
A+C=1,A+2B=1,2D+2E+A=1,E=F (™

Where 1 = (1,1...). Let k > 1, A = (a,ax-1,...,1) € F* and similarly
B, Ck, Dy, Eg, F, 1;, so that relations(7’) hold also for these vectors of F*,

A given train polynomial p(z) = z" + yyw(z)z" ! + ... + Ya_1w(z)" 'z can
be identified with the vector p = (1,71,...,7n-1) € F™. The set of all train
polynomials of degree n is then identified with the linear variety of F™ defined
by the equations z; + ... + £, = 0 and z; = 1. Let <,> be the usual bilinear
form in F™.

When replacing each power z* of = given by (6) into p(z), we get p(z) =<
p, 1, > a"e+a™ < p, 1, > ut < An,p > v] +a™ 2[< Bp,p > ul+ < Cp,p >
w+ < Dp,p > v2) 4 a™ 3 < [En,p > vlv+ < F,,p > wv?].

As < p, 1, >=14+ 7 + ... + 9n—1 = 0, the first two summands disappear.
Also by (7’), we can express A,, Cy, D,, and F, as linear combinations of B,, E,
and 1,, thus getting:

p(z) = —2a™!' < Bp,p > v+ o™ %[< B,,p > u? 42

< Bn,p > w+ < Bp— Epyp > 0¥+ "% < B, p > (v’v 4 uv?) (8)

It is now possible to prove that there are 3 equivalence classes of train

polynomials, described geometrically by the following propositions.

Proposition 2. If the vectors p and B, are not orthogonal then E4(p) =
N;_N 1®N_,L = EA(].,—].).

=L L
2 2

Proof: We already know that E4(1,—1) = Ny N_1 ®N_j (see [1]) and Ea(p) €
E4(1,-1). To prove the proposition, it is enought to show that E,(p) 2 N_Tx.
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vaeN_%, then p(e+v) = —=2 < Bn,,p > v+ < Bo— E,,p > v? and p(e—v) =
2< Bn,p>v+ < B,—E,,p>1v? s0 ple—v)—p(e+v)=4< B,,p>v and
v=1<Bn,p>7" (p(e —v) - pe +v)) € Ea(p). O

Proposition 3. Ifp and B, are orthogonal but p and E, are not, then Eu(p) =
N;_ N2, ® N?,.
5 32 2

Proof: With < B,,,p >= 0, the equality (8) reduces to
p(z) =a"? < En,p> V240" < En p > (u?v + uv?)

=a"'3<En,p>(u’v—av’+uvz)EN%Nf%$Nf% (9)

It is easy to see, using (5), that this subspace is an ideal. This implies that
Eui(p) C N 1 N2 ! ® Nf;_ . For the converse inclusion it is enough to prove that
NE% C E4(p) when p and E, are not orthogonal. Suposse initially v2 € Nf%.
Then p(e +v) = — < E,,p > v? 50 v? = — < E,,p >~ p(e +v) € Ea(p).
For an additive generator v,v; of Nf% , it is enough to remember that 2v,v, =
(v1+v2)" — v} —vi € Eg(p). O

Proposition 4. If p is orthogonal to both B, and E,, then E (p)=0

Proof: It is enough to see from (9) that p(z) = 0 identically when p and E,
are also orthogonal. O

Remark. The E-ideals for algebras satisfying (22)? = w(z)%z are determined
by 22 —w(z)z, 2 —jw(z)z?— lw(z)*x and z*— 3w(z)?z?— lw(z )3z respectively,
in minimal degrees. In particular all algebras satisfying (z*)* = w(z)% are train

of rank 4, as remaked by Walcher, [4, Eq.(11)].
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