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MINIMAL POLYNOMIAL IDENTITIES
OF BERNSTEIN ALGEBRAS
A COMPUTER APPROACH

Luiz Antonio Peresi

1. Bernstein Algebras.

A Bernstein algebra is a pair (A,w), where A is a commutative nonassociative
algebra over a field K and w : A — K is a nonzero algebra homomorphism such
that z2z? = w(z)?e? (for all z € A). It is well-known that if (4,w) is a Bernstein
algebra then the homomorphism w is unique. See the papers (3,4,5,6,11].

In nonassociative algebra the research is concentrated mainly in the study of
varieties of algebras, i.e., the study of algebras that satisfy a set of polynomial
identities. The class of Bernstein algebras is not a variety of algebras since it
is not true that every subalgebra of a Bernstein algebra is a Bernstein algebra.
Thus an interesting problem is to find the minimal variety of algebras containing
Bernstein algebras. In other words, the problem is to find the minimal identities,
i.e., lowest degree polynomial identities satisfied by any Bernstein algebra which
are not consequence of commutativity.

Let (4,w) be a Bernstein algebra. If a, b, c are elements of A the associator
(a,b,c) is defined by (a,b,c) = ab.c — a.bc. For all z,y € A we have

(zzzz,y,mZ) = w(zz)(zzay:zz) =0
and thus A satisfies an identity of degree 7. This shows that the degree of

minimal identities is < 7. In [13] we proved that the degree is 6 and that the

minimal identities are:

(y,2%2% z) — 2(yz?, z,2%) + 2y(z?, 22, ) + 2(z, yz.2,2%) = 0, (1)
(22$2’y’ 2) - 2(:52)y: :!:):l:2 =0. (2)
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The Bernstein algebra (4,w) is called exceptional if it satisfies (zy)(zy) =
w(zy)zy (for all z,y € A) and normal when satisfies %y = w(z)zy (for all
z,y € A). Exceptional Bernstein algei)ras satisfy only one minimal identity of

degree 5 which is
(ae,bd,c) + (be,cd,a) + (ce,ad,b)+
(a,bd,ce) + (b,cd,ae) + (c,ad,be)+ (3)
(a,e,b).cd + (be,c).ad + (c,e,a).bd=0.

The minimal identities of normal Bernstein algebras have degree 4 and are

the following:

z’z? = 22, (4)

3yz’.z = 2(yz.z)z + yz°, (5)

2zy.zy = z’y.y + y’z.z, (6)

(z,y2,t) + (z,9t,2) + (¢, yz, 2) = 0. (7

Identity (6) implies (4). Identities (5), (6), (7) are independent.

Nonassociative algebras that satisfy the identity (4) or (5) were studied
extensively (see, for instance, Albert [1] and Hentzel-Peresi [10]). Bernstein
algebras which satisfy (4) have been characterized by Walcher [9] and those
satisfying (5) by Correa [12].

The problem of finding the minimal identities of Bernstein algebras, al-
though simple from the theoretical standpoint, is complicated from the compu-
tational point of view. To solve the problem we have to handle 34 equations of

degree 6. This is done by using the computational method described below.

2. Computational Method.

This method was introduced by Hentzel [7] in 1977 and consists in converting
equations into matrices which can be manipulated quickly and easily on the
computer. In [13] the method was slightly modified in order to increase its

efficiency and to make the conversion of equations into matrices and vice-versa



MINIMAL IDENTITIES OF BERNSTEIN ALGEBRAS 221

much clear. The method is general and can be applied to solve other problems
in algebra.

We denote by S, the symmetric group and by F'S, the group algebra. When
the characteristic of the field F' is zero, F'S, is semisimple and then it is iso-
morphic to a direct sum of matrix algebras. A map that takes F'S, into one of
this summands is called an irreducible representation of F'S,,.

Clifton [8] gives a procedure which calculates an irreducible representation.
For each permutation 7 the procedure calculates a matrix A,. The represen-
tation is then given by the map m — Aj'A, (where I denotes the identity
permutation).

In what follows we use the map # — A,, which is not a representation
since Ay, = ArA7'A,, but gives a correspondence between permutations and
matrices good enough for our purposes.

Let z4,...,z, be indeterminates. Let f(zi,...,z,) be an expression where
each indeterminate z; appears once in each term. Supose that the terms of the
expression can be classified in c diffeent types which we denote by T3,...,T..

Thus we may represent f(zi,...,,) as the direct sum
fl(zl,...,z") @fg(wl,.. .,J:n)@... @f,:(l'l,...,.’l?")

where in the expression fi(z1,...,z,) appear only terms of type T;. Consid-
ering how the positions of the variables z;,z,...,z, are changed we identify
fi(z1,...,z,) with the element Y, cs. asri)w of FS,.

Using this identification, we represent an expression f(zi,...,z,) as an ele-
ment of FS, ® ... ® FS,. Given the expressions f()(zy,...,z,),...,
f*+(zy, ..., z,), let L be the FS,-module generated by the first k expres-
sions. Thus the expression f(**1) is a consequence of ) ..., f*) if and only
if f*+1) € L. The map m — A, which takes F'S, to the algebra M;(F) of all

f % f matrices induces the map
P:FS,®...®FS, > My(F)®...® My(F)

which takes L to P(L). Note that an element of P(L) is a direct sum of ¢ f X f
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matrices. It follows that f(**1) ¢ L if and only if P(f+1)) ¢ P(L) for all maps
P determined by all maps = — A,

We thus have an efficient meth.od to perform calculations with equations.
For each map 7 — A,, the equation f(")(zl,...,:c,.) = 0 is represented by
a direct sum of f x f matrices. Considering all equations f(l)(zl,...,z,,) =
O 5 55 Py, . 0 zn) = 0 we obtain a block matrix. We calculate the rank of
this matrix including and not including the rows that come from the equation
f%*1)(2y,...,2,) = 0. I the rank is the same for all maps # — A, then the
k + 1-th equation is a consequence of the first k equations.

Professor Irvin Roy Hentzel of Iowa State University created a software
called CRUNCH which calculates the block matrix and reduces it to its row
canonical form. The input is a set of equations and the output is the row
canonical form for each map ™ — A,.

We used the method to search for degree five polynomial identities which
hold for all Bernstein algebras but is not consequence of commutativity. We
found none. We then searched for identities of degree 6.

Using the equation

9(a,b,¢c,d) = 2{ab.cd + ac.bd + ad.bc} — {w(ab)cd + w(cd)ab + w(ac)bd+
w(bd)ac + w(ad)bc + w(bc)ad} = 0

(the linearized form of equations z2z? — w(z)*z? = 0) we obtain 8 equations of

degree 6:
g(a,b,c,d)e.f =0, g(a,b,c,d).ef =0,
g(ae,b,c,d)f =0, g(ae,bf,c,d) =0,
g(ae.f,b,¢c,d) =0, w(f)g(a,b,c,d)e =0,
w(f)g(ae,b,c,d) =0, w(ef)g(a,b,c,d) = 0.

These equations involve 11 types:

L. w(R)(RR.RR)R  2.w(R)(RR.R)(RR) 3.w(RR)(RR.R)R
4. w(RR)(RR.RR) 5 w(RRR)(RR.R)  6.w(RRRR)RR
7.(RR.RR)R.R 8. (RR.RR).RR 9. (RR.R)R.RR
10. (RR.R)(RR.R)  11. (RR.R).RR)R



MINIMAL IDENTITIES OF BERNSTEIN ALGEBRAS 223

Using only the commutative law we get 26 equations which involve these types.

For example, for type 4 we obtain:

w(ab)(cd.ef) — w(ba)(cd.ef) = 0,
w(ab)(cd.ef) — w(ab)(dc.ef) =0,
w(ab)(cd.ef) — w(ab)(ef.cd) = 0.

We have 34 equations of degree 6. For each map m — A,, we use these equations
to create a matrix which contains 34 x 11  f x f blocks. The first 26 f rows of
this matrix contain the equations from the commutative law. We reduce these
26f rows to row canonical form. These reduced rows represent all equations
implied by commutativity. Then we reduce the 34f tows to row canonical
form. The additional stairstep ones which appear in this last row canonical
form represent all the equations satisfied by all Bernstein algebras (and that
are not implied by the commutative law).

We look for additional stairstep ones which are located under the types not
involving the homomorphism w, i.e., types 7, 8, 9, 10 and 11. Finally we verify
that these stairstep ones are determined by identities (1) and (2).

A similar procedure was used to obtain equations (3) - (7).
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