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148 R. MIRANDA

These notes, although revised somewhat after the lectures were given, repre-
sent a faithful record of the mini-course on elliptic surfaces which was delivered
in August 1992 at the 12** Escola de Algebra. I am happy to express my deep
gratitude to the organizers, especially Professors Avritzer and Vainsencher who
were responsible for the algebraic geometry session, and to Professor Spira who
was the over-all coordinator. The week we all spent in Diamantina was one of
the most mathematically stimulating and personally enjoyable I can remember,

and I was honored to have been a part of the program.

1 Elliptic Curves, Elliptic Surfaces, and Classification
Questions

1.1 Curves and Elliptic Curves

Compact complex curves are usually classified, at least initially, by the topolog-
ical genus g, which can be any natural number: g > 0. However this is not the
coarsest classification possible. In fact, they can be classified in the broadest
way into three classes, which arise in several ways. Possibly the easiest way
to see the three classes is to classify a compact complex curve by its universal
covering space, which is then a simply connected (but not necessarily compact)
Riemann surface. The only simply connected Riemann surfaces, up to analytic
isomorphism, are the Riemann sphere, the complex plane, and the unit disc
in the complex plane. These three possibilities for the universal cover give the
three broad classes.

These three broad classes are determined by the genus. If a curve has genus
0, then it is isomorphic to the Riemann sphere. If a curve has genus 1, then its
universal cover is the complex plane. If a curve has genus at least 2, then its
universal cover is the disc.

A second way of seeing this classification is by studying the tangent bundle
of the curve. For the Riemann sphere with genus 0, the tangent bundle has

positive degree (degree 2). For a curve of genus 1, the tangent bundle is trivial
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(and has degree 0). For curves of genus 2 or more, the tangent bundle has
negative degree (equal to 2 — 2g).

In these lectures I will concentrate on curves of genus 1 and in particular
1-dimensional families of such curves. Recall that a curve of genus 1 can be
made into a group; this is inherited from the group law (of addition) on the
universal cover C. Taking the group law into account, we have the following
terminology.

An elliptic curve (E,0) over a field K is a complete curve E of genus one
defined over K, together with a given point 0 defined over K. One is often sloppy
and refers to the elliptic curve as E alone, suppressing the given point in the
notation.

Note that we have called the chosen point 0; it is usually taken to be the
origin of the group law on the K-rational points of the elliptic curve.

There are several quite common ways that elliptic curves arise in nature.
Example 1.1.1

Fix a non-real complex number 7, and denote by A(r) the subgroup of C gen-
erated by 1 and 7:

A(t) = Z o Zr.
Then E = C/A(r) is an elliptic curve over C. The chosen point is of course
the class of 0.

Example 1.1.2

Let K be any field, and let E C P% be a smooth cubic curve with a given flex
point p defined over K. Then (E, p) is an elliptic curve over K.

Example 1.1.3

Let K be any field of characteristic unequal to 2, and let E be the double cover
of P} branched over co and three other distinct points, which as a divisor of
degree 3 on P} is defined over K. Then (E,0) is an elliptic curve over K,
where 0 is the point over co. Such an elliptic curve can always be written as

y> = f(z), where f is a polynomial of degree 3 in K|[z].
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Example 1.1.4

Consider the curve given by the equation y> = z® 4+ Az + B, where
A and B are in a field K. This is the famous Weierstrass equation, and if
A = 4A® + 27B%is not zero in K, then this equation defines a smooth curve
E, of genus one, with a single point 0 at infinity. (E,0) is an elliptic curve
over K. This equation is the one relating the Weierstrass P-function and its
derivative (up to some constants), for an elliptic curve as in Example 1.1.1. In
general, any elliptic curve over a field of characteristic unequal to 2 or 3 can be

defined by a Weierstrass equation; one requires A # 0 for E to be smooth.

Elliptic curves over algebraically closed fields are themselves classified by a
single number, the so-called J-invariant. For a curve given by an Weierstrass
equation y> = z® + Az 4 B, the J-invariant is

443 443
J=J(A,B)=-—A— = B n
Two elliptic curves over a field K are isomorphic over the algebraic closure of
K if and only if they have the same J-invariant.
There are many references for the theory of elliptic curves; two recent books

are [Sil] and [Hu].

1.2 Surfaces and Elliptic Surfaces

Moving to the next dimension, that is, studying compact complex surfaces
having complex dimension two, involves a quantum level leap in complexity
(pardon the pun). The classification of surfaces is still much studied, but it is
fair to say that the analogue of the three-class description for curves is well-
known, and this is called the Enriques-Kodaira classification.

The generalization from the curve cases does not use universal coverings (not
anywhere near enough is known about simply connected complex surfaces) but
takes the tangent bundle approach. In fact, things are generally dualized a bit
and the cotangent bundle of 1-forms Q! (which has rank 2 for a surface) and its

second exterior power A* Q2! = Q2 of 2-forms are used. The bundle Q? has rank
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one, and is therefore somewhat easier to work with and is in fact preferred: it
is called the canonical bundle of the surface, and is denoted by K.

On curves, rank one bundles have degrees, and this was used to put curves
into three classes (by the sign of the degree). On surfaces, rank one bundles
do not have degrees, so something a bit more complicated must be introduced:
the Kodaira number of the bundle. The Kodaira number of any line bundle
L measures the growth rate of the dimension of the vector space HO(L™) of
sections of tensor powers of the bundle, and for a surface and its canonical
bundle, this growth rate is denoted by k.

The same kind of definition can be made for compact complex varieties of
any dimension d (using growth rates for sections of tensor powers of the bundle
of d-forms Q¢). In other words: the dimension of H°(K™) grows like n*. (If this
vector space is empty for all n, we set kK = —c0.) In general, & can take on the
values —00,0,1,...,d, where d is the dimension of the complex manifold.

For a complex curve, we have

k = —oo if H°(K™) = 0 for all n.

£ =0if dim H°(K™) is bounded for all n.
& = 1if dim H°(K") grows linearly with n.

and for a complex surface, we have:

k = —oo if H'(K™) = 0 for all n.

k= 0if dim H°(K™) is bounded for all n.

& = 1if dim H°(K™) grows linearly with n.

& =2if dim H°(K™) grows quadratically with n.

Notice that for curves (d = 1) the Kodaira dimension gives the three broad
classes mentioned above; The Riemann sphere is the only curve with k = —oo,
elliptic curves have k = 0, and curves of genus at least 2 have k = 1.

Now a striking thing happens in higher dimensions. If a variety X has
& strictly between 1 and its dimension d, then there is a fibration structure,
namely a rational map f: X — Y, where Y has dimension equal to «, and the
fibers of f have Kk = 0. Thus to classify varieties, broadly speaking, one must

concentrate on the following problems:
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a. Classify varieties with K = —oo.

b. Classify varieties with & = 0.

c. Classify varieties with £ = d.

d. Classify fibrations of K = 0 varieties.

Since the only k = 0 curves are the genus one curves, fibrations of genus one
curves play a central role in classifying varieties of dimension at lecst two. In
dimension equal to two, a complex surface with a fibration of genus one curves
is called an elliptic surface. All k = 1 surfaces are elliptic surfaces. Let us be

more precise:

Definition 1.2.1 An elliptic surface is a complez surface X together with a
holomorphic map # : X — C from X to a smooth curve C such that the

general fiber of 7 is a smooth connected curve of genus one.

Note that we have not said that the general fiber of 7 is an elliptic curve,
which might strike you as more logical. This would imply that there is given in
each fiber a chosen point, which would mean that a cross-section for the map
m would be given. This is considered a special (though fundamental) case and
we just agree to abuse the language in this way.

An elliptic surface # : X — C is smooth if X is a smooth surface. It is
relatively minimal, or a minimal elliptic surface if X is smooth and there are
no (—1)-curves in the fibers of .

We will call a curve on X wvertical if it lies in a fiber of 7. We will otherwise
call it horizontal. Thus a minimal elliptic surface has no vertical (-1)-curves. It
may well have horizontal ones, however, and therefore not be a minimal surface
in the sense of surface theory; it will only be “minimal elliptic”.

Wesay m: X — C is an elliptic surface with section S, or simply with
section, if a section s : C — X of 7 is given; the image of s is the curve S on

X.
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We say that X is an elliptic surface over C if we wish to specify that C is
the base curve. For example, an elliptic surface over P! has a smooth rational
base curve.

Finally, note that any elliptic surface X over a curve C can be viewed as a
curve of genus one defined over the function field K(C). There is in fact a 1-1
correspondence between these two notions, if one sticks to relatively minimal
elliptic surfaces. In this correspondence, K(C)-rational points of the genus one

curve correspond to sections of the elliptic surface.

1.3 How Elliptic Surfaces are Classified

Jacobian Surfaces

Elliptic surfaces are themselves classified in several ways. Probably the
easiest class of elliptic surfaces to understand (and the most important for the
classification) is the class of elliptic surfaces with a chosen section Sp.

Such a surface arises from any elliptic surface X over C by considering the
elliptic surface as a curve E of genus one over K(C), then taking the Jacobian
curve A of E, which is defined to be the group of divisors on E of degree 0. A has
a natural K(C)-rational point (namely the 0 divisor), and so the corresponding
elliptic surface to A has a natural section. For this reason elliptic surfaces with
a section are called Jacobian surfaces. Given a section, that section is always
used as the zero of the group of sections.

Jacobian surfaces can always be written with a Weierstrass equation
=2+ Az’ + B

where A and B are functions on the base curve. More precisely, there is a
natural line bundle L on C, called the Weierstrass bundle, and A is a section
of L* and B is a section of L. The bundle L is the conormal bundle of the

zero-section So. The discriminant A is then a section of L'2.

Multiple Fibers, Local Obstructions, and the Tate-Shafarevich Group
Given the good situation with understanding Jacobian surfaces, (the exis-

tence of a nice equation like the Weierstrass equation makes life much easier!)
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one is led to ask: how far is the general elliptic surface from a Jacobian? This is
of course equivalent to asking: what does it take for an elliptic surface to have
a section? '

Firstly, if an elliptic surface has a section S, then no fiber can be multiple;
every fiber must have at least one vertical curve of multiplicity one, through
which the section passes. Conversely, if a fiber has a multiplicity one component,
then at least locally one can find a section.

Hence the local obstruction to finding sections of elliptic surfaces (or of
curve fibrations in general) is the existence of multiple fibers. Now multiple
fibers can be created on an elliptic surface by a process called the logarithmic
transformation. Moreover the inverse of this operation will revert multiple fibers
to fibers without multiplicity. This operation is quite analytic, and may change
an algebraic surface into a non-algebraic one; but in any case it can be performed
at will, and is rather straightforward. So one can always take an elliptic surface,
and if there are any multiple fibers, perform inverse logarithmic transformations,
to arrive at an elliptic surface with no multiple fibers.

Such a surface with no multiple fibers has therefore no local obstructions
to finding sections. Hence the only obstructions must be global in nature: is
it possible to patch together the local sections into a global section? This is a
cohomological-type problem, and is measured by the Tate-Shafarevich group.

So a somewhat satisfactory answer to the question of whether a given elliptic

surface X is a Jacobian is to answer the following:
a. Are there multiple fibers for X? (If so, X is not a Jacobian.)

b. If there are no multiple fibers for X, does X represent the zero element

in the Tate-Shafarevich group? If so, X is a Jacobian. (If not, not!)

In some special cases of interest the Tate-Shafarevich group is zero, in par-
ticular for rational elliptic surfaces. Therefore in these cases X is a Jacobian if
and only if X has no multiple fibers.

A good discussion of these matters can be found in [Sf].



ELLIPTIC SURFACES AND THE MORDELL-WEIL GROUP 155

The J-map

An important invariant associated to an elliptic surface is it J-map. Recall
that any genus one curve E has a J-value, which classifies the isomorphism type
of E. Therefore if f: X — C is an elliptic surface, the varying elliptic curves
f71(c) for ¢ € C give varying J-values J(c) := J(f*(c)). This gives a map,
called the J-map, from the points of C over which the fibers of f are smooth, to
the complex plane C. This map naturally extends to a holomorphic map from
all of C to the projective line P!, which is also called the J-map.

The J-map gives an’alternate way of classifying elliptic surfaces. A surface
and its Jacobian will have the same J-map, since an elliptic curve E and its
Jacobian A are isomorphic over the algebraic closure of the defining field. Hence
the J-map is only useful for distinguishing between Jacobian surfaces. Two
non-isomorphic surfaces can have the same J-map, unfortunately. If ¢ is any
function on the base curve C, then the two Jacobian surfaces defined by the

two Weierstrass equations
yvi=2*+ Az’ + B
and
y? =2+t Az’ + t°B
will have the same J-map. On the other hand they will not be isomorphic if ¢

has any simple zeroes. Fortunately, this is the only way two Jacobians can have

the same J-map, so actually the J-function is a rather good classifying tool.

Numerical Invariants

Finally I want to simply list the most common numerical invariants for a
smooth minimal Jacobian elliptic surface f : X — C, with section S. Let L be
the conormal bundle to S, viewed as a line bundle on C, let d be its degree,

and let g be the genus of C.
Lemma 1.3.1

a) X is a product surface (isomorphic to C x E for some elliptic curve E)
if and only if L is the trivial line bundle Og¢.
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b) The canonical class Kx of the surface X is f*(K¢ + L). In particular,
K% =0, and Kx is numerically equivalent to d + 2g — 2 fibers of f.

c) The irregularity q of X is equal to the genus g of C if X is not a product.

d) The holomorphic Euler-Poincare characteristic x = x(Ox) of the struc-
ture sheaf Ox is equal to the degree of L: x = d.

e) If X is not a product, the geometric genus p, of X isp, =d +g— 1.
f) If S is any section of X, then 5? = —d.

It is not hard to make computations for the plurigenera of X, and from this
to place Jacobian surfaces surfaces in the over-all classification of surfaces. The

result is the following.

Lemma 1.3.2

a) Let g=0. Then X is
a product E x P! ifd = 0,
a rational surface ifd = 1,
a K3 surface if d = 2, and
a properly elliptic surface (i.e., k=1) ifd > 3.

b) Let g=1. Then X 1is
an abelian surface (a product) if L = Oc.
a hyperelliptic ("bielliptic” in Beauville’s notation, see[B2]) surface if L
1s torsion of order 2, 3, 4, or 6, and
a properly elliptic surface ifd > 1.
In case X 1s hyperelliptic, the order of Kx is that of L.

c) Let g > 2. Then X is a properly elliptic surface.

The theory of elliptic surfaces has received many treatments, starting with
Kodaira’s papers [K1], [K2]. For general surface theory one can consult [B2],

[BPV], or [SF]. More information on the Kodaira number & can be found in
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the text by litaka [li], and general classification of surfaces and elliptic surfaces
(especially in characteristic p) can be found in [BMu]. The reader may also
wish to consult Dolgachev-Cossec [CsD] and the notes from lectures given by

the author in Pisa in 1988 [M5]. This really only scratches the “surface”!

2 Singular Fibers and Sections of Elliptic Surfaces

Let f: X — C be a smooth elliptic surface over a curve C. Over all but finitely
many points ¢ of C, the fiber f~!(c) will be a smooth elliptic curve. Those
fibers which are not smooth are called singular fibers, and for elliptic fibrations
these are quite well understood.

One usually restricts oneself to singular fibers on minimal elliptic surfaces,
since one can make any fiber look singular by blowing up a point in it.

If X is a smooth minimal Jacobian surface, with Weierstrass equation
y? = + Az’ + B,

then a point ¢ € C has a singular fiber above it if and only if the discriminant
function A(c) = 4A(c)® + 27B(c)’ is zero. Using the global description of A,
B, and A, we see that since A is a section of L'?, there are 12 - deg(L) singular

fibers (counted properly).

2.1 Semistable Fibers

If one looks at the Weierstrass equation y? = £+ Az?+ B and considers A and

B as complex numbers, then one has essentially three types of phenomena:
a. A =4A%+27B% # 0. In this case the curve is a smooth elliptic curve.

b. A = 0 but A and B are not both 0. In this case the curve is a singular

cubic curve, with an ordinary node.

c. A and B are both 0. In this case the curve is an cuspidal cubic curve.
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The fibers of Jacobian elliptic surfaces are broadly classified into the above
three types. Of course almost all fibers are smooth fibers. A fiber is called
semistable if, in the Weierstrass equation, not both A and B are zero. Semistable
fibers have a nice classification, which is fairly easy to describe. There is one
type for every natural number n > 0, with n = 0 being the smooth fiber case.
In general the semistable fiber types are denoted by I,.

As mentioned above, a fiber of type Iy is a smooth fiber. A fiber of type I
is an irreducible rational curve with a single node. A fiber of type I, consists
of two smooth irreducible rational curves, each having self-intersection —2 on
X, which meet transversally in two distinct points. (An example of this can be
seen in the plane, as a conic plus a non-tangent line.) In general, a fiber of type
I, for n > 3 is a cycle of n smooth rational curves, each having self-intersection
—2 on X. (An example of the I; fiber type is given by three non-collinear lines
in the plane.)

At a fiber of type I, the discriminant A will have a zero of order n. Therefore
the order of vanishing of the discriminant A will determine the fiber type for
semistable fibers. In addition, a fiber of type I,, counts for n in the total number
of singular fibers, which is 12 deg(L).

An elliptic surface is called semistable if all of its fibers are semi-stable, that

is, if all of its fibers are of type I, for some n.

2.2 Kodaira’s List

All possible singular fibers (not just the semistable ones) have been classified by
Kodaira (see [K1]). Although I won't speak of them much in these lectures, no
discussion would be complete without at least mentioning the non-semistable

cases. All of the possible fibers are listed in the table, using Kodaira’s names.
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Table 2.2.1: Kodaira’s list of singular fibers of elliptic surfaces

Name Description of Fiber

Iy smooth elliptic curve

I nodal rational curve

I, two smooth rational curves meeting transversally at two points
I3 three smooth rational curves meeting in a cycle; a triangle
In,N >3 N smooth rational curves meeting in a cycle

IN,N >0 N + 5 smooth rational curves meeting with dual graph D4
II a cuspidal rational curve

111 two smooth rational curves meeting at one point to order 2
v three smooth rational curves all meeting at one point

% 7 smooth rational curves meeting with dual graph Eq

I1r- 8 smooth rational curves meeting with dual graph E;

Ir- 9 smooth rational curves meeting with dual graph Es

mMIn,N >0 topologically an Iy, but each curve has multiplicity M

All components of reducible fibers have self-intersection —2; the irreducible
fibers have self-intersection 0, of course.

The reader can consult [K1] for Kodaira’s original proof of the completeness
of the list.

Examples of some of these are not hard to see with cubic curves. A fiber of
type II is realized as a cuspidal cubic curve. A fiber of type III can be seen by

considering a conic and a tangent line. Three collinear lines in the plane form
a fiber of type I'V.

2.3 Sections and the Mordell-Weil Group of Sections

We assume in this subsection that f : X — C is an elliptic surface with a
given section Sy, and associated bundle L.

Let MW(X) be the set of sections of f; addition, fiber by fiber, induces a
group law on MW/(X) with S; as the zero element. This group is called the
Mordell-Weil Group of f (or of X).

The group law can also be described as follows. Note that MW(X) can



160 R. MIRANDA

be identified with the set of rational points on the generic fiber X,,: a section
gives a point by restriction, and a point gives a section as its closure. The point
of X,, corresponding to the zero section Sy will be denoted by po. The sum in
MW/(X) is then inherited from the sum on the points of X,, which is after all
an elliptic curve over K(C) and as such its points form an abelian group.

More explicitly, let S; and S; be two sections. Then the sum S; @ S; in
MW (X) is the section S3, where (S; + S2 — So)n = (S3)-

2.4 The Shioda-Tate sequence

For any divisor E on X,,, one has the summation Y E, defined by adding in the

group law on X,, the points of E. This gives a homomorphism
3 : Div(X,) - MW(X),

which by Abel’s theorem on X,, factors through Pic(X,).

Let NS(X) be the Neron-Severi group of divisor classes on X modulo ho-
mological equivalence. This is a finitely generated abelian group (it is the image
of the Picard group Pic(X) in the homology group H?(X,Z)). There is a nat-
ural map = from NS(X) to the Picard group of the generic fiber X, induced
by restriction of divisors. Composition of this map r : NS(X) — Pic(X,)
with the above summation map ¥ gives a homomorphism 3 from NS(X) to
MW (X) : B(D) = ¥ D, = the class of the closure of 3(Dy,).

The following is called the Shioda-Tate exact sequence.

Theorem 2.4.1 Let A C NS(X) be the subgroup generated by the class of the

zero section So and the vertical classes. Then the sequence
0 » A S5 NS(X)-L MW(X) — 0
is ezact, where a is the inclusion.

Proof: Clearly 8 is surjective: if S is any section in MW(X), the class of S
in NS(X) goes to S under 8. Of course a is injective, and since B(So) = So
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which is the zero of MW(X), and B(V) = 0 for any vertical V, we have that
Boa = 0. Let D € ker(B). Then Y(D,) = po; therefore D,, — deg(Dy)po is
linearly equivalent to 0 on X,, by Abel’s Theorem. Note that deg(D,) = (D-F),
where F is the class of a fiber of f. Hence we have that D — (D - F')S, restricts
to 0 on X,,. Therefore D — (D - F)S, is linearly equivalent to a vertical divisor
V;hence D = (D-F)So + V as classes in N§(X),so D € A. O

Corollary 2.4.2 The Mordell-Weil group MW (X)) is a finitely generated abelian
group.

Denote by R the sublattice of A generated by vertical components not meet-
ing So. R is a direct sum of root lattices of types Ay, Dn,Eg, E7, and Eg. In

particular, R is an even negative definite lattice, and

rank(R) = ) (# of components of X, — 1),

ceEA

where A C C is the discriminant locus and for ¢ € C, X, denotes the
fiber f~!(c) over c. We will denote this local number by “r.”; hence we have
rank(R) = Y r..

Note that the sublattice U of A generated by So and the fiber F is a rank

two unimodular sublattice, with R as its perpendicular space. Therefore
A=< S5,F>®R=U®R. (2.4.3)

In particular, rank(A) = 2+ rank(R). This gives the following corollary, see
[Shd1]. Denote by p the rank of NS(X), which is the Picard number of X.

Corollary 2.4.4 (The Shioda-Tate formula)

p =2+ Y r.+ rank(MW(X)).
ceA

Since U is unimodular, it splits off NS(X) also, giving the exact sequence

0-R-U'->MW(X)—-0 (2.4.5)



162 R. MIRANDA

where U+ is the perpendicular space to U in NS(X); this version of the Shioda-
Tate exact sequence is sometimes useful.

In addition to information about the rank of the Mordell-Weil group, the
Shioda-Tate exact sequence gives a way of viewing the torsion part of this group.
To be more precise, since the Shioda-Tate exact sequence gives the Mordell-Weil
group as being isomorphic to the quotient group NS(X)/A, and since it is a
general fact that for Jacobian elliptic surfaces the Neron-Severi group NS(X)
has no torsion, the torsion in the Mordell-Weil group MW(X) comes entirely
from the fact that the subgroup A may not be saturated in NS(X). Since we

have a bilinear form on the Neron-Severi group, we may write this as follows.

Corollary 2.4.6
MW, (X) = AM/A.

2.5 Some lattice theory and applications

Let L be any free finitely generated Z-module with a nondegenerate bilinear
form < —,— > with values in Z. The form extend to a Q-valued form on
Lq = L® Q. Denote by L# the module

L* ={zeLlql|<zt>cZforalfc L}

L# is a free Z-module containing L as a submodule of finite index; the quotient
group G, = L*/L is a finite abelian group whose order is the discriminant of
L.

L# may be naturally identified with the dual module L* = Homg(L, Z),
by sending z € L# to the functional < z, — >.

The intersection form on NS(X) gives a map NS(X) — R* = Hom(R, Z),
which after identifying R* with R* and passing to the quotient Gg of R#* by
R, gives a map v: NS(X) — Gg.

Note that y(A4) = 0, since Sy and F' do not meet any components generating
R, and R goes to 0 in Gr. Therefore v factors through MW(X), and we have
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a map (which we also call v):
v:MW(X) — Gh.

Since the lattice R splits as the direct sum of the local lattices, one for each
singular fiber with 2 or more components, so does the dual lattice R¥ and the

finite group Gpg:
Gr= @G,

ceEA
where G. is the finite group for the lattice generated by the components of the
singular fiber X, not meeting the zero-section So. These lattices depend only
on the type of the fiber, and the finite group can be computed once and for all;
the result is given in Table 2.5.1. Included in this table is the Euler number e,
of the fiber, and the rank r. of the lattice R., which is one less than the number

of components.

Table 2.5.1: Local invariants of singular fibers

type of X, € e G.

In N N-1 Z/NZ

Ly N+2 N+4 Z/2ZxZ/2Z
Iy N+2 N+4 Z/4Z

II 2 0 0

111 3 1 Z/2Z

4% 4 2 Z/3Z

A% 8 6 Z/3Z

Ir 9 7 Z/2Z

Ir- 10 8 0

Focusing on the semistable case of a singular fiber X, of type Iy, which is
a cycle of smooth rational curves, we see that the number of components N
is equal to the order of the local group G.. This is no accident in this case;
indeed, the components are arranged in a cycle, starting with the component
that meets the zero section, and the map 4 in the component of the singular

fiber above c records simply which component of X, the section S hits.
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The map « is not onto; it is interesting to ask which subgroups of Gg are
hit by 4. The kernel of v is the group MW,(X) of sections which always meet

the same component as does the zero-section Sy, in every fiber.
Lemma 2.5.1 MW(X) is torsion-free if deg(L) > 1.

Proof: Suppose that S is a torsion section of order n in MWy(X). Hence
nS — nS restricts to 0 on the generic fiber X,; therefore nS — nSy = V with
V vertical. However since S is in MWy(X),S — So does not meet any vertical
components; therefore neither does V, and so V must have square 0, forcing V
to be a sum of fibers. Working in NS(X), we then have nS — nS, = oF for
some integer a.

Let k = S-S and £ = —deg(L) = S? = SZ. By intersecting the above
equation with S we obtain nf — nk = a, and by intersecting it with Sy we get
nk — nf = a; therefore a = 0 and k = £. However k is non-negative and £ is

negativel. O

Corollary 2.5.2 Suppose deg(L) > 1. Then v maps the torsion part of the
Mordell-Weil group injectively into Gpg.

In other words, a torsion section is determined by which components of the

fibers it passes through.

3 Examples: Rational Elliptic Surfaces

Let us in this lecture begin to use some of the theory developed up to this point
and analyse the case of rational elliptic surfaces. These are smooth minimal
elliptic surfaces which are, in addition, rational surfaces. If in addition we
assume that the surface has a section, then every such surface comes from a
pencil of cubic curves in the plane. Most of this material is taken from the
papers of the author and Ulf Persson (both individual and joint work): see [P],
[M1], and [MP1].

Every rational elliptic surface has P! as the base curve. The Euler number

of the surface is 12, and so the associated line bundle has degree d = 1.
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3.1 Extremal Rational Elliptic Surfaces

Let f : X — P! be a rational elliptic surface with section Sp. In this case
e = e(X) = 12, and Kx = -F.

Let U = < So,F > be the rank two unimodular sublattice of NS(X)
generated by Sp and F'; as remarked previously, U splits off NS(X) : NS(X) =
U @& U*'. Since NS(X) is unimodular with signature (1,9) (X is a blow-up
of P? at nine points), and U is unimodular with signature (1,1), we must have
Ut unimodular with signature (0, 8): i.e., U is a negative definite unimodular
lattice of rank 8.

The intersection form on U+, moreover, is even, since Kx € U and X is
rational; hence U* is abstractly isomorphic to a lattice of type Es.

Recall from the last lecture that we have MW(X) = U'/R, where R is

the sublattice of U+ generated by components of fibers not meeting So.

Definition 3.1.1 A smooth minimal elliptic surface f : X — C with section
will be called extremal if p = A'! = 2 + rank(R).

In other words, X is extremal if X has maximal Picard number A and
the classes of Sp and components of fibers generate NS(X) over Q. We have
an immediate corollary: X is extremal if and only if p = A"! and MW(X) is
finite.

In fact, for rational surfaces, the concept of extremal can be viewed in many

ways:

Proposition 3.1.2 Let X be a rational elliptic surface with section. Then the

following are equivalent:
(a) X is eztremal
(b) The relative automorphism group Autc(X) is finite.
(c) The number of representations of X as a blow-up of P? is finite.

(d) The number of smooth rational curves C with C? < 0 is finite.
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(e) The number of reduced irreducible curves C with C* < 0 is finite.

Proof: The relative automorphism group Autc(X) is the group of automor-
phisms of X (all of which must preserve the elliptic fibration, since the elliptic
fibration is given by | —Kx | ) which induce the identity automorphism of the
base curve C. Let 7 be such an automorphism, and consider the image 7(So)
of the zero section; it is again a section, and so the automorphism T,,,_(fgo) or
fixes So, where 75 is the automorphism given by translation by S, for a section
S. The automorphisms of X fixing So form a finite group: this is the group
of automorphisms of the generic fiber. Hence Autg(X) is finite if and only if
the group of sections MW (X)) is finite; this proves that (a) and (b) are equiv-
alent. The implications (¢) « (d) < (c) are obvious. Since Kx = —F,
a smooth rational curve E on X is exceptional if and only if it is a section,
proving (a) = (d), since in any case a smooth rational curve C must satisfy
-2 = C? + CK,or C* = CF — 2 > -2, and the (—2)-curves are always
finite in number: they are the components of reducible fibers. If C is reduced
and irreducible with C* < 0, then we must have -2 < C? + CK < -1,
forcing C to be smooth rational and either a (—1)- or (—2)-curve; this shows
that (d) and (e) are equivalent. Finally, since any rational elliptic surface is a
blow-up of P2, we have (c) & (d). O

As consequences of extremality for rational elliptic surfaces, we have the
following. For a fiber F, denote by d(F) the discriminant of the lattice Rp
generated by the components of the fiber F' not meeting So; set d(F)=1if Fis
irreducible. This number d(F') is the order of the local finite group G mentioned
in the previous lecture; in particular, for an I,, fiber, we have d = m. Denote by
e(F) the Euler number of F, and by #(F) the rank of the above lattice (which

is one less than the number of components of F).

Proposition 3.1.3 Let f : X — P! be an eztremal rational elliptic surface

with section. Then:

(a) disc(R) =[pd(F) = | MW (X) |, and in particular is a perfect square.
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(8) Tr(e(F) —r(F)) = 4.
(c) X has, for singular fibers, either:

o 4 semistable fibers
o 3 singular fibers, ezactly 2 of them semistable, or

o 2 non-semistable singular fibers.

Proof: The lattice R is the orthogonal direct sum of the lattices Rp for each
fiber F, and the discriminant of Rp is d(F) by definition. Hence disc(R) =
[1r d(F) is obvious. By general lattice theory, disc(R) = disc(U*) - [Ut
R]?, and since MW(X) = UY/R, and U is unimodular, we have that
disc(R) = | MW(X) |*. Sincee = Ypep = 12 and rank(R) = Trp = 8,
we have (b). Finally, (c) follows by noticing that for a semistable fiber F,
e(F)—r(F) =1, and for a non-semistable fiber F, e(F) —r(F)=2. O

This Proposition allows us to classify all configurations of singular fibers on

extremal rational elliptic surfaces. We give the list in Table 3.1.

Table 3.1.4: Possible configurations of singular fibers on extremal rational el-
liptic surfaces

Singular fibers degree(J) | MW/(X) | Notation

Inir 0 1 B
LI 0 2 Do
v,Iv 0 3 Xas
LI 0 4 Xu(J), J € C
1,1, 2 1 o
I11*,1,,1, 3 2 Xan
1V*, 13,1, 4 3 X
I3,0,I 6 2 Xan
I, 14,14 6 2 X141
I3,15,1, 6 4 X222
Io, 1y, 11,1 12 3 KXo
Ig, 15,11, 1 12 4 Xsan1
16,13a12711 12 6 X6321
Is,Is,I;,I 12 5 Xss11
I4,14,15,1; 12 8 X422
13)13713713 12 9 X3333
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Proof of the Table: There are three cases, corresponding to the number of
singular fibers. I will only discuss here: the case of 4 singular fibers, all of
which must then be semistable by the previous Proposition. The possibilities
the previous Proposition. The possibilities are to have {I,,,, In,, In,, In,} With
Y n; = 12 and [[n; equal to a perfect square; this gives only the six sets in
the table. O

A discussion of the other cases can be found in [MP1], as can a proof of the

following theorem.

Theorem 3.1.4 For every configuration of possible singular fibers in Table 3.1,
there is a unique extremal rational elliptic surface with section with that configu-
ration of singular fibers, except for the configuration {I3, I3}; these are classified
by their J-invariant, which must be some constant J € C, and can be any

complez number.

The 6 semistable surfaces above were studied by Beauville [B1], and some
authors have called these surfaces Beauville surfaces. This work has been ex-
tended to characteristic p by W. Lang [La2].

It would be a shame to have all of this theory without having seen a sin-
gle equation, so below I present 2 explicit examples. In each case I give the
Weierstrass coefficients A and B (in the homogeneous Weierstrass equation
y*’z = 23 + Azz? + B2®), the discriminant A, and the formulas for the sections.

We use homogeneous coordinates [u : v] for the base curve.
Example 3.1.5

Surface: Xgz1q
A = =3(u'+4u’v? +v?), B = 2u8+12utv? + 15020t — 208, A = —3CuZv¥(u+
4v?)

Sections:
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w4202 0 1
u? —v?  +3v3uv? 1

Example 3.1.6

Surface: X3333

A= -3ut + 24uv®, B = 2u® 4 40uP0® — 160°, A = 2Bv3(ud + v3)°

Sections:
T y z
1 0
—3u? +4i(u® 4 v3) 1
(uw— 21})z +4+/3v(u? — uv + v?) 1
(u — 2wv)? +44/3v(wu? — wiuv + v?) 1
(u — 2w?v)? +4/3v(wu? — wuv + v?) 1

where w = €2™/2 is a primitive cube root of unity.

3.2 Semistable Rational Elliptic Surfaces

In this section I would like to give a classification in a slightly different direction,
namely of all possible configurations of singular fibers on semistable rational
elliptic surfaces.

Let f: X — P! be a semistable elliptic surface with section, i.e., all
fibers of f are of type I,. Assume that X has s singular fibers, which are of
types In,,..., In,. In this case we will say that X realizes the unordered s-tuple
[n1,...,n,]; note that 3" n; is a multiple of 12: it is e(X).

Conversely, given a set [ny,...,n,] of s positive integers whose sum is di-
visible by 12 (repetitions are allowed), we will say that [ny,...,n,] ezists as a
semistable elliptic surface over P!, or that simply the set ezists, if there is a
semistable elliptic surface with section over P! with exactly s singular fibers of

types I,,,...,I,,.
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For example, the Beauville rational elliptic surfaces realize [9,1,1,1],
(8,2,1,1], [6,3,2,1], [5,5,1,1], [4,4,2,2], and [3, 3,3, 3]; these six 4-tuples exist.
A rather elementary argument involving the J-map shows the following; I

will omit the proof.

Lemma 3.2.1 Assume that[n,,...,n,] exists. Then[ny,...,ni1,a,b,ni41,...,71,]

ezists, for any a,b > 1 witha+b = n;.

As a corollary of Lemma 3.2.1 and the existence of the six 4-tuples obtained

by the Beauville surfaces, we have the following.

Corollary 3.2.2 The following s-tuples ezist.

o =4 91%,8212, 6321, 5212, 4222, 34

— 814,721°,631°, 5417, 62712, 53217, 47212, 43271, 42¢, 3%21
— 715,621, 5314, 52213, 4214, 43213, 42°12, 313, 322212, 3241, 29
s=T: 61°,5215, 4315, 42214 32214 39313 2512

s=8: 517,421,321, 32215, 2414

" 41%,3217, 231

o= 1i; 319, 2218

s =11: 2110

s =12: 112

Note that every s-tuple with s > 6 and ¥ n; = 12 is on the above list,

i.e., can be obtained from the six 4-tuples:

Corollary 3.2.3 Let [ny,...,n,] be an s-tuple with ¥ n; = 12. Then if

s > 6,[ny,...,n,| exists.

Our goal is to prove that the list of Corollary 3.2.2 is complete, i.e., that
these are the only s-tuples with " n; = 12 which exist. In view of the previous
corollary, the necessity that s be at least 4, and the classification in the case

s = 4, it suffices to show the following.
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Proposition 3.2.4 The three 5-tuples

5,2,2,2,1],[4,3,3,1,1], and [3,3,2,2,2]
do not erist.

- The proof of the above Proposition involves a bit more lattice theory, some
of which we have already seen. I will only sketch the ideas, which are fairly
straightforward; the proof involves only a mild computation after the outline is

understood.

3.3 The impossibility of the three 5-tuples

Let L be a finitely generated free Z-module, and let < —, — > be an even non-
degenerate Z-valued symmetric bilinear form on L. Lq = L ®z Q naturally in-
herits the bilinear form, which will still be non-degenerate and symmetric; more-
over L C Lq naturally. Define L* = {z € Lq|<z,>€ Zforall{ € L}.
We of course have L C L#, since the form is Z-valued on L. The natural map
¢:L* — L* (= Homgz(L,Z)) defined by ¢(z) = < z,— > is an isomorphism,
and so we see that L* is a free Z-module with the same rank as L; in particular,
L has finite index in L#,

Define G, = L#/L, the so-called discriminant-form group of L. Its order

is the absolute value of the discriminant of L,
| Gr | = | disc(L) |,

since both sides are computed as the absolute value of the determinant of any
matrix for < —, — > on a Z-basis of L.
If we define the length £(G) of a finite abelian group to be the minimum

number of generators of G, we also have that
{Gr) < rank(L),

since G, is generated by the cosets of the rank(L) generators of L#.
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One can define a Q/Z-valued quadratic form g, the discriminant-form, on
Gy by setting, for z in L#,qz(z) = 1 < 2,z > mod Z. The reader should
check that gy is well-defined, and satisfies gr(nz) = n?qg(z) forn € Z and
z € Gp. Moreover, the function qr(z+y)—qr(z)—qr(y) is exactly the induced

symmetric bilinear form < —, — > on Gy, with values in Q/Z.
Example 3.3.1

Let L be the lattice of rank N — 1 representing Ay_;. Then L is realized as
the lattice R., where X_ is a fiber of type Iy on an elliptic surface with section.
In particular, as we noted in Table 2.5.1, G, = Z/NZ. A generator for G,
is afforded by the coset of the element ef = & Y N:'ie;, where {e;} is the
natural basis of L, namely the classes of the components of the cycle Iy; these
are numbered so that e; meets e;+; around the cycle, and eo meets the zero
section. The element e meets e; exactly once, and meets no other e;; its image
in L* is the dual element to e;.

A calculation gives that gr(ef mod L) = (1—N)/2N, so that if we identify
Gr with Z/N by sending ef mod L to 1, we have that

qan_,(a) = a*(1- N)/2N.

It will be useful later to remark the following:

For the following lattices L,

Gy, has no nonzero gr-isotropic elements
(i.e., elements g with qz(g) = 0):

Ay, Az, Ay @ Ay A1 @ A1 @ Ay

One of the main applications of this discriminant-form construction is to the

(3.3.2)

analysis of embeddings of lattices. The following is a typical example.

Lemma 3.3.3 There is a 1-1 correspondence between

Intermediate lattices M

LCMCL* d qr-isotropic subgroups
such that o H C Gy
< —,—>|m is Z-valued and even

Moreover if M corresponds to H, then Gyy = H'/H, and qur is induced from
qL.
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Of course by gr-isotropic I mean that gr(h) = 0forevery hin H. The lemma
is easily proved; the correspondence is the usual one, sending an intermediate
lattice M to M/L, and a subgroup H to m~!(H), where 7 : L# — G is the
natural quotient map. I leave the details to the reader.

The last bit of lattice theory is the following.

Lemma 3.3.4 Suppose that U is a unimodular lattice, and L, and L, are two
nondegenerate sublattices of U, such that Ly = Ly and L, = L{. Then there
ezists an isomorphism between G, and Gy, such that q, = —qr, under the

tsomorphism.

Proof: The nondegeneracy of the L; implies that Ly @ L, is a sublattice of U;
hence we may view U as an intermediate lattice between L;® L, and (Ly G}Lz)#,
so that there exists a g-isotropic subgroup H of Gp,er, corresponding to U.
Since U is unimodular, Gy is trivial, so that H* = H by the previous lemma.
Note that since the L; are orthogonal, Gror, = Gr, ® Gp,. Let m; be the
projection of Gy, g1, onto Gip,.

claim: m; |g: H — Gy, is an isomorphism for both 1.

Why: First let us show injectivity: suppose that my(k) = 0, for A € H. Then
h = (0,g;) for some g, in GL,. Hence there exists an element  in U, mapping
to h, of the form (0,z,), where z; € L¥ and g» = z, mod L. Sinceu € L,
we must havew € L,,so that z; € Ly and g, = 0, whence b = 0. Therefore
71 is injective on H; the argument for , is the same.

The injectivity shows that | H | < | G, | for both i; since H* = H
and the order of H* is the index of H (this is a general fact), we have that
| H |* = | Gry1, | = | G1, | - | Gu, |- Hence | H | = | Gy, | = | Gi, | and the
injectivity also implies surjectivity. This proves the claim.

To finish the proof, define f: Gy, — Gp, by f = (m |g)o(m |u)™Y; fis

an isomorphism by the claim. If h € H, then, since H is isotropic, we have

?

0 = qrer,(h) = qr,(m(h)) + qr,(ma(h)),

proving that the quadratic forms for the L; are opposite in sign. O
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Corollary 3.3.5 Suppose L is a nondegenerate sublattice of a unimodular lat-

tice U. Then Gpi. = Gpi andqpir = —qpt.

Proof: Just apply the previous lemma to L* and L*+. O

We are now in a position to prove Proposition 3.2.4, i.e., to prove that the
three 5-tuples [5,2,2,2,1], [4,3,3,1,1], and [3,3,2,2,2] do not exist.

Suppose that # : X — C is a semistable rational elliptic surface with
sectioﬂ, realizing the s-tuple [n,,...,n,]; i.e., there are exactly s singular fibers
of types I,,,...,I,,, and ¥ n; = 12. Let R be the sublattice of NS(X)
generated by the components of fibers not meeting the zero section So; R is
a lattice of rank Y (n; — 1) = 12 — s, isomorphic to ®; An;—1. Let U be
the lattice generated by Sp and the fiber F'; since NS(X) is unimodular (X is
rational), so is U, and since Kx € U,U" is even; in fact U+ is isomorphic to
the Eg lattice, but we do not need to know that. In any case U* has rank 8,
since U has rank 2 and NS(X) has rank 10. Therefore:

If [ny,...,n,] exists, then ®; An,—; embeds into a unimodular lattice of rank 8.
(3.3.6)

Now suppose further that s = 5; then rank(R) = 7, so that K = R' in
U+ has rank 1. Therefore Gk is cyclic, and by Corollary 3.3.5, so is Grir. The
inclusion R C R**! is between lattices of the same rank, so that we can view
R'! as an intermediate lattice between R and R¥; therefore R+ corresponds

to an isotropic subgroup H of Gg with Gpir = H*/H. Thus:

If [ny, ..., ns] exists,
there is an isotropic subgroup H of Gg (3.3.7)
with H*/H cyclic.

In particular:

If Goa,,_, is not cyclic,
and has no nonzero isotropic elements, (3.3.8)
then [n,, ..., n;] does not exist.

The final ingredient is provided by the next lemma.
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Lemma 3.3.9 For the lattices
AiD A DA @ A0 A, A®A @A Ay and Ay ® A, @ As,

the discriminant-form groups have no nonzero isotropic elements.

Proof: Since (2,3), (2,5), and (3,4) are relatively prime, any isotropic element
of these lattices must decompose into isotropic elements of the summands A; &
A ® Ay,A; ® Ay, Az, and Ay no cancellation is possible. This forces any
isotropic element to be zero by (3.3.2). O

Since the discriminant-form groups for the three lattices above are not cyclic,
applying the above lemma to ([3.3.8]) proves Proposition 3.2.4.

The reader interested in the lattice theory used here should consult Nikulin’s
paper [Ni]. The methods used here were also successful in computing the pos-

sible configurations of fibers on semistahle K3 elliptic surfaces; this appears in

[MP2).

4 Torsion in the Mordell-Weil Group

4.1 Review of Basic Facts

In this lecture I want to develop some interesting results concerning the torsion
in the Mordell-Weil group. Specifically, I want to return to the question raised
previously: which components of singular fibers does a torsion section hit? This
material is taken mostly from [M6]. Let us introduce some specific notation to
address this.

Recall that if e is the topological Euler number of X, then e = 12y.

We suppose that the map f has s singular fibers Fy, ..., F,, each semistable,
ie., each a cycle of rational curves (of type “I,,” in Kodaira’s notation). Indeed,

let us say that the fiber Fj is of type I,;. Therefore

e=12xy = Zm_,-.

j=1
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Choose an “orientation” of each fiber F; and write the m; components of

Fj as
Gl o e, 08

where the zero section So meets only Céj) and for each k, C,(,j) meets only
C’,(eji)1 modm;. If m; = 1, then F; = C$ is a nodal rational curve, of self-
intersection 0. If m; > 2, then each C,(ej) is a smooth rational curve with
self-intersection —2.

If we denote by NS(X) the Neron-Severi group of the elliptic surface X, we
can consider the sublattice A C NS(X) generated by the zero-section So and
the components C,Ej) of the singular fibers. The class of the fiber F' is of course

in this sublattice A; indeed, the only relation among these classes is that

m;—1 :
F=Y C,(l]) foreachj=1,...,s. (4.1.1)

k=0
If we let U denote the sublattice of A spanned by F and Sy, then U is a
unimodular lattice of rank 2, and so splits off A. Its orthogonal complement
R is freely generated by the components C’,(,j) forj=1...sand k #0. Ris
therefore a direct sum of s root lattices, with the j** summand isomorphic to
Am;-1, generated by C,Ej) for k # 0.

The Shioda-Tate formula for the Mordell-Weil group MW(X) of sections

of X is derived from the exact sequence
0— A—- NS(X)—> MW(X)—-0 (4.1.2)

where the first map is the inclusion of the sublattice A into NS(X), and the
second map is the fiber-by-fiber summation map, sending a divisor class D €
NS(X) to the closure of the sum of the points of D on the generic fiber of
X. We therefore obtain information about both the rank and the torsion of
the Mordell-Weil group MW (X). If we denote by p the Picard number of X,
which is the rank of the Neron-Severi group, we see that since A has rank equal
to 2+ 354(m; — 1),

rankMW(X):p—2—i(m,-—1)=s+p—2—e. (4.1.3)

i=1
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The torsion MW, (X) in the Mordell-Weil group corresponds to those classes
in NS(X) for which some multiple lies in the sublattice A. We see that

MW, (X) = A /A,

For any lattice N, denote by N # the dual lattice Homg(N,Z). The inclu-

sion of A into AL% gives the sequence of inclusions
AC ALt C (AJ.J.)# o A*

which shows that the quotienf AtL/A is isomorphic to a subgroup of the
discriminant-form group G4 = A#/A. Note that A¥* —U*®R* since A=U®
R and since U# = U (U is unimodular), we have G4 = R*[R = @}, A,ﬁj_l/Amj_l.
A computation shows that for the root lattices of type A, Aff,,._l [Amj-1 =
Z/m;Z; therefore we have that the torsion part MW . (X) of the Mordell-Weil
group of sections of X is isomorphic to a subgroup of Bj_; Z /m;Z.

A choice of orientation for each singular fiber F; gives an identification of
the cyclic group of components C',(,j) for k = 0,...,m; — 1 with Z/m;Z. For
any section S of f, and any singular fiber F;, denote by kj(S5) the index of the

component of F; which S meets. Thus
S-CY = fuys) (4.1.4)

where 6 above is the Kronecker delta. Note that with our notation above,
k;(So) = 0 for every j. The numbers {k;(S)} will be called the component
numbers of the section S. The upshot of the remarks above is that, for torsion
sections, this assignment of integers {k;(S)} to S is 1-1. Thus a torsion section
is determined by its component numbers (but not all sets of component numbers
can occur).

In this lecture we will study the properties of these encodings of torsion
sections for semistable elliptic surfaces. Although it is clear from the above
discussion that the component numbers k;(S) are well-defined modm;j, it is
more useful for our purposes to take them to be integers in the range 0,...,m;—
1.

Two facts are necessary for what follows.
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Lemma 4.1.5 a) If §; and S; are two different sections in MW (X) with
Sy — S torsion, then Sy - S; = 0, i.e., they are disjoint.

b) If S is any section in MW (X), then S-S = —x.

4.2 The Divisor Class of a Torsion Section

Let S be a torsion section of the semistable elliptic surface f : X — C. In this
section we wish to write down the class of S in NS(X).

Since the class of S lies in L1+, we have that S is a Q-linear combination of
the zero section Sy, and the fiber components C,(ej). Because (4.1.1) is the only
relation among these classes, the classes So, F', and C,Ej) forj=1,...,s and
k # 0 form a basis for the module spanned by all these classes.

For fixed j =1,...,sand k=1,...,m; — 1, set

' k : mj—1 £
D](:) = (mj—k) }: iC,-(’) +k Z (m; — i)Ci(J)
i=1 i=k+1

I

(m; — k)[CY) + 20 + ...+ kCP) +
k[(mj =k —1)C); +...+209)_, + c9)_,).

We set D,(,j) =0.
Note that
DY) .8, =0 (4.2.1)

for every k.

The following is a straightforward check:

Lemma 4.2.2 Fiz j = 1,...,s, and indices k and | with 0 < k,1 < mj — 1.

Then
) ) m; ifl=0andk#0
DY .o = —m; ifl=kandk#0
0 otherwise.
It is useful to note that the above lemma can be re-expressed using the

Kronecker delta function as

Dijl) . C,(j’) =m;8j, (1 — 6ko)(610 — buk).- (4.2.3)
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Theorem 4.2.4 With the above notation, if S is a torsion section of order n,

then
S=S80+(S—So-So)F — Z Dk,(S)

Proof: Since the intersection form on A is nondegenerate, we need only check
that both sides of the equation intersect the generators Sy, F, and the C(’)
the same number. Let us begin with So. Using (4.2.1) and the equations

S‘F=So'F—

we have that the right hand side intersects Sy to S - So, agreeing with the left
hand side. Similarly, F meets only the Sp term on the right hand side, so the
intersections with F' are also equal.

Now fix indices j = 1,...,8 and | = 0,...,m; — 1, and let us check the
intersection with C’(’) Lemma 4.2.2 is the critical part of the computation.
Intersecting with the right hand side gives So - C¥) — ,,.L,-Dg)(.';) . ¢, which
reduces to 1o — (1 — 8k;(s)0)(810 — Oik;(s)) using (4.2.3). This is after some
simplification equal to &j;(s), which is also S - C’,(j) by (4.1.4). O

The formula for the linear equivalence class of S given above can be simplified
somewhat in the case that S is not the zero section So. Then (S - Sp) = 0 and

(So - So) = —x by Lemma 4.1.5, so we have

J_l

4.3 The Quadratic Relation for the Component Num-
bers

Let us now take the above formula for the torsion section S and intersect it
with S itself. If S = Sy, then of course all k;(S) = 0, both sides of the equation
are So, so we recover no information. However if S # S, the formula (4.2.5) is

nontrivial. Dotting S with the right-hand side gives

X— Z Dg)(s) - 5.
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Since S meets only the curve ngs) in the j* singular fiber, and it meets it

exactly once, we have
Diils) S = (m; — ki(S))ki(5).
Therefore the above reduces to
x - > ks(s)(1 - ELE)y,
i=1 n;j

Finally, using Lemma 4.1.5.2, dotting the left-hand side with S gives —x. Hence
we obtain the following formula, which we call the quadratic relation for the

component numbers.

Proposition 4.3.1 Let S be a torsion section of f, not equal to the zero section
So. Then

S h(S)(1 ~ ) = 2y(0x).

Note that the quadratic relation is independent of the choice of orientation
of each singular fiber, as it should be. (If one reverses the orientation of F;,
then k; is replaced by m; — k; if k; # 0, so that the two terms of each summand

are simply switched.)

4.4 The Component Number Sums

In this section I want to develop formulas for the component number sums
X; k;(S) for a torsion section S. Such formulas follow rather directly from the
quadratic relation for the component numbers. Suppose first that S has order
2. Then for each j with k;(S) # 0, we must have m; even and ki(S) = m;/2.

Therefore the quadratic relation reduces to the following.
Corollary 4.4.1 Let S be an order 2 section of f. Then

gk,-(S) = 1x(Ox).
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Note that in the order 2 case, each k; is either 0 or m;/2, and hence the
component numbers for a torsion section of order 2 are independent of the ori-
entation of the fibers. This is clearly not true for other values of the component
numbers. In general, reversing the orientation of the fiber F; changes the com-
ponent number from k; to m; — k;. Hence the analogue of Corollary (4.4.1) for
torsion sections of order at least 3 must take this into account.

To this end define a function d,, : {0,...,m—1} — {0,...,[m/2]} by setting
dm(k) = min{k,m — k}.

Note that for any given torsion section S, it is possible to choose the orientations
of the fibers so that the component numbers k;() are minimal, that is, k;(S) =
dm;(k;(S)) for each j. If this condition holds, we say that the section S has
minimal component numbers.

Next suppose that a torsion section S has order n > 3. Then both S and 25
are nonzero torsion sections of X. If for each index j, we choose the orientation
of the components so that 0 < k;(S) < m;/2, then we have the formulas

0 if k;(S) =m;/2, and

(28 = { Wi(S) it ky(S) < my/2 (12

for every j. Therefore applying Proposition 4.3.1 to 28, after dividing by 2 we

obtain

> k228 0y,

i with kj(S)<m;/2 7

Multiplying the formula of Proposition 4.3.1 by 2 gives
k;(S
K+ Y ke)e-255) o),
i with kj(s)=m/2 i with kj(s)<m;/2 4

and subtracting the above two equations yields the following.

Corollary 4.4.3 Let S be a section of order n > 3 with minimal component
numbers {k;(S)}. Then

> k5(5) = 3x(Ox).
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In case the orientations of the fibers are not chosen so as to give S minimal

component numbers, a similar formula holds, expressed with the d,, function.
Corollary 4.4.4 Let S be a section of ordern > 3. Then

>~ dm (k5(5)) = 3%(Ox).

4.5 The Distribution Numbers for a Torsion Section

I would like to apply the formulas for the component number sums of a non-zero
torsion section S to its multiples aS. To this end extend the function d,, to
dm : N — {0,...,[m/2]} by defining

dm(g) = min{g — m(g/m], m(1 + [¢/m]) — q};

this function is simply the distance from ¢ to the nearest multiple of m. Note
that
dab(gd) = da(q)b (4.5.1)

for any integers a, b, and g. We remark that in fact d,,(g) can be defined for
rationals m and g, in the same way, as the distance from g to the nearest integral
multiple of m; it takes values in Q N [0,m/2]. Formula (4.5.1) still holds.

The utility of this notation for our application comes from noticing that if S
has a component numbers {k;(S)}, then the minimal component numbers for
a$ are {dm;(ak;(S))}. Using (4.5.1) we may write this as

i (k3(@5)) = dn(ctk(S)m/m;) T (4.5.2)

for any n > 0.
If §' is a section whose order divides n, with a minimal encoding {k;(5")},
define rational numbers M;,(S’) for i = 0,...,[n/2] by
Min(S') = ( > m;)/12x.
i with kj(s")=imj/n
Roughly speaking, M;n(S’) is the fraction of the total sum ¥;m; = 12x con-

tributed by fibers where S’ meets one of the two components which are exactly
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“distance 7" from the component meeting the zero-section Sp. (This distance is
measured in units of m;/n.) We will call these fractions M;,(S’) the distribution
numbers for the section §'.

With this notation we may write the results on component number sums as

3 iMin(5') =

i

{ n/3 if S’ has order 2, and (4.5.3)

n/4 otherwise,

where S’ is a nonzero torsion section whose order divides n.

Now fix a section S of order exactly n. As long as a.S is not the zero-section
So, the above notation may be applied to aS, whose order will divide n for
every a.

Suppose that k;(S) = im;/n, so that the fiber F; contributes to the fraction
M;(S). Then k;j(aS) = d.(ai)mj/n by (4.5.2), so that F; contributes to
the fraction Mdn(m-),,,(aS). Therefore in the component number sum equation
(4.5.3) for aS, the fiber F; occurs with the weight d,.(ai). Hence the component
number sum equation for S reduces to

_ _ [ n/3 ifa=n/2 and
Xi:dn(m)Mim(S) - { n/4 otherwise.

This equation is valid for 1 < a,1 < [n/2].

(4.5.4)

Let A, be the square matrix of size [n/2] whose ai** entry is dn(ai). Let
vn be a vector of length [n/2], which if n is odd has every coordinate equal to
n/4, and if n is even has every coordinate equal to n/4 except the last, which
is n/3. Finally let M,(S) be the column vector of M;,(S)’s. The equations of

4.5.4 can then be expressed in matrix form as follows.

Lemma 4.5.5 If S is a nonzero torsion section of order ezactly n, then
A, M,(S) = v

Lemma 4.5.6 The matriz A, is invertible.

The proof of the above Lemma is rather involved and not very enlightening.

It involves generalized Bernoulli numbers associated to even Dirichlet characters
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for the cyclic group of order n. For a proof in the prime case, the reader may
consult [M6].

Using this Lemma, we can prove that for a torsion section S of odd prime
order p, the component numbers (in the minimal case) are equi-distributed in

the sense that the fractions M;;(S) for 7 # 0 are all the same.

Corollary 4.5.7 Let p be an odd prime and let S be a section of f of order
ezactly p, with minimal component numbers {k;(S)}. Then for every integer i
between 1 and (p — 1)/2,
MiuS)=( ¥ m)ix= s
{3lk;(S)=im; /p}

Proof: For p prime, each row of the matrix A, consists of the integers 1,2, ..., (p—
1)/2, in some order. Therefore the row sums of A, are constant, equal to
(p* — 1)/8. Thus the vector v,, all of whose coordinates are p/4, is an eigen-
vector of A, with eigenvalue (p? — 1)/8. Hence the vector M,, all of whose
coordinates are 2p/(p* — 1), is a solution to the matrix equation A, M, = v,.
Since A, is invertible, this solution is unique, and so by Lemma 4.5.5 the vector

M,(S) must be this constant vector M,. O

Corollary 4.5.8 Let p be an odd prime and let S be a section of f of order

ezactly p. Then
Mo (S) = ﬁ.

Proof: Since all of the fractions M;,(S) fori = 1,...,(p — 1)/2 are equal to
2p/(p* — 1), their sum is p/(p + 1). Since the sum of all M;,(S), including the
fraction My ,(S), is 1, we must have My ,(S) =1/(p+1). O

The above Corollary 4.5.8 also appears in [MP3].

Since each of the numbers 12 M;,(S) is an integer, and since p and p? — 1
are always relatively prime, we obtain the following divisibility result, which

improves a divisibility result in [MP3].

Corollary 4.5.9 Let p be an odd prime and suppose that f admits a section of
order ezactly p. Then p* — 1 divides 24x.
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Using these results one can “divine” the genus of the modular curve and
the Euler number of the modular surface, without knowing that such objects
exist! (If they did exist, then they should have minimum allowable genus and
minimum allowable Euler number; the minimum is gotten from the above, and
this is indeed the correct genus and Euler number.)

For a complete treatment of elliptic modular surfaces, the reader should

consult [Shm)].

5 How torsion affects the genus, the rank, and the Eu-
ler number

5.1 Preliminaries and a lower bound for the number s
of singular fibers

The purpose of this lecture is to study restrictions on the torsion groups of
elliptic surfaces over an arbitrary base curve. In fact the approach is dual to
this: we'll study the restrictions on the base curve (its genus), the rank of
the Mordell-Weil group of sections, and the Euler number of the surface, given
information about the group of torsion sections.

We will retrict ourselves to minimal semistable Jacobian elliptic surfaces,
since if f : X — C has a non-semistable fiber, then the order of the torsion
group is at most 4, and these small groups present no essential problems in the
theory, only annoying complications. Most of this material is taken from [MP3].

We will use the notation of the previous lecture:

e = the topological Euler number of X

x = the holomorphic Euler characteristic of X

p = the Picard number of X, the rank of the Neron-Severi group NS(X)

Rk = the rank of the Mordell-Weil group MW (X)) of sections of X

s = the number of singular fibers Fy,...,F, of X

m; = the number of components in Fj, which is of type I,

g = the genus of the base curve C

g = h*(Ox) and p, = h*(Ox)
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h?? = the (p, ¢)-Hodge number of X.
We have already seen that

e=12x = my

i
The Shioda-Tate formula is

p=2+Rk+) (mj—1)=2+Rk+x—s. (5.1.1)
J

Assuming that X is not a product (which we will always do), then ¢ = g,
so that the Hodge diamond for X is

1
g g9
Pg R Pg
g9 g
1

and therefore 12y = e = 2 + 2p, + A — 4g = 2x + k! — 2g, so that A} =
10x + 2g. This of course forces

p < 10x + 2g (5.1.2)
since p is always at most h'!. Combining everything we get the following.

Proposition 5.1.3 Let X be a smooth minimal semistable elliptic surface which
s not a product. Then

s>2x+2-29+Rk
with equality if and only if X has mazimal Picard number p = b,
Proof: We have
s = 12x =) (m;—1)
= 12x — (:J —2-Rk)=12x +2+ Rk —p (from 5.1.1)
> 12x+2+4+ Rk — (10x + 2g) (from 5.1.2)
= 2x+2-29+Rk

as claimed. Since the inequality comes from p < A'!, we have the last statement.
m]
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5.2 Translation by torsion sections and an upper bound
for s

The next ingredient is a combinatorial fixed point analysis of actions given by
translations by torsion sections. Let T' be a torsion subgroup of MW, let S; be
the zero section of T, and let S be any other torsion section in T'. Denote by
s the automorphism of X given by translation (in the group law of the fibers)
by S. Via the 75’s the torsion group T acts on X, preserving the fibration f.

We will say that a singular fiber F; has isotropy group H C T under the
above action if H is the set of sections which meet the component Céj ), that is,
meet the same component of F; as does the zero-section Sp.

The following lemma is proved in [MP2].

Lemma 5.2.1 Let f: X — C be a smooth minimal semistable elliptic surface
with torsion group T C MW,,.(X).

a) The elliptic fibration f induces an elliptic fibration fr : X/T — C.
b) fr has ezactly s singular fibers also, one under each singular fiber of f.

c) The image of an I, fiber with isotropy H, under the quotient map, is a

a cycle of |T'/"H| smooth rational curves meeting at singular points which

are rational double points of type Ajg|_1. These double points are the only
singularities of X/T. The image of a smooth fiber is a smooth fiber.

d) Let Yr be the smooth elliptic surface obtained by resolving the singularities
of X/T, and let fr : Yr — C be the induced elliptic fibration; it is a
smooth minimal semistable elliptic surface also. The singular fiber of fr

corresponding to an I, fiber of f with isotropy group H is a fiber of type

Lja -
e) X and Yr have the same Euler number e.

f) If the singular fiber F; of type I, has isotropy group Hj, then e| T | =
Zimi| H ¥
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We will say that a cyclic subgroup H C T is cyclic and cocyclic (abbreviated
“c&c”) if both H and T/H are cyclic. Only c&c subgroups of T' can possibly
be isotropy groups of singular fibers. For each c&c subgroup H of T, let it g be
the number of nodes of singular fibers of X with isotropy group H under the

action of T'. Note that, for example, 10} {0} = €.
Proposition 5.2.2 With the above notations:

a) Yacr,peee | H Yirg=¢|T]|.

b) For each c&c H C T, Ygcae, HCGCH IT,G = IH,H.

Proof: Statement (a) is simply Lemma 5.2.1(f), the sum begin organized over
the subgroups instead of the singular fibers. The second statement is obtained
by noticing that a node of a singular fiber of X is fixed by H under the induced
H-action if and only if it is fixed by a subgroup of T' containing H, under the
full T-action. O

We are now in a position to illustrate the argument we will use. Suppose
simply that f has a section of order p for some prime number p. That sec-
tion generates a torsion subgroup T of order p, and the only relevant isotropy

numbers are i,r and ir,{o}. By the previous proposition these numbers satisfy
i1, + 17,40} = ifo},{0} = 12X

and

ir {0} + PYir,r = 12xp.
Solving this gives ir,0} = 12xp/(p + 1) and ir,r = 12x/(p + 1). (We could also
have computed these numbers using the results of the last lecture.)

Now, every singular fiber has isotropy either {0} or T'; those with trivial
isotropy must have m; divisible by p, since then T embeds into the group of
components, which has order m;. For fixed x, one maximizes the number of
singular fibers s by having ir,r fibers of type I; with isotropy T and ir,o}/p
fibers of type I, with isotropy {0}. Hence the maximum number of singular

fibers is ir,r + ir,40}/p = 24x/(p +1): 5 < 24x/(p +1).
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Combining this upper bound with the lower bound given by Proposition

5.1.3, we see that
2x +2-29+ Rk <24x/(p+1) (5.2.3)

if there is p-torsion in the Mordell-Weil group.
The above statement is the prototype of the conditions obtained by assuming

a certain torsion subgroup T of MW (X).

Corollary 5.2.4 Assume that there is p-torsion in the Mordell-Weil group of
X. Then p® — 1 divides 24x. Moreover:

a) Ifg=0thenp<T. Ifg=0 and x is odd then p < 5.

b) Ifg=0andp =2 then Rk < 6x—2;ifg = 0 and p = 3 then Rk < 4x—-2;
ifg=0andp=5then Rk <2x—2;ifg=0andp =T then Rk < x—2;

b) Ifg=1 then p < 11.
c) Ifg>1and x > 79— 6 then p < 11.

d) If x is odd then p # 7. If x is not divisible by 5 then p # 11.

5.3 The Size of an abelian group of length at most 2

I claim that the above analysis can be carried out for any possible torsion group
T. The trick is to use the quotient construction to get an upper bound on the
number s of singular fibers of X. This upper bound should depend linearly on
the Euler number e, so let us in fact divide everything we see by e to try to
obtain more invariant numbers.

Define then for each cyclic and cocyclic subgroup H of T, the number

1.0 = iT.H]€

which is the fraction of the nodes which have isotropy H under the T' action.
A priori these fractions depend not only on T and H but on the representation

of T as a group of torsion sections on X.
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Now if the above situation occurs, then a fiber of type I, with isotropy
H must have m divisible by | T | / | H |. (T/H embeds into the group
of components.) Hence for fixed Euler number e, the maximum number of
singular fibers s would be achieved when every singular fiber with isotropy H has
| T |/ | H | components. This leads to a maximum of Suireg/((T |/ HJ)
singular fibers.

Expressing this in terms of the 7’s lead us to the following provisional defi-

nition:

Definition 5.3.1 Let T be a finite abelian group of length at most 2. Define
the size of T, denoted by Size(T'), by

. 1
Slze(T) = ﬁ Z | H | 1T.H-
HCT, H c&c

This then gives the following almost by definition:

Proposition 5.3.2 Assume that X admits the finite group T as a group of

sections. Then

s < e- Size(T)

Now we must address two questions. Firstly, is Size(T') well-defined, inde-
pendent of the way T lives as a group of sections? Secondly, what is Size(T)?

For the first question, in fact it is possible to show that the 7’s are well-
defined, which is of course enough to prove that Size(T') is.

We can re-write the equations of Proposition 5.2.2 as

> |HPyru=|T]| (5.3.3)
HCT, H c&c
and
Y  re=mE (5.3.4)
G ke, HCGCH

for each c&c H C T.
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Lemma 5.3.5 For every finite abelian group T' of length at most 2, the above
linear equations for the fractions v,z have full rank, and determine these num-
bers, independently of any representation of T' as a group of torsion sections of

an elliptic surface.

This is a rather long computation, which one can find in [MP3], Now that
we have this in hand, we have no choice but to compute the q’s! This was also
done in [MP3], and after plugging them into the Size formula, the result is the

following.
Theorem 5.3.6 Assume that M divides N. Then

. 1 p—1
Size(Z/M x Z/N) = 'ﬁl;l[l + V,,(N/M)(p—_ﬁ)].

(Here vp(k) is the p-order of k, i.e., the largest exponent v such that p* divides

5.4 Applications to genus, rank, and Euler number

Comparing the lower bound of Proposition 5.1.3 with the upper bound of Propo-
sition 5.3.2, we have the following, on which all of the applications are based:

Theorem 5.4.1 Assume that X admits T as a group of torsion sections. Then
2x + 2 — 29 + Rk < 12 - Size(T).

There is also a divisibility condition on x which will not be discussed further
in these notes; it is the analogue of the result (from the last lecture) that p? —1
divides 24y if there is p-torsion in MW(X).

Let us draw the promised corollaries of the above theorem. Suppose first
that g = 0, i.e., that X is an elliptic surface over P!. In this case Theorem 5.4.1
can be written as

Rk < (12Size(T) — 2)x — 2, (5.4.2)

which implies that Size(T) > 1/6, since Rk > 0 and x > 1. There are a finite
number of T’s with Size(T') > 1/6, and for each of these there is a corresponding
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bound on the rank Rk of the Mordell-Weil group, and a divisibility statement
for x. We present the list in Table 5.4.2.

Table 5.4.2: Possible Mordell-Weil groups when g = 0

T Size(T) Rk

{0} 1 Rk < 10x —2
Z/2 2/3 Rk <6x—2
Z/3 1/2 Rk <4x -2
Z/4 5/12 Rk <3x-2
Z/5 1/3 Rk <2x -2
Z/6 1/3 Rk <2x -2
Z/1 1/4 Rk < x—-2

Z/9 2/9 RE < (2/3)x —2
Z/10 2/9 RE < (2/3)x —2
Z/12 5/24 Rk < (1/2)x —2
Z/2 xZ)]2 1/2 Rk <4x -2
Z/2xZ/4 1/3 Rk <2x -2
Z/3xZ/3 1/3 Rk <2x -2
Z/2xZ/6 1/4 Rk<x-2
Z/4xZ/4 1/4 RE<x-2

Z/2xZ/8 5/ Rk < (1/2)x — 2
Z/3xZ/6  2/29 Rk < (2/3)x — 2
Z/5xZ/5  1/5 Rk < (2/5)x — 2

This list of 19 possible groups when g = 0 first appeared in Cox and Parry’s
article [CP1]. If one takes into account the divisibility conditions, and considers
those possible when x = 1, (which is the rational elliptic surface case), one
obtains the list of Cox [C3]. If one considers those possible when x = 2, (the
K3 case), then we reproduce Cox’s list again in this case [C3]. Cox’s methods

used the theory of elliptic modular surfaces.

Now suppose the base curve C has g = 1. In this case Theorem 5.4.1 can

be written as

Rk < (12 - Size(T') — 2)x
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and so we must have Size(T) > 1/6, since Rk > 0 and x > 1. Thus any
group occurring for g = 0 can occur for g = 1, and in fact the only additional
groups T are those with Size(T') = 1/6 exactly. These are listed below, with
the following notation: (N) denotes Z/N, and (M, N) denotes Z/M x Z/N.

Groups with Size(T) = 1/6 : (11),(14),(15),(2,10),(2,12),(3,9),(4,8),(6,6).
Note that in general, Theorem 5.4.1 can be written as
Rk < (12- Size(T) —2)x —2+2g

and so for any genus g, if Size(T) < 1/6, then T cannot occur for large val-
ues of x. Therefore the above set of groups (those with Size(T') < 1/6) are,
asymptotically for x, the only groups that can occur.

A more precise asymptotic result is the following.
Proposition 5.4.3 Suppose x > 2g — 2, Then Size(T) > 1/12.

Proof: We may suppose that S = Size(T') is less than 1/6 and that g > 2. In
this case 125 — 2 < 0, so that (125 — 2)x < (125 — 2)(2g — 2). Hence

0 <Rk

IA

(125 —2)x —2+2g
(125 —2)(29 —2) — 2+ 29
(125 — 1)(2g — 2)

IA

which forces 125 — 1> 0 since g > 2. O

A corollary of this Proposition is that, by listing all the groups T with
Size(T) > 1/12, one sees by inspection that they all have order at most 144.
(The group (12,12) is the largest on the list.) Therefore one has:

If x >2g —2, then |T |< 144

which is a result of Hindry and Silverman [H-S].
Another easy consequence of the above formulation is the following, which

gives a bound on the rank of the Mordell-Weil group.
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Proposition 5.4.4 Suppose Size(T) < 1/6. Then Rk < 29 — 2.

The above first appeared in [C3]. .
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