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INDECOMPOSABLE R.A. LOOPS AND RELATED
TOPICS

César Polcino Milies ®

1. Introduction

'Let R be a commutative (and associative) ring with unity and let L be a loop.
The loop ring of L over R was introduced in 1944 by R.H.Bruck as a means to
obtain an important family of examples of non-associative algebras.

They are defined in precisely the same way as the more familiar concep of
group ring is; namely, RL is the free R- module with basis L in which multipli-
cation is introduced by extending that of L via the distributive laws.

Alternative loop algebras are the non-associative structures which are clos-
est to group rings. They were first considered by E. G. Goodaire [4] in the
case where R has no 2-torsion. He actually showed that the fact that RL is
alternative depends only on the structure of L (but not on R). Thus, a loop L
is called a ring alternative loop, or simply, an R.A. loop if its loop ring over any
ring R, on the above conditions, is alternative.

In a subsequent paper, the inner structure of R.A. Loops was studied by O.
Chein and E. G. Goodaire [3], who showed that R.A. loops are almost groups
(they have a normal subgroup of index 2) and almost commutative (the com-
mutator subloop is of order 2). Actually, they can be described as a particular
instance of a well-known general construction of Moufang Loops (O. Chein [1],
2)

It is easy to see that any R.A. Loop can be written as the direct product
of an indecomposable R.A. Loop and an abelian group. In what follows, we

classify all indecomposable R.A. Loops, up to isomorphisms, and we describe


http://doi.org/10.21711/231766361994/rmc610
https://orcid.org/0000-0002-8389-0533

138 C. P. MILIES

the structure of their rational loop algebras.

The study of the structure of R.A. Loops, has focused attention on a par-
ticular type of groups; namely, those g'roups G whose quotient by their center
Z(G) is isomorphic to the direct product of two cyclic groups of order two.
The natural generalization of these groups for an arbitrary prime p, i.e., those
groups G such that G/Z(G) = C, x C, was studied by G. Leal and C. Polcino
Milies in [12]. Using this fact, it was possible to obtain new results regarding
the units of integral group rings of p-groups, a study started by J. Ritter and
S. K. Sehgal in [13]. We quote these in our last section.

The proof of these results can be found in [9], [10] and [11] and will be
published elsewhere.

2. Classifying Indecomposable R. A. Loops

We start by recalling the construction of R.A. Loops due to Chein and Goodaire.

Theorem 2.1. Let L be an R.A. loop. Then, there ezists a group G C L and
an element u € L such that L = GUGu, G' = L' ={1,s} C Z(G) = Z(L) and
L/Z(L) = C; x C; x C; where C, denotes a cyclic group of order 2 ( and
consequently, G/Z(G) = C; x C; ).

Furthermore, the map * : L — L given by

g,:{g if g € 2(G)
sg ifg¢ Z(G)

ts an involution of L which extends linearly to RL. Setting u® = go, we have
that go € Z(G) and multiplication in L is given by:
(hg)u

(gu)h = (gh*)u
(gu)(hu) = goh7g

Q
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A loop constructed in such a way is denoted as L(G, *, go). Conversely,
given a group G and a map * : G — G as above, the loop L = L(G, *, go) is
an R.A. loop.
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As mentioned above, groups G such that G/Z(G) = C, x C,, p a rational
prime, were studied in [12]. We quote these result below, though in the present

case we shall need only to consider p = 2.

Lemma 2.2. ([12], Lemma 1.1) Let G be a group such that G/ Z(G) = Cpx C,.
Then G' =< s >C Z(G) is cyclic of order p. O

Theorem 2.3. ([12], Theorem 1.2) Let G be a group. Then G/2Z(G) = C, xC,
if and only if G can be written in the form G = D x A where A is abelian
and D is an indecompo.;able p-group such that D =< =z, y, Z(D) > where
Z(D) = Cpmi x Cymz X Cyms with Cpmi cyclic of order p™, i =1, 2, 3;m; >
1; ma, m3 > 0 and s = Oz, y #€ Cpmi, ¥ € Cpmy X Cymz, YP € Cpmy X Cpms X
Cpms .

In what follows, we shall denote by ¢; a generator of the cyclic group C;,
1<i<3.

Now, we turn our attention to indecomposable R.A. loops.

Theorem 2.4. (/9] , Theorem 2.2) Let L = L(G, *,go) be an indecomposable
R.A. loop. Then G = D x C where D is an indecomposable 2-group and C is a
cyclic group of order 2", n > 0. Also ifn > 0 then go = dc with d € Z(D),c €
C,c#1.

We shall always use w to denote a generator of the cyclic group C.
With the notation above, all possible types of indecomposable R.A. loops
are given by the following table (see [9]) :
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Indecomposable R.A. Loops

| Z(D) ey G u?=go |
Ly <t > ‘1 1 D, 1
Lz <t > ty 12 .Dz tl
Ls <t > X<ty > 1 ¢ Ds 1
Ly <t > X<ty > ty i, Dy ty

L5 <hh>X<ty>X<tz> t; {3 D5

La <t1>><<t2>x<t3> ty t3 D5 tl
Ly <t;>X<t3>x<tz> t3 t3 Dgx<w> w

3. Description of Rational Loop Algebras

Our main result regarding loop algebras of indecomposable R. A. Loops is the

following.

Theorem 3.1. Let L be an indecomposable R.A. loop. Then

QL = Q%) e Qi(—)

and

1. QL(H*) = Q(L/L') = @y 1y 2aQ(&a),
with aq equal to the number of cyclic factors of L/L' of order d, and £4.a
primitive dEth-root of unity.

2. QL(%5*) = A(L : L') is a sum of ar, simple alternative algebras with ar,
equal to the number of subgroups H in Z(L) such that Z(L)/H is cyclic
and s ¢ H.

3. Z(A(L : L')) = @ Q(én), where the direct sum runs over all subgroups H
as in (2) and {x is a primitive |Z(L)/ H|*h-root of unity.

Furthermore:

if L = L;, i = 1,3 or 5, then all simple components of A(L : L') are split
Cayley-Dickson algebras.

tf L = L;, i = 2,4,6 or 7, then all simple components, but one, are split

Cayley-Dickson algebras. The non-split component, in each case, is determined
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by a primitive central idempotent of the form e = H\(I%') We list below the

corresponding subgroup in each case.

[ Loop H ]

L, {1}

L, < tity >

Lg < ity > X < titz >

L, <ttty > X < it > X < tyw >

We recall that the Cayley-Dickson matrix algebra over a field F' is defined
as
F F®
C(F) - [ Fa F ]
where F® denotes the set of 3-dimensional vectors over F, addition is defined

componentswise and multiplication in C(F) is given by:

a V ad V| [ad+V.-W aV' + 6V —W x W'
W b Wb |7 | dWH+W +V XV W +W-V'

(see [17, Theorem 2.4.7]).

In [9] concrete isomorphisms are given between the simple components of

the rational loop algebras and the Cayley-Dickson algebra.

4. Group Rings of some p-groups

Let U = U(ZG) denote the group of units of the integral group ring of a finite
group G, and set V = V(ZG) = {u € U | e(u) = 1}, where ¢ : ZG — Z denotes
the augmentation map. Since it is difficult to describe explicitly the full group
of units, it has been a recent trend to determine sets of generators for subgroups
of finite index in V (see for example [14, 15]). In particular, this was done in [8]
for 2-groups G such that G/Z(G) is the Klein four-group, where Z(G) denotes
the center of G.

Here, we shall be interested on indecomposable p-groups G such that G/Z(G)
= Cp x Cp. We begin with those indecomposable p-groups which have cyclic
center. We set Z(G) =<t |t =1 >.
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Lemma 4.1. There ezist z,y € G such that
G =<z, y t|aP =1, y* =t yz = tizy >,

where 0 < 7,3 < p—1, and o(t') = p. Moreover, eitherr =s =0orr =1, s = 0.
We can give a full description of these groups:

Proposition 4.2. Let G be a finite indecomposable group such that G/Z(G) =
Cp x Cp and Z(G) is cyclic. Then G is isomorphic to one of the following

groups:
Gl = <z’y’t|m1’:yp=tp"=1>’
G, = <z,y,t|m"=t,y"=t”"=1>

where we are assuming that t is central and the commutator [z,y] = t*" . Also,

G1 and G, are non-isomorphic.
Now, we give a description of the structure of QG.

Proposition 4.3. Let G be as above. Then
n+1

QG = @ a:Q(&) D My(Q(¢)),

=0
where ; is a primitive root of unity of order p;, a; is the number of cyclic factors

of G/G' of order p*, and ¢ is a primitive root of unity of order p™.

As a consequence of these results, it is possible to describe subgroups of
units of finite index. To this end, we introduce some notation.

For a given p-by-p matrix A = (ay;), 0 < i,j < p — 1, let AP denote the
matrix obtained from A by putting in the k-th row (0 < k < p—1) of AP, the
k-th pseudodiagonal of A4, i.e.

o0 @11t Gp-2,p-2 Op-1p-1
Gp-1,0 Qo1 *tt Gp-3p-2 Gp-2p-1

AP = [ @p20 Gpo1q *++ Gpgp2 Gp3p

1,0 az1 **r Qp-1,p-2 @o,p-1
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Also, we set G = G/G'.
Proposition 4.4.
1. U(ZG,) has a subgroup of finite index isomorphic with the direct product
U(L+pZC) x {1+ (1 - w)A € UM,(ZIE)) | APV € My(p2[¢))}
2. U(ZG,) has a subgroup of finite indez isomorphic with the direct product
U(1+p2G) x {1+ (1 - w)A € UM(2IE)) | (A)°V € My(p2[E))}

We now give another subgroup of finite index which is somehow easier to

describe; the non-commutative direct factor being the same for all groups G.

Corollary 4.5. U(ZG) has a subgroup of finite indez isomorphic with the direct
product

U1 +pZG) x {1 +p(1 —~w)A | 1+ p(1 - w)A € U(M,(Z[€])}

The descriptions in the general case follow naturally from the cases above;
see [11]
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