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TOPOLOGY OF SPECIAL GENERIC MAPS
INTO R?

Osamu Saeki*®

Abstract

A smooth map between manifolds with only definite fold singular
points is called a special generic map. We classify up to diffeomorphism
those simply connected 5-manifolds which admit special generic maps
into R3. We also classify special generic maps of simply connected 4-
and 5-manifolds into R3 up to a certain equivalence. Furthermore, we
construct closed n-manifolds (Vn > 4) which admit smooth maps into
R3 with only fold singular points but which do not admit special generic
maps into R3.

1. Introduction

Let f : M™ — NP (n > p) be a smooth map of a closed n-dimensional
manifold into a p-dimensional manifold. We say that a singular point ¢ € M™
of f is a fold singular point of indez A if f has the normal form as follows for
some local coordinate systems around g and f(q):

viof=z; (1<i<p-1)

a0 = _xi_..._zz+’\_l+z:+x+...+zi :
where 0 <A <n—p+1isaninteger. If A =0orn—p+ 1, we say that gis a
definite fold singular point. A smooth map f: M™ — NP with only definite fold
singular points is called a special generic map. Note that a definite fold singular
point is the simplest singularity among all possible singularities of smooth maps
M™ — NP. Furthermore, if f : M™ — NP is stable and N? is open, then f
has necessarily a definite fold singular point. Thus, it is fundamental to study

special generic maps in studying the global topology of stable maps.
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Special generic maps were first defined by Burlet-de Rham [BdR], who
showed that a closed 3-manifold admits a special generic map into R? if and
only if it is diffeomorphic to S? or the connected sum of some S?-bundles over
S1. They also classified such maps up to a certain equivalence. After that,
special generic maps have been studied by several authors; Porto-Furuya [PF),
Sakuma [Sak1, Sak2], Saeki [Sael], Hiratuka [Hi|, Carrara [C], Motta-Porto-
Sakuma [MPS], Kikuchi-Saeki [KS] etc.. Note also that the case where n =p
has been studied by Eliasberg [E1].

In tilis paper we mainly discuss three topics about special generic maps. In
§2, we classify the simply connected 5-manifolds which admit special generic
maps into R? up to diffeomorphism. We achieve the classification using re-
sults obtained in [Sael] together with a theorem of Hatcher [Ha|. In §3, we
construct closed n-manifolds (n > 4) which admit smooth maps into R?® with
only fold singular points but which do not admit special generic maps into
R3. For n > 5 the construction is explicit and elementary, while for n = 4,
instead of constructing explicitly, we show that the Moishezon-Teicher surface
[MT1] (complex 2-manifold) with zero signature gives such an example. This
result suggests that there are certain ébstructions to eliminating indefinite fold
singular points globally. In §4, we recall some equivalence relations between
special generic maps and classify the special generic maps of simply connected
4- and 5-manifolds into R® up to these equivalences. Finally in §5, we pose
some important problems concerning special generic maps, where we define a
new diffeomorphism invariant of closed manifolds using special generic maps.

We also discuss a cobordism theory of special generic maps.

Throughout the paper, all homology and cohomology groups are with inte-
gral coefficients unless otherwise indicated. All manifolds and maps are assumed
to be C>.

The author would like to express his sincere gratitude to K.Sakuma, V.L.Car-

rara and J.T.Hiratuka for invaluable comments and discussions.
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2. Simply connected 5-manifolds with special generic
maps

Since m;(SO(k)) (k > 3) is isomorphic to Z,, there are exactly two orthogo-
nal S*~1-bundles over S2. We denote by S?XxS*~! the total space of the unique
non-trivial orthogonal S*~*-bundle over S2.

" The purpose of this section is to prove the following.

Theorem 2.1. Let M® be a simply connected closed 5-manifold. Then MP®
admits a special generic’ map into R® if and only if it is diffeomorphic to one
of the following manifolds:

frs?xS* (r>0) or

(7187 x SH(S?%xS8%)  (r=1),
where || denotes connected sum and the connected sum over an empty set is

assumed to be S°. Furthermore, no two manifolds in this list are diffeomorphic.

Proof. Suppose that a simply connected closed 5-manifold M admits a special
generic map into R3. Then by [Sael, Theorem 6.16], M is diffeomorphic to the
connected sum of a homotopy 5-sphere and some smooth S3-bundles over S2.
Note that every homotopy 5-sphere is diffeomorphic to the standard 5-sphere S®.
Furthermore, since the natural inclusion O(4) — Diff(S®) is a weak homotopy
equivalence by Hatcher [Ha], every smooth S3-bundle is orthogonal. Hence, M
is diffeomorphic to the connected sum of S° and some copies of S? x S* and

S?xS3.
Lemma 2.2. $?2xS5315?%S? is diffeomorphic to S? x S315?xS3.

Proof. Let E be the 6-manifold with boundary obtained by attaching two 2-
handles h; and h; to a 0-handle D® simultaneously along unlinked circles C; and
Cyin OD®. Recall that the normal bundles of C; in D8 are the trivial D*-bundle
and that we have canonical trivializations corresponding to embedded 2-disks

with boundary C;. Note also that m;(SO(4)) is isomorphic to Z;. We attach h;
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and h; with the non-trivial framing corresponding to the non-zero element of
m1(SO(4)). Then it is easy to see that OF is diffeomorphic to S2x S3§S5?% S3. If
we slide the 2-handle h, over the other 2-handle k, once, then the framing of h,
becomes trivial. Thus the boundary of the resulting manifold is diffeomorphic
to 5% x S%15?x 53, Since handle sliding does not change the diffeomorphism

type of the 6-manifold, we have the conclusion. O

Using the above lemma, we see that M is diffeomorphic to one of the 5-
manifolds in the list of Theorem 2.1.

Conversely, the manifolds listed in Theorem 2.1 admit special generic maps
into R®. See Remark 6.15 and Lemma 5.4 of [Sael].

Next we show that no two manifolds in the list are diffeomorphic. First note
that by(5? x §°%) = b,(5?%5®) = 1 and hence that by(§"S? x 5%) = by((f7~15? x
5*)i(S?x5%)) = r, where b, denotes the second Betti number. Thus we have
only to show that {7S? x S* is not diffeomorphic to (f"~'S% x S3)(S?%$3)
(r>1).

Lemma 2.3. The second Stiefel-Whitney class of S?x S does not vanish.

Proof. Let { : Y — S? be the non-trivial orthogonal R*-bundle over S2.
Since it is non-trivial, we see that its second Stiefel-Whitney class wy(€) €
H?*(8%;Z,) does not vanish by obstruction theory. Let m : Y’ — S? be the
unit disk bundle associated with ¢. Then we see that w,(Y’) = 7*w,(¢), since
TY' = n*(TS*)@7"(£), w1(TS?) = 0 and w,(T'S?) = 0. Moreover, we have that
w2(S?%5%) = wy(8Y’) = i*wy(Y"), where i : Y’ — Y" is the inclusion map,
and that == : H*(5%;Z,) — H*(Y'; Z;) and i* : H*(Y';Z,) — H*(8Y'; Z,) are

isomorphisms. Hence w;(5?%S®) does not vanish. O

By virtue of Lemma 2.3, (§"~152 x S$%)§(S?%XS®) has non-trivial second
Stiefel-Whitney class, while w,(§"S? x S%) vanishes. Thus they are not dif-
feomorphic to each other. This completes the proof of Theorem 2.1. O
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Remark 2.4. Using a result of Hatcher [Ha), we can improve some results of
[Sael] as above. For example, Proposition 3.4 and Corollary 4.2 of [Sael] holds
also for n — p = 3, and exotic 7-spheres do not admit a special generic map into
R* (see §4 of [Sael]).

3. Manifolds which do not admit special generic maps
into R?

Let f : M® — NP be.a smooth map with only fold singular points. Then
it is natural to ask if the indefinite fold singular points can be eliminated by
a homotopy so that f becomes a special generic map. The answer is “no” in

general as follows.

Theorem 3.1. For every n > 4, there ezxists a closed n-dimensional manifold
M™ which admits a smooth map into R3 with only fold singular points but which

does not admit a special generic map into R3.

Remark 3.2. Note that every closed orientable 3-manifold admits a special
generic map into R® ([E1]). Furthermore, a result similar to the above proposi-
tion holds also for R2. This is proved using Theorem 5.1 of [Sael] and a result
of Levine [L]. It is enough to find a closed n-manifold (n > 3) with even Euler

number which is not in the list of Theorem 5.1 of [Sael].

Proof of Theorem 3.1. First suppose that n is odd and n > 5. Set n = 2k+1
(k > 2). We construct a desired manifold using a method due to Smale [Sm)]
as follows. Consider two disjoint embedded k-spheres in S2**! (= §D"*+!) with
linking number g (€ N). Let E be the (n+1)-manifold with boundary obtained
by attaching two (k+ 1)-handles to the 0-handle D™*! simultaneously along the
k-spheres above. Here we assume that the handles are embedded in R™*! and
we choose the framings so that the attaching is realized in R™t!; i.e., so that E is

immersed into R™*!. This is possible, since each attaching k-sphere is unknotted
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in S2*+1. Then we see that the n-manifold M™ = OE is stably parallelizable,
since so is E. Thus, by [E2], M™ admits a smooth map into R® with only fold
singular points. Furthermore, it is easy to see that M™ is simply connected.
Thus, if M™ admits a special generic map into R?, it is homeomorphic to S™ or

the connected sum of some S™ 2-bundles over S? ([Sael, Proposition 6.13]).

Lemma 3.3. Let X be an S™2-bundle over S?. Then Hy(X) = 0 for i #
2,n — 2.

Proof. Let X be the (topological) D" !-bundle associated with the S™~2-
bundle over S2. Then X is a topological (n + 1)-manifold with boundary and
X is canonically homeomorphic to 8X. Since X is homotopy equivalent to S?,
we have

H‘(X)g{ Z EZQ
Consider the following exact sequence:

H{.H(X, 3X) = fﬂ(aX) == H,(X)

Since Hi+1()'(,a)'{) = ﬂ"“()-(), we see that Hiyq(X,0X) = 0 and Hi(X)=0
for i # 2,n — 2. Hence we have fI,'(X) =] ﬂ..(a)'() =0.0

It follows from this lemma that we have the same conclusion for S™ and the

connected sum of S™~2-bundles over S?.
Lemma 3.4. Hi(M) = Z, @ Z,.
Proof. Consider the following exact sequence:

Hy11(E) = Hyya(E, M) — Hi(M) — Hi(E).

Note that Hyy1(E) = Heya(E, M) = Z @ Z and that Hx(E) = 0. Furthermore,

by the Poincaré duality, the map a above corresponds to the intersection form
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Hey1(E) X Hiy1(E,M) — Z of E. Thus o has a matrix representative of the

rq
g 3)’
where r and s are the self-intersection numbers of the embedded (k + 1)-spheres

Sy and S, in E which consist of the cores of the (k + 1)-handles and (k + 1)-
disks’ emb\edded in the 0-handle D™! with boundary the attaching spheres.

form

Since S; and S, are embedded in R™? by the immersion E — R™!, we see

that » = s = 0. Thus we have the conclusion. O

By Lemmas 3.3 and 3.4, we see that M™ is not homeomorphic to the con-
nected sum of some S™"~2-bundles over S? if ¢ # 1. Thus M™ cannot admit a
special generic map into R3.

Next suppose that n is even and n > 6. Set n = 2k (k > 3). Consider
a (k — 1)-sphere and a k-sphere disjointedly embedded in §2* (= 8D™*1) with
linking number ¢ (€ N). Let E’ be the (n+1)-manifold with boundary obtained
by attaching a k-handle and a (k + 1)-handle to the 0-handle D™*! along the
spheres above. Here, we realize the attaching in R™*! as in the previous case.

Set M™ = OE'. Note that M"™ is simply connected, since k > 3.
Lemma 3.5. Hy_;(M) = Hk(M) = Z,.

Proof. Consider the following exact sequence:
Hiy1(E') = Hipa(E', M) — He(M) —
Hu(E') 5 Hy(E', M) - His(M) — Hia(E').
Note that Hiy1(E') = Hepa(E', M) = Hy(E') = Hy(E',M) = Z and that
Hi_1(E') = 0. Furthermore, by the Poincaré duality, we see that a and 3 are

the maps corresponding to the multiplication by g. Hence, we have the desired

conclusion. O

Thus we see that the n-manifold M™ for g # 1 is the desired one as in the

previous case.
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Finally we consider the case n = 4. Let M* be the simply connected
Moishezon-Teicher surface (complex 2-manifold) with zero signature [MT1].
By [K2] (see also [K1]), M* is spin, and hence it is stably parallelizable. Thus
by [E2], M* admits a smooth map into R? with only fold singular points. Sup-
pose that M* admits a special generic map into R3. Then by [Sael], M* is
diffeomorphic to X X,, where neither of X; has negative definite intersection
form. (Note that the second Betti number of the Moishezon-Teicher surface
is very big. See [MT2].) This contradicts a result of Donaldson [D]. Thus
M* cannot admit a special generic map into R®. This completes the proof of

Theorem 3.1. O

Note that the construction for the case n = 2k (k > 3) does not work for
n = 4. This is because the constructed manifold M™ is not simply connected
for k= 2.

Next we consider a more general class than the special generic maps. Let
f:M"™ — NP (n > p) be a smooth map with only fold singular points. We
say that f is simple if every component of f~'(a) contains at most one singular
point for all a € N? ([Sae2, Sak2]). Note that a special generic map is always
simple. Thus the class of simple maps is an intermediate class of the special

generic maps and the maps with only fold singular points.

Proposition 3.6. Let M* be a simply connected closed 4-manifold. If M* ad-
mits a simple map into N* with only fold singular points for a 3-manifold N3,
then it is homeomorphic to one of the following manifolds:

v 52 x S? (r>0) or
(115% x SH(S*%8?%)  (r21),

where the connected sum over an empty set is assumed to be S*.
Proof. By [Sae2], M* is null-cobordant in the oriented category; in particular,

its signature vanishes. Then, by Freedman [F], M* must be homeomorphic to

one of the above 4-manifolds. O
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Since the 4-manifolds in the above list admit special generic maps into R3,
it is natural to conjecture that if a simply connected closed 4-manifold admits a
simple map into R® with only fold singular points, then it admits also a special
generic map into R3. This problem seems difficult, since a component of the
singular set of a simple map is not necessarily homeomorphic to S2. If all the
components of the singular set of the given simple map are homeomorphic to
52, then it would be possible to prove the conjecture using graph theoretical
techniques as in [Sae4]. We do not know if there exists a simply connected
4-manifold which admits a smooth map into R?® with only fold singular points
but which does not admit simple ones. In the case of the maps of 3-manifolds

into R?, such 3-manifolds are known to exist [Sae3].

4. Classification of special generic maps

In this section, we discuss classifications of special generic maps up to some
equivalence relations. First, we recall the definition of the Stein factorization.
Let f : M™ — NP be a special generic map of a closed n-manifold. For
z,y € M", define ¢ ~ y if f(z) = f(y)(= a) and z,y are in the same con-
nected component of f~!(a). Denote by Wy the quotient space of M™ by this
equivalence relation and by g5 : M™ — W; the quotient map. We have a unique
map f : Wy — NP such that f = fo gs. The space Wy or the commutative
diagram

Mr L,

ar "\ 7
Wy

is called the Stein factorization of f. Note that Wy can be given a structure of
a smooth p-dimensional manifold so that f is an immersion and that g; | S(f) :
S(f) — 0Wy is a diffeomorphism, where S(f) = {g € M";rankdf, < p} is the

singular set of f.
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Definition 4.1. Let f : M} — Nf and g : M} — N} be special generic maps
of closed n-manifolds into p-manifolds. We say that f and g are quasi-equivalent
if there exist diffeomorphisms & : M7 - M3 and ¢ : Wy — W, which make

the following diagram commutative:

Note that this equivalence was first introduced by Burlet-de Rham [BdR|]
and was called “equivalence” (see also [PF]). They showed that two special
generic maps f : M? —» R? and g : M? — R? of closed orientable 3-manifolds
are quasi-equivalent if and only if b (M) = b;(M3) and §S(f) = §5(g), where
b, denotes the first Betti number and }{S(f) (§S(g)) denotes the number of

connected components.

Definition 4.2. Let f: M — N and g : M} — N} be special generic maps.
We say that f and g are regularly equivalent if there exist diffeomorphisms

®: M- M},p: Wy — Wyand ¢ : N — Nj such that the diagram
M — M7
sl La
wy S W,
is commutative and that the immersions f and ¥y ogop : Wy — NP are

regularly homotopic.

Note that this equivalence was first defined by Porto-Furuya [PF], although
they did not consider the diffecomorphism 3 : N¥ — Nf. Here we have added
this diffeomorphism so that the following proposition appears to be natural

when compared with the most natural equivalence — the right-left equivalence.
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Proposition 4.3. Let f : M} — N} and g : M} — N} be special generic
maps of closed n-manifolds. Then f and g are regularly equivalent if and only
if there ezist a smooth family of special generic maps f, : M7 — N (t € [0,1))
and diffeomorphisms ® : M} — M} and ¢ : NY — N¥ such that fo = f and
g=vofiod 1

Note that the above proposition is proved by the same argument as in [PF]

(see also [Sael, §6]).

Remark 4.4. We see easily that the right-left equivalence implies the regular

equivalence, which in turn implies the quasi-equivalence.

In the following, we discuss classifications of special generic maps of simply
connected 4-manifolds into R3 up to the above equivalences.

First, we recall some of the results of [Sael]. Let f : M* — RS2 be a
special generic map of a simply connected closed 4-manifold into R3. Then
each component of the singular set S(f) is diffeomorphic to S? and the number
of connected components is equal to by(M*)/2 + 1, where b, denotes the second
Betti number. Let X(f) be the closed 3-manifold obtained by attaching 3-
balls to the boundaries of W;. Note that X(f) is a homotopy 3-sphere, since
m(B(f)) = m(Wy) = {1} (see [Sael, Proposition 3.9]). Denote by © the set
of all diffeomorphism classes of homotopy 3-spheres. Furthermore, let S( f)=
S1U---US, (s = by(M*)/2+1) be the components of S(f). We fix an orientation
of M* and set n;(f) = Si-Si, where S;- S; is the self-intersection number of S; in
M?*. We renumber the indices if necessary so that ny(f) < na(f) <--- < n,(f).
Note that, if we change the orientation of M*, this sequence transforms to

—ny(f) <o < —ma(f).
Lemma 4.5. 3!_, n;(f) = 0.

Proof. This follows from Proposition 3.16 of [Sael]. O
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Set A, = {(n1,---,n,) € Z%ny < -+ < m,, Tiy 1 = 0}. Define (ny,:-+,n,)
("'ll"",'"',-) if (nl)"'x"") = (n;v"')"la) or ('"'lv"‘f"'I) = _("’In"')nll)' Fi-
nally set A, = A,/ ~. Now the element (£(f); (n1(f),:--,n.(f))) € © x A, is

well-defined for a special generic map f.

Theorem 4.6. The map which associates (2(f); (n1(f),- - ,n.(f))) with a spe-
cial generic map f : M* — R is a bijection to the set © x A, from the set of
all regular equivalence classes of special generic maps of simply connected closed

4-manifolds of second Betti number 2(s — 1) into R?.

Proof. First, the above map is clearly well-defined, since regularly equivalent
special generic maps have diffeomorphic Stein factorizations and diffeomorphic
singular sets as submanifolds in the 4-manifolds. The injectivity follows from the
same argument as in the proof of Proposition 6.11 of [Sael]. Thus it suffices to
show the surjectivity. Let ¥ be a homotopy 3-sphere and take (ny,---,n,) € A,.
Let W be the compact 3-manifold obtained by removing s disjoint open 3-
balls from X. We construct an orthogonal D?-bundle over W as follows. Let
OW = S;U---US, be the components of W and i;: §; - W (j = 1,--,3)
the inclusion maps. Note that S; are diffeomorphic to $2. We fix an orientation
of W and orient S; as the boundary of W. Let v; € H?(S;) be the generator
corresponding to the orientation. Let 7; : E; — S; be the oriented orthogonal
D?-bundle over S; with Euler class njy; € H?(S;). Consider the following exact

sequence of cohomology:
H*(W) — H*(6W) = H3(W,0W).

Note that H*(W,0W) = Z, H*(0W) = @}_, H*(S;) and that a(n;y;) = n; € Z.
Since Y°5_; n; = 0 by our hypothesis, we see that a(®j_,n;y;) = 0. Hence,
there exists an element e € H?(W) such that (i;)*e = njy; (j = 1,-++,38)
by the exactness of the above sequence. Then let # : E — W be the ori-
ented orthogonal D?-bundle over W with Euler class e € H%(W). Note that
w|w=1(S;) : #~1(S;) — S; is isomorphic to m;. Let f : 8E — R? be a special
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generic map constructed as in [Sael] from 7 : E — W. Note that M* = OE
is a closed simply connected 4-manifold with second Betti number 2(s — 1).
Furthermore, we see easily form the construction that X(f) is diffeomorphic
to ¥ and that (ny,---,n,) ~ (n1(f), *+,n,(f)). This completes the proof of
Theorem 4.6. O

Remark 4.7. Let f : M* — R?® be the special generic map constructed as
above from (Z;(ny,+++,n,)) € © x A,. Then M* is spin if and only if all the
integers n; are even. This is proved as follows. For s = 1, this is obvious, since
n; = 0 and M* is a homotopy 4-sphere. Thus we assume s > 2. Let S(f) =
S1U---US] be the connected components of S(f) with S!-S! = n;. Furthermore,
set S = q;'(C;) ( = 1,---,5 — 1), where gs : M* — W is the quotient map
in the Stein factorization of f and Cj is a properly embedded arc in W whose
end points are in S; and S, and which is normal to 8W. We may assume that
C; are pairwise disjoint. Then S7 is a topologically embedded 2-sphere in M*

and we see that the intersection matrix of Sj,:--, 5’

ny 0 | +1 0
0 .'n,_1|0 : +1

+1 0 |
0 +1 |
(See the proof of Proposition 3.15 of [Sae1].) Since this 2(s — 1) by 2(s — 1) ma-

trix is unimodular and rankHy(M) = 2(s — 1), we see that S1sreeySh_1, Sy,

S,_; are a base of Hy(M) and that the intersection form of M* is represented

—1»Sy, ++, 5, is equal to

by the above matrix. Thus the intersection form is even if and only if n; are all
even. (Note that ¥°!_, n; = 0 by Lemma 4.5.) Recall that a simply connected
closed 4-manifold is spin if and only if its intersection form is even. Hence,
if n; are all even, then M* is homeomorphic to }*~15? x §2; otherwise M* is
homeomorphic to (§*~252 x S2)j(S?%S?).
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Remark 4.8. By the same argument, we see that the same map as in Theorem
4.6 induces a bijection to the set © x A, from the set of all quasi-equivalence
classes of special generic maps of simply connected closed 4-manifolds of second
Betti number 2(s — 1) into R3. Thus, in this case, the classification up to

quasi-equivalence and that up to regular equivalence coincide.

Remark 4.9. Burlet-de Rham [BdR] have shown that there are only finitely
many quasi-equivalence classes of special generic maps of a fixed closed 3-maﬁ-
ifold into R?. Theorem 4.6 (Remark 4.8) shows that this is not true in general
for special generic maps of closed 4-manifolds into R3, since the set A, contains

infinitely many elements if s > 2.

For special generic maps of closed simply connected 5-manifolds into R3, we
use the second Stiefel-Whitney class instead of the Euler class and can obtain
a similar result as follows. Set A} = {(n},---,n)) € (Z;)’;Z{_,n! = 0} and
A = A!/G,, where the symmetric group G, of order s acts on A, naturally. For
a special generic map f : M® — R3 of a closed simply connected 5-manifold
into R3, let S(f) = S;U---US, be the connected components of S(f). It is
not difficult to show that s = rankH,(M®) + 1. Define nl(f) € Z, to be the
second Stiefel-Whitney class wy(v;) € H?(S;) & Z; of the normal bundle v; of
S; in M5. Furthermore, we define (f) € © as before. Then the map which
associates (3(f); (ny(f), -+, nl(f))) with f is a bijection to the set © x A! from
the set of all regular equivalence (quasi-equivalence) classes of special generic
maps of closed simply connected 5-manifolds of second Betti number s — 1 into
R3. (For the proof, we use a result of Hatcher [Ha] as in §2. Details of the
proof are left to the reader.) In particular, if the set © of all diffeomorphism
classes of homotopy 3-spheres is finite, the number of regular equivalence (quasi-
equivalence) classes of special generic maps of a fixed closed simply connected
5-manifold into R? is finite, since the set A’ is finite.

Note also that if n{(f) = 0 for i = 1,...,s, then M?® is diffeomorphic to
#°~15% x S3; otherwise M® is diffeomorphic to (f*~252 x S®)§(S?x S?).
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For special generic maps f : M™ — R3 of closed simply connected n-
manifolds (n > 6) into R3, we do not know if such classifications as above
are possible. The difficulty lies in the fact that a smooth D™ '-bundle is not
necessarily orthogonal if n > 6.

Finally we note that everything in the above argument works under the
hypothesis that Hy(M) = 0 or Hy(M;Z,) = 0, where M is the source 4- or
5-manifold. Denote by ©@(Z) (or ©(Z;)) the set of all diffeomorphism classes of
closed 3-manifolds %° with H.(Z%) = H,(S?) (resp. H.(5%2,) = H.(S% Z,)).
Such 3-manifolds are called Z-homology (resp. Z,-homology) 3-spheres. Then

we have the following.

Proposition 4.10. (1) Let M* be a closed 4-manifold with Hy(M*) = 0. Then
M* admits a special generic map into R?® if and only if it is diffeomorphic to
one of the following manifolds:

(iS? x S?)fz* (r>0) or

(257 x SWSTXSNT (r 2 1),
where $* is a Z-homology 4-sphere which is the boundary of A% x D? for some
Z-homology 3-ball A3.

(2) Let M® be a closed 5-manifold with Hi(M) = 0 (or Hy(M; Z,) =0).
Then M® admits a special generic map into R? if and only if it is diffeomorphic
to one of the following manifolds:

(I S? x S3)iz® (r>0) or

(F-15° x SWSHSWE®  (r>1),
where X% is a Z-homology (resp. Z,-homology) 5-sphere which is the boundary
of A® x D* for some Z-homology (resp. Z,-homology) 3-ball A3,

Proposition 4.11. (1) The map which associates (B(f); (na(f), -+ m4s()))
with a special generic map f : M* — R3 is a bijection to the set O(Z) x A, from
the set of all regular equivalence (quasi-equivalence) classes of special generic
maps of closed 4-manifolds with vanishing Z-coefficient first homology and with
second Betti number 2(s — 1) into R3.
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(2) The map which associates (£(f); (ni(f),---,n.(f))) with a special generic
map f : M® — R® is a bijection to the set ©(Z) x A, (or ©(2Z;) x A!) from
the set of all regular equivalence (quasi-equivalence) classes of special generic
maps of closed 5-manifolds with vanishing Z-coefficient (resp. Z,-coefficient)

first homology and with second Betti number s — 1 into R3.

The proofs of these propositions are similar to the simply connected case

and are left to the reader.

Remark 4.12. For the 4-dimensional case, we cannot replace Z with Z,. This
is because a D?-bundle over a Z,-homology 3-ball A® is not necessarily ‘trivial,

since H?(A®) = Hy(A?®) does not necessarily vanish.

5. Problems

We end this paper by posing some problems.
In [Sael], we have determined the diffeomorphism classes of closed n-mani-
folds which admit special generic maps into R?. The remaining problems are

as follows.

Problem 5.1. Classify up to diffeomorphism the closed n-manifolds which ad-

mit special generic maps into R2.

Note that, in the list of Theorem 5.1 of [Sael], there are some repetitions

of diffeomorphism classes as is pointed out in [Sael, Remark 5.7].

Problem 5.2. Classify up to quasi-equivalence (or regular equivalence) the

special generic maps of closed n-manifolds into R2.

For a closed n-dimensional manifold M", define S(M™) to be the set of
the integers p with 1 < p < n such that there exists a special generic map

f: M™ — RP. Of course this set is an invariant of the diffeomorphism class of
Mm.
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Problem 5.3. Study the set S(M™).

Here we list some of its properties and some examples of the calculation of
this invariant.

(5.3.1) If M™ is not null-cobordant, then S(M™) =0 ([KS)).

(5.3.2) S(5™) ={1,2,---,n}.
Proof. This is obvious, since we can construct special generic maps ™ — RP
(1 < Yp < n) by restricting the standard projection R™! — RP to the unit
n-sphere. O i

(5.3.3) If S(M™) > {1,n — 3},{l,n — 2} or {1,n — 1}, then M™ is dif-

feomorphic to S*. In particular, M™ is diffeomorphic to S™ if and only if
S(M™) ={1,2,..-,n}.
Proof. If S(M™) 5 1, then M™ is diffeomorphic to S™ for n < 6 and is a
homotopy n-sphere if n > 7. Furthermore, for n > 7, if S(M™")>n-3,n—2o0r
n — 1 for a homotopy n-sphere M”, then M" is diffeomorphic to S™ by [Sael,
Corollary 4.2] (see also Remark 2.4 in §2 of the present paper). O

(5.3.4) If £ is an exotic n-sphere (n > T)ithen {1,2n}c S(BY)c {1,2, )
n—4,n}.

This follows from [Sael]. In particular, (5.3.2) and (5.3.4) show that the
invariant is not a homeomorphism type invariant in general. Note that this fact
could be proved using the Moishezon-Teicher surface [MT1] of Theorem 3.1

together with Freedman’s classification result in dimension 4 [F].

(5.3.5) (8P x §%) = {m+1,m+2,-.. ,P + q}, where m = min{p, ¢}.
Proof. Assume p=m <gq. For1 < s < g, we have a special generic map
g:57 — R’. Consider the map

fi87x 50 1% 6o ge n, ot

where 7 is an embedding. Then we see that f is a special generic map and that

S(8PxS) > {p+Lp+2,---,p+ q}. If there exists a special generic map
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SP x §7 — R* with 1 < 5 < p, then, by [Sael, Corollary 3.12], H,(S? x S9)

must vanish. This is a contradiction. Thus we have proved (5.3.5). O

(5.3.6) If the i-th Stiefel-Whitney class wi(M") € H(M™Z,) (i > 1) of
M™ does not vanish, then S(M") C {m + 1,m +2,---.n — i + 1}, where
m = min{z,n — i}.

Proof. If S(M") contains an element p > n — i+ 1, then w;j(M™) must vanish
for Yj > n — p + 1 by [Sael, Corollaries 3.18 and 7.5]. This contradicts to
our assumption. Furthermore, if S(M™) contains an element p<1i,n—1, then
H?(M™; Z;) must vanish for p<Yj<n—phby [Sael, Remark 3.21]. This is a

contradiction. O

(5.3.7) Let M*>" (n = 0,1,2,4(mod 8),n > 1) be the total space of an
orthogonal S™-bundle over $™ with non-trivial Stiefel-Whitney class w,(M?") €
H™(S™;Z,). (Note that Tno1(O(n+1)) X Zforn—1= 3,7 (mod 8) and Z, for
n —1=0,1(mod 8).) Then S(M?") = {n + 1}.

Proof. S(M*") C {n + 1} follows from (5.3.6). Furthermore, since the corre-
sponding element in m,_;(O(n + 1)) comes from Tn-1(0(n)) by the homomor-
phism induced by the inclusion O(n) — O(n + 1), we have a fiber-wise Morse
function g : M®™ — R which has exactly two critical points on each fiber. Then
the map

F:M™ X gn R T, R
is a special generic map, where m : M2 — S 'is the bundle projection and 7 is

an embedding. Hence we have proved (5.3.7). O

We can define similar invariants using smooth maps with only fold singular
points or simple maps instead of special generic maps. Denote by F(M™) (or
SF(M™)) the set of the integers p with 1 < P < n such that there exists a
(simple) smooth map f: M™ — RP with only fold singular points.

Problem 5.4. Study the set F(M™) and SF(M™).

We see easily that S(M™) SF(M™) C F(M™). Some results concerning
these sets can be found in [Sae2, Sae3, SK, E2].
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Next we discuss a cobordism theory of special generic maps.

Definition 5.5. Let f : M} — NP and g : M3 — N7 (n > p) be special
generic maps of closed n-manifolds into p-manifolds.

(1) We say that f and g are right-left cobordant if there exists a smooth
map F : M1 — NP+l of 5 compact (n + 1)-manifold with boundary to a
(p + 1)-manifold with boundary with the following properties.

(a) M = MP I M3 (disjoint union).

(b) BNP*1 = NP II N} (disjoint union).

(c) F-1(N?) = M7 (i = 1,2).

(d) F|M} : M} — NY and F|MJ : M? — N? are right-left equivalent to f
and g respectively.

(e) F|IntM™! : IntM™+! — Int NP+ is a special generic map.

(f) For every ¢ € M™!, there exist local coordinates (20, ++,zn) around
g in M™*! and (Yo, +,yp) around F(gq) in NP*! such that AM™*! and HNP+
correspond to 2o = 0 and yo = 0 respectively and that F' has one of the following
forms: :

yioF =z; (t=0,---,p) or
yio F =z (t=0,---,p—1)
{ YpoF =224 ... 422

(2) We say that f and g are right cobordant if in (1) NP*1 = NP x I, where
I=10,1].

(3) We say that f and g are left cobordant if in (1) M+ = MP x I

(4) We say that f and g are concordant if in (1) M+ = M} x I and
NP+l = NP x .

Furthermore, when M are oriented (1 = 1,2), we say that f and g are
oriented right-left cobordant (right cobordant, left cobordant or concordant) if
M™ is oriented and M™! = MP I (-M3) in (a), where — M7 is M} with
the reversed orientation, and if the diffeomorphisms M — M7 and M} — M7
giving the right-left equivalence of (d) are orientation preserving.

We say that the map F above is a right-left (right or left) cobordism (or a

concordance) between f and g.
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First we discuss the classification up to concordance.

(5.5.1) If two special generic maps f : M} — N and g : M} — NP
are regularly equivalent, then they are concordant. Furthermore, if M} are
oriented and the diffeomorphism & : M — M} in Definition 4.2 is orientation
preserving, then f and g are oriented concordant.

Proof. Let f, : M} — NY (t € [0,1]) be a smooth family of special generic
maps as in Proposition 4.3. Then we see that the map F : M x I — NP x I
defined by F(z,t) = (fi(z),t) (z € MI',t € I) gives the desired concordance. O

(5.5.2) If special generic maps f : M™ — NY and g : M™ — N? are left cobor-
dant (or concordant), then S(f) and S(g) are Z,-homologous; i.e., there exists a
diffeomorphism & : M™ — M™ such that ®.[S(f)]2 = [S(g)]2 in Hp—1(M™;Z,),
where [S(f)]2 € Hp_1(M;Z,) (or [S(g)]) is the homology class represented by
S(f) (resp. S(g)). Furthermore, if NP+ is oriented, then S(f) and S(g) are
Z-homologous, where F': M™ x I — NP+! is the map giving the left cobordism
between f and g, S(f) and S(g) are oriented as the boundaries of Wy and W,
respectively, which are oriented so that f : Wy — NP and 3 : W, — Nj are

orientation preserving, and Nf (i = 1,2) are oriented as the boundary of NP*!,
The proof of (5.5.2) is easy and is left to the reader as an exercise.

(5.5.3) Let f and g : §? x §? — R? be special generic maps. If (n,(f), n2(f))
# (n1(g),n2(g)) in A, then they are not concordant.
Proof. Let S(f) = S; U S, and S(g) = S; U S} be the connected components.
Orient R? arbitrarily. Then S; and S} (i = 1,2) are canonically oriented as the
boundaries of Wy and W, respectively, where W; and W, are oriented so that
f and § are orientation preserving. It is not difficult to see that there exists a
base {,n € Hy(S? x §?) such that ¢2 = 9> = 0,¢-9 = 1,[Sy] = € +an and [$,) =
—¢+an for some integer a. Note that 2|a| = |[S1]?| = |[Sa)?| = |n1(f)] = [na(f)!.
Then [S;] + [S;] = 2an and hence the maximal positive integer which divides
[S1] + [S2] is equal to |ny(f)| = |ng(f)|. Similarly, we see that the maximal
positive integer which divides [S]] + [S;] is equal to |ni(g)| = |n2(g)|. Since
Ini(f)| # |nj(g)| by our hypothesis, there is no diffeomorphism & : S x S? —
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5% x §?% such that ®.([S;] + [Sz]) = [Si] + [Si]. This implies that f and g are
not concordant by (5.5.2). O

Note that we have the same result also for $?x52.

The above fact (5.5.3) shows that there are infinitely many concordance
classes of special generic maps of S? x S? (or §?XxS?) into R®. We do not know
if the concordance implies the regular equivalence in this case. This is true, if

the classical Poincaré conjecture is true, for example (see Theorem 4.6).

Next we define cobordism groups of special generic maps. Let I'(n,p) (or
I(n,p)) (n > p) denote the set of all (oriented) right cobordism classes of
special generic maps of closed n-manifolds into RP. Note that I'(n,p) and
f‘(n,p) are abelian groups with respect to the following operation. For special
generic maps f : M7 — RP and g : M7} — RP of closed n-manifolds, we have
parallel translations ¢; : RP — R? (i = 1,2) such that ¢; o f(M]) C R%, and
t; 0 g(M7) C R?_, where R}, = {z, > 0} and R _ = {z, < 0}. Then the
addition of the right cobordism classes of f and g is defined to be the class
represented by the special generic map (t; o f) Il (¢20g) : M} II M} — RP.
Note that this is well-defined up to (oriented) right cobordism. The identity
element is represented by the obvious map () — RP and the inverse of the class
of f : M* — RP is represented by po f (or po f : —M™ — RP, if M™ is
oriented), where the diffeomorphism p : RP — RP? is defined by p(z;,---,z,) =
(z1,+ -+, 2p-1, —Tp). We call I'(n,p) (or f‘(n,p)) the (oriented) cobordism group
of special generic maps of n-manifolds into RP. Furthermore, we say that a
special generic map f : M™ — RP is (oriented) null-cobordant if it is (oriented)

right cobordant to the map § — R?.

Note that we could define cobordism groups of special generic maps using
arbitrary p-dimensional manifolds instead of RP as target manifolds. However,
if we allow arbitrary p-manifolds, we should consider all bundle maps M™ — NP,
since such maps are special generic maps by the very definition. Thus, the above

definition of the cobordism groups seems reasonable.

Here we list some properties and examples of cobordisms.
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(5.5.4) Let & : T(n,p) — N(n) (or & : I(n,p) — Q5°(n)) be the forgetful
map defined by a[f : M™ — RP] = [M"], where N(n) (resp. 25°(n)) denotes
the usual unoriented (resp. oriented) cobordism group of n-manifolds. Then o
and & are the zero maps ([KS]).

(5.5.5) Let S™ be the unit sphere in R™! and = : R™! — R? (n > p) the

standard projection. Then the special generic map f : S™ — RP defined by
f = m|S™ is (oriented) null-cobordant.
Proof. Set M™*! = {(zy,--- yTnyz) € S™ zpys > 0} and define F : M+ -
RY™ by F = 7M™, where 7 : R™2 — RPH! is defined by #(21,: -+, Tny2) =
(m(21,-+, ®at1), Tnya) and REF = {(z1,+++,2p41) € RP* 2,1 > 0}. Note
that F(M™) Cc RP x [0, 2]. Then we see that ¢ o F' gives the desired null-
cobordism for a diffeomorphism ¢ : RP x [0,2] — R? x [0,1]. O

(5.5.6) Let 7 : E™+1 —, /P be an orthogonal D"~P*!.bundle over a compact

parallelizable p-manifold W? with boundary (n > p). Then the special generic
map f : JE™*! - RP constructed from 7 as in [Sael] is null-cobordant. Fur-
thermore, if E™*! is oriented, f is oriented null-cobordant.
Proof. We construct a map F : E"t! — Rr x [0,00) as follows. Let C =
WP x [0,1] be a closed collar neighborhood of W? in W? such that owr
corresponds to OWP x {0}. Set B = {(zo,-*+,Tn_ps2) € RP-PI0, 50 I3 2 =
L,zo > 0,2,_p42 > 0} and B, = {(o,+,Tnpt2) € B;zn_pt2 = 0}. Note
that there exists a diffeomorphism ¢ : B — D™=P+ % T such that ¢(B,) =
D"=P*1x {1} and that ¢ is equivariant with respect to the actions of O(n—p+1),
where O(n — p + 1) acts on B C [0,00) x R™P*! x [0, 00) standardly on the
(%1, , Tn_pt1)-coordinates and O(n —p+1) acts on D" P+ x standardly
on the first factor. Define g : B — [0,00) by g(zo,*+*,Zn_pt2) = 2o and
h:B — [0,00) by h(zo,- - -, Tpn-pt+2) = Tp_pyz. Note that g and h are invariant
under the O(n — p + 1)-action on B. Note also that the images of g and h are
contained in [0, 1]. Define m; : 7~}(C) — WP by the composition

T (C) S O(2 WP x I) B awe,

where p, is the projection to the first factor. Note that m is a (D" P+ x )-
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bundle. Define G : E™! — [0, 00) by G(z) = gop~!(z) for z € Em+! —-77Y(0),
where we identify 7~}(n(z))(3 z) with D" ?*! x {1}(= B,), and by G(z) =
gop~!(z) for z € 7(C), where we identify 77 (m1(z))(3 &) with D"=P+! x (=
B). Furthermore, define H : #=}(C) — [0,1] by H(z) = h o ¢~'(z), where we
identify m;(mi(2))(> =) with D"P+! x I(=~ B). Note that G and H are
well-defined smooth maps. Finally define F' : E"*! — RP x [0,00) by F(z) =
(nom(z), G(z)) for z € E™ —x~1(C) and by F(z) = (g(m(z),1— H(z)),G(z))
for z € #71(C), where  : WP — RP is an immersion whose existence is
guaranteed by [Ph] and we identify C(C WP) with 8W? x [0, 1]. Then it is not
difficult to see that 1) o F' is a desired map giving the null-cobordism of f for
some embedding 9 : R? x [0,00) —» R? x [0,1]. O

(5.5.7) The cobordism groups I'(n,p) and T'(n, p) are trivial forn — 3 < p <
n—1.
Proof. By [Sael] and Remark 2.4, we see that every special generic map is
obtained as in (5.5.6) forn —3 < p <n — 1. Then (5.5.7) follows from (5.5.6).
O

(5.5.8) Suppose that f : M — R™ and g : M} — R™ are special generic
maps of closed oriented n-manifolds. If f and g are oriented right cobordant,
then M} I (—M3') bounds a compact parallelizable manifold.

Proof. Let F': M™! — R"x ] be an oriented right cobordism of f and g. Then
by the same argument as in [Sael], we see that M™*! is stably parallelizable.

Since OM™+! #£ 0, this implies that M™*! is parallelizable. O

(5.5.9) Suppose that f : M} — R and g : M} — R are special generic maps
of closed oriented n-manifolds. If f and g are oriented right cobordant, then
M} 11 (—M3') bounds a compact parallelizable manifold.

Proof. Let F : M™! — R x I be an oriented right cobordism between f
and g. We may assume that f(M]') and g(MJ') are contained in R, and that
F(M"*') is contained in Ry x I. Set Z = (M} x I)U MU M+ U(M x 1),
where MT*' = M7+' = M™! and M} x {i} (i = 0,1;j = 1,2) is identified
with M} C M. Note that Z is a closed (n 4 1)-manifold and that it is
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orientable. Let F; : M} x I — R x [-1,0] be an oriented null-cobordism of
fl(po f) with Fy(M} x {0,1}) C R x {0} and let Fy : M? x I — R x (1,2] be
an oriented null-cobordism of gII (po g)-with Fo(MZ x {0,1}) C R x {1}, where
p: R — R is the map defined by p(z) = —z. Then define #: Z - R x R
by F|M]* = F, F|M;** = (p x id) o F and F|M; x I = F; (i=1,2). We see
easily that F' is a special generic map into R2. Since Z is a closed orientable
(n + 1)-manifold, by [Sael], Z is diffeomorphic to (721 S* x 7=+ for some
homotopy spheres L7 and ™!, In particular, Z is stably parallelizable, since
so are homotopy spheres. Since M™! is embedded in Z, we see that M™*! is
also stably parallelizable and hence that it is parallelizable, since M+ # 0.
(m]

By [E1], every homotopy n-sphere admits a special generic map into R™,
since it is stably parallelizable. Furthermore, for n > 5, every homotopy n-
sphere admits a special generic map into R (i.e., a Morse function with exactly
two critical points). It is known that there exist homotopy n-spheres £" (n =
8,9,10,13,- ) which do not bound compact parallelizable (n + 1)-manifolds.
By (5.5.8) and (5.5.9), special generic maps of such homotopy n-spheres ™ into
R" (or into R) are not oriented right cobordant to the standard special generic
map 5" — R" (resp. 5™ — R) (cf. (5.3.2) and (5.5.5)). In particular, the

cobordism groups f‘(n,n) and f‘('n., 1) are not trivial in general.

Problem 5.6. Study the cobordism groups I'(n,p) and f‘(n, p) of special generic

maps of closed n-manifolds into RP. For example, are they finitely generated?
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