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MULTIPLICITIES OF CRITICAL POINTS OF
INVARIANT FUNCTIONS

James Montaldi ®

Introduction

The purpose of this expository article is to describe in an elementary and ho-
mogeneous manner, the relationship between the geometric and algebraic mul-
tiplicities of isolated critical points of holomorphic functions. In particular, I
am interested in the setting where the function is invariant under some group
action. The emphasis is on functions invariant under actions of finite groups
as very little is known if the group is not finite. Most of the results described
here are already explicitly in the literature; the only small extension is to func-
tions that are not invariant, but equivariant under the action of a group G: a
function f satisfying f(gz) = ¥(g)f(z) for some homomorphism ¥ : G — C*.
The results (in Section 7) on the multiplicity of critical points of homogeneous
functions invariant under C* are also new. Caveat: I will say nothing about
the other important invariant of critical points of functions: the Milnor fibre.
For this, the interested reader should refer to the original material, namely [8],
[20] (for finite group actions), [10] (for C*-actions) and [9, 13] (for the weighted
homogeneous cases).

This article grew out of a series of lectures I gave at the ICMSC in July
1992, preceding the conference. I would particularly like to thank Maria Ruas
for inviting me to give the lectures, for organizing a wonderful conference, and
finally for encouraging me to write up the lectures for publication in these
proceedings. I would also like to thank Mark Roberts and Duco van Straten

for the many stimulating discussions I have had with them on the material in
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these lectures.

Terminology and notation All functions and differential forms will be as-
sumed to be holomorphic, and although we will usually say, “let f be a function
on C™”, we will mean that f is defined in a neighbourhood of 0 in C™. All the
actions we consider are linear; consequently the terms representation and action
are interchangeable. The motivation for considering only linear actions is that
the results we are interested in here are purely local, and locally, near a fixed
point, any action can be linearized.

We assume a basic familiarity with the representation theory of finite groups,
see for example Serre’s book [17]. For a representation V of the group G, we
write [V] for its image in the representation ring of G. The representation
ring is isomorphic to the ring of virtual characters (the ring generated by the
characters of G), and consequently we use the symbol [V] as a character. Thus
[VI(g) = tx(g; V), for each g € G. From standard representation theory, [V @&
W] =[V]+ [W] and [V @ W] = [V][W].

If S is a finite set acted upon by G, then [S] denotes the associated represen-
tation (or rather its image in the representation ring of G); that is, the action
induced on Map(S, C), or again, on the vector space {3 ,csAs8 | A, € C}, with
g (X As8) = £ A,g-s. A particular case is the action of a finite group G on
itself by say left multiplication, giving the regular representation C.G and its
character [G]. As is well -known, [G](g) = 0 for g # e, and [G](e) = |G|.

Note that a 1-dimensional representation can be identified with its character,
so we need not distinguish [¢] from 9.

If G acts on V, and g € G, then V9 denotes the subspace fixed pointwise by
g. The fixed point subspace for the entire group G is denoted VC.

Contents Section 1 describes the basic method used from commutative/ho-
mological algebra to relate algebraic and geometric multiplicities, namely de-
formations of complexes of modules or sheaves. Section 2 applies this method

to isolated critical points of holomorphic functions. Section 3 describes some
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elementary invariant theory needed to understand critical points of invariant
functions, which are the subject of Section 4. Section 5 describes some recent
results on critical points of functions that are invariant under actions of C*.
This is the only case where results are known on multiplicities of critical points
of functions invariant under groups that are not finite. Finally, Sections 6 and
7 show how one can calculate the algebraic multiplicities of critical points of
weighted homogeneous functions, both general functions and invariant func-

tions.

1 Complexes and their deformations

Our proof of the results relating algebraic and geometric multiplicities of critical
points of functions in these notes is through complexes of R-modules (or sheaves,
if the reader prefers), where R is the ring of (germs at 0 of) analytic functions
on C". There are two central abstract results that we use: one on deformations
of complexes and the other (the acyclicity lemma) on exactness. Before giving
these, we first give a brief description of how the two multiplicities are related.
Note that similar arguments can be used for counting multipicities of other

geometric phenomena.

The algebraic definition of multiplicity is as the dimension (over C) of some
R-module M that depends on the geometry in question, here the critical point
of an analytic function. This module will be finite dimensional, which is equiv-
alent to it being supported>at an isolated point (by the Nullstellensatz). The
aim is to show that if the function in question is perturbed, the resulting per-
turbation M, of the module M, is such that its dimension remains constant,

or rather the sum of the dimensions of the constituent parts remains constant.

This is made precise by including the deformation parameter ¢ € C. Then
M is the family of M, as t varies, and is an S = R{t}-module. If M is finite
dimensional, then M is a finitely generated C{t}-module. The crucial point to
be established is that it is a free C{¢}-module.
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To see this, let C C C™ x C be the support! of the S-module M, and let
m:C — C, (z,t) — t be the restriction to C of the Cartesian projection which
is finite-to-1. If we consider M as a C{t}-module, we can write m.(M). The
relationship be tween M and w.(M) is given by

m(M)e = B (z,t)er-1(t)M(z,t)s (1.1)

for each t € C. Thus, if m.(M) is a free module, then

d r(t) = Z dimg Mgy
(zt)em=1(t)

is constant. From here on, we will write dim M rather than dimc M.

The geometric step is to interpret dim M, ) when this is as simple as pos-
sible; for us at non-degenerate, or generic, critical points.

In the above discussion, and everywhere else, all constructions such as C
should really be interpreted as germs to ensure that we only consider critical
points of f; that approach 0 as ¢ — 0. This will always be tacitly assumed, and

I make no further reference to this point.

Definition 1.1 Let R be a commutative ring with unit — for ezample the ring
C{z1,...,2a} of analytic functions or its subring of invariants under a given

group action — and let
Ko: 0-M LM, L1 4, MV 0

be a complez of finitely generated R-modules. Let S = R{t} (so R ~ S/tS). A

deformation of Ko over C is a complez K of finitely generated S-modules
K: 0->M LM 4.2, yN-1 4, N,
where for each i =0,...,n we have an ezact sequence

0— M - M — M0,

If M is an R-module, then z € supp(M) if the localisation of M at z is non-zero. In
terms of sheaves, this means that for any neighbourhood U of = in C", the restriction of M
to U is non-zero
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where —% is multiplication by t, and the differentials d commute with mul-
tiplication by t. In particular, this implies that each M* is torsion-free as-a

C{t}-module. There is thus an ezact sequence of complezes:
05K -5 K—Ko— 0.

This short ezact sequence of complezes gives a long ezact sequence in cohomology
as follows:
O3 B 25 HO s BY —s B 2 n
weoos HEVos HE Ly HY 5 HE s RS L
o> HN' L gN L, gN L HY 0,

where H' = H'(K), and Hi = H'(K,). The long ezact sequence is obtained by
an easy diagram chase (if the reader is unfamiliar with this, he should remind
himself of the simplicity of the argument; the map Hi™* — H* is essentially the
differential d of the complezes).

Lemma 1.2 Let Ko be a complez of R-modules, such that all cohomology groups
are finite dimensional vector spaces. Let K be a deformation of the complez Ko,

depending on the parameter t € C. Then,

1. the H' are finitely generated C{t}-modules;
2. H§ =0 implies H' = 0 (though not conversely!);
8. HY=! = 0 implies HY is a free C{t}-module.

Proof: 1. This follows from the preparation theorem (see for example [5]), as

H' is a finitely generated S-module, and
dim(H!/tH*) < dim(H}) < oo.
2. Suppose Hi = 0. Then there is an exact sequence H' - Hi — 0, so
that H'/tH' = 0. It follows from Nakayama’s Lemma that H® = 0.
3. This follows immediately from the last row of the long exact sequence

above, for then HY — HY is injective so HY is a torsion free C{t}-module,

and hence free. o
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Remark 1.3 One can show more, namely that in the deformation the Euler

characteristic of the complex is constant: for each s € C

X(Ku) = X(KO),

where K, is the complex induced from K by putting Mi = M*/(t — s)M.
To see this, note that since H* is finitely generated over C{t}, it is the direct
sum of a torsion module (which is necessarily a finite dimensional vector space)

and a free module. Write accordingly
Hi=TigF'

Let a; be the number of generators of T, and f; the number of generators
of F¥, so B; = rk(F*) = 1k(H'). Note that multiplication by ¢ respects the
decomposition H' = T¢ @ F¥, and a; = dim ker[T? — T*| = dim coker[T* —»
T, while B; = dim coker[F? —*» F?] and ker[F* — Fi] = 0. From the long

exact sequence in cohomology given above, it follows that

dlm(H(;) =o; + Fi + ait1. (1.2)
Consequently,
N N
2 (=1) dim(Hg) = > _(-1)'Bs,
i=0 1=0

(note that ap = 0 since by the long exact sequence, H? is torsion free). Thus,
the Euler characteristic of the complex K ﬂepends only on the free part of

H(K). This will also be true for any other specialization K,.

We now turn to the acyclicity lemma. Suppose now that
K: 0= M-S M Byeae 2 M- 4 ¥ 0 g, (1.3)

is a complex of free finitely generated R-modules. The cohomology groups of
this complex H'(K) are also R-modules, since d is R-linear. Note that by
the Hilbert Nullstellensatz, the hypothesis that the complex Ky have finite

dimensional cohomology groups is equivalent to their support being a finite set.
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Lemma 1.4 (Acyclicity Lemma — Basic version) Suppose the cohomol-
ogy of the complez (1.3) of free R-modules is supported on an algebraic subset

of codimenston c, then
HY = Bt = s = ! =,
where H' = H'(K).

This famous lemma is due to Peskine and Szpiro. For an elementary self-
contained proof see the appendix of [10], and for a more detailed account, see
the recent book of J. Strooker [19]. In our use of this lemma, the cohomology
of (1.3) will be supported at an isolated point, and N = n, so we will have that
all cohomology groups except H™ vanish — that is, the complex is acyclic.

More general versions of the Acyclicity Lemma replace the freeness hypoth-
esis with one on the depth of the R-modules M. That this is the “correct”

hypothesis is (hopefully) made clear in [10].

2 Isolated critical points

We are interested principally in two invariants associated to isolated critical
points of holomorphic functions. They are the geometric and algebraic mul-
tiplicities, denoted pgeom and Halg respectively. It was shown by Milnor [8]
and Palamodov [14] that in fact these are equal. We concentrate on Palam-
odov’s algebraic/geometric proof; Milnor’s proof is more differentio-topological
in nature, relying on the degree of the gradient of the given function.

A I-parameter deformation of a function f(z) on V is a function F(z,t),
t € C such that for each z € V, F(z,0) = f(z). The deformed function F(:,t)
is also denoted f;. All our deformations will be 1-parameter deformations,
although it is seldom made explicit. A critical point z of a function f is said
to be non-degenerate if the second differential of f at z is a non-degenerate
quadratic form. We say a function f is non-degenerate if all critical points are

non-degenerate. The following result is of central importance.
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Proposition 2.1 Suppose f has an tsolated critical point. Then there are de-
formations F' of f with the property that for t # 0, all the critical points of f;

are non-degenerate.

This is proved by considering the explicit n-parameter deformation F :
C" x (C*)* — C, (z,a) — fa(z) = f(z) — a(z). Then the “catastrophe set”
C(F) (those pairs (z,a) corresponding to critical points) is an n-dimensional
submanifold of C™ x (C")*. Singularities of the projection C(F) — (C")* cor-
respond to degenerate singular points. Moreover, the set of singular values of
an analytic map is contained in some hypersurface, here H C (C")*. To find a
non-degenerate deformation, it suffices to take any curve C in (C")* such that

CNnH = {0}.

Multiplicities Let f : V — C have an isolated critical point at the origin
(V = C"™). Then by the proposition above, there are deformations F(z,t) of f
with only non-degenerate critical points in a neighbourhood of 0. The number
of such critical points is the geometric multiplicity of the critical point of f
at 0, denoted pgeom = pgeom(f,0). The fact that this is independent of the
non-degenerate deformation F' can be proved directly, but also follows from the
results below.

The standard definition of algebraic multiplicity is:

Halg = l"alg(f: 0) := dimg (%’) )
where R is the ring of germs at the origin of analytic functions, and Jf de-
notes the Jacobian ideal, the ideal generated by the n partial derivatives of f.
However, we are going to use an alternative expression for this invariant using
differential forms.
Let f have an isolated critical point at z. Define the multiplicity module to
be the R-module

Qn
M(f,0) = W,

where 1, is the R-module of analytic p-forms on V.
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Proposition 2.2 Let f : V — C have an isolated critical point at 0, then
l-l'alg(f, 0) = dimg M(f7 0)

Proof: Indeed more is true: as R-modules, M(f) and R/Jf are isomorphic.

The proof is merely an observation: there is an isomorphism of R-modules
P:R — Qf
h — hdz, A...Adz,,

(depending of course on a choice of coordinates on V'), and under this iso-
morphism, ¥(8f/0z;) = (—1)"-'df A dz;, where dz; € Q™! denotes the form
dey A...Adz;_y Adziyy A ... Adz,. Thus 1 induces an isomorphism R/Jf —
M(f). o

Theorem 2.3 (Milnor [8], Palamodov [14]) Let f : V — C have an iso-
lated critical point at the origin. Then Halg = Hgeom.

Proof: Consider the complex of differential forms:

O—»R—)Q%,ﬂﬂf,—»---—vﬂ'{,'lﬁ 7 — 0, (2.1)

where the differentials are given by a — df A, for @ € QP. Given a deformation
F of f, this complex has a natural deformation as follows. Let S = R{t} and
define the S-modules of relative differential forms :

P
anC

a5 C/C = T op=1
. -
dt A Q5N

This module is isomorphic to the module 2 ®c C{t} — forms on V' that are
parametrized by ¢ € C. The deformation F' thus defines a map

) +1
dFA: QY cc — Wic/c

which corresponds to the differential of F' with respect to all but the ¢ variable.
Clearly we have Q’l”xC/C/tQ'{/xC/C ~ Q). Consequently, there is a short exact

sequence of complexes:

0 = (xc/cr 4FA) — (D o/ dFA) — (R, dfA) — 0.
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Denote H™(Qy /¢, dFA) by M(F).

Since f has an isolated critical point at 0, the cohomology of the complex
(', dfA) is supported at 0. For, if U is a contractible open set away from 0
coordinates can be chosen on U so that df = dz;, and then exactness on U
is clear. It follows from the acyclicity lemma that Hi := H(Q,dfA) = 0 for
i < n, and by definition HJ := H™(,dfA) = M(f).

It follows from Lemma 1.2(3) that M(F) is a free C{¢}-module.

It remains to show that if F'is a non-degenerate deformation, then for ¢ # 0,
dim M(f;) = pgeom. Now,

dimM(f)) = Y, dimM(fi,z),
z€C(fi)
so we reduce to a local calculation in a neighbourhood of a non-degenerate
critical point. By the Morse lemma, coordinates can be chosen locally such
that fi(uy,...,un) = ¥;u?, and so M(fi,u; = 0) = C as required. O

Remark 2.4 (i) If the deformation fails to be non-degenerate, the same proof
implies that
l-"alg(fo,o) = E F"alg(fh z).

z€C(ft)
This can be interpreted as saying that Halg defines a ‘good’ notion of multiplicity.

We will see below that there are instances where the allowed deformations are
never non-degenerate.
(ii) This proof is isomorphic to the proof that Palamodov gave [14]. He

considered the Koszul complex on the generators of Jf:
K(Jf):0> K, > Kny — -+ = Ky = Ko — 0,

where K, is the free R-module generated by {e;, A e, A... Ae;}, with 1 <
13 <13 < ... < iy < n, which is therefore of rank (:) The differentials in this
complex are the R-homomorphisms generated by

d: Kp — Kp—l;

of
Nierei — ’é;(—l)ka_zk/\iel\{k}ei:
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where I is any index set of length p.
(iii) The theorem was also proved by Milnor, using techniques that are more

topological. Briefly, let Vf: C* — C" be the “holomorphic gradient” of f:

7] 0]
W) = (a_ia_i‘)
Clearly, critical points of f are zeros of V f, and a critical point is non-degenerate
if and only if the corresponding zero of Vf is simple. Clearly pgeom(f,0) is
the number of solutions of the equation V f; = 0, that is the multiplicity of the
zero of Vf at 0. It remains to show that the multiplicity of an isolated zero
of a map g : C* — C" is given by dim(R/(g1,...,9n)). This Milnor does by
topological arguments involving the degree of V f in [8, Appendix B].

3 Invariants

Let G be a finite group acting linearly on V = C™. If necessary, we will make
explicit the representation p : G — GLy(C). For any subgroup H < G we
denote by V¥ or Fix(H;V) the set of points of V fixed by every element of H:

VH = Fix(H;V)={z€V |h-z=2,Vhe H}.

Being the intersection of eigenspaces of the elements of H, VH is a linear sub-
space. Recall the trace formula:
1
dim V¥ = — ¥ tr(h; V). (3.1)
|H| ik

Here tr(h; V) is the trace of the element h as it acts on V.

The action of G on C" induces an action on R, by
g-f=Ffog™"

(The inverse power is just to ensure the action is indeed a homomorphism:
(gh)-f = g- (k- f).) The G-action on V also induces an action on the modules

of differential forms:

grw=(¢7")w (32)
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That is, (g - w)a(v1,- .., ) = Wo-10(g7 01, ..,97v,), where vy, ... , Up are tan-
gent vectors at gz. This action is compatible with exterior differentiation:
d(g-w) = g-dw. The action on the module of vector fields is given by (g-v) = guv.
Since the action of G is linear, then for each g € G thereis a A(g) € C* such
that
g-dzy A... Adz, = Mg)dzy A ... Adz,.

Then A = A™(V*) is a 1-dimensional representation of G, and the isomorphism

¥ : R — Q" of Proposition 2.2 provides an isomorphism of RG-modules,
A®c R = Qn.

A function f is said to be invariant if g - f = f for all g € G, and more

generally equivariant if there is a homomorphism ¥ : G — C* such that

f(g-z) =9(9)f(=). (33)

In other words, g- f = ¥(g7')f = ¥(g9)"'f. The image of ¥ is contained in
the cyclic group Cg) of order |G|. Such a homomorphism ¥ is called an abelian
character of the group G; we also refer to it as the twist of the equivariant
function f.

The set of all invariant functions is a subring of R, denoted RC®, and for
a fixed homomorphism ¥, the set of ¥-equivariant functions f forms a module
over R®, which we denote RY. Thus, R¢ = R!. Such equivariants are classically
called covariants or semi-invariants, and the lﬁodules R? are called modules of
covariants.

Let f : V — C be an equivariant function, with twist 9. Then its differential
df is an equivariant form since one finds on differentiating (3.3), that g - df =
J(g)~df.

Any finite group has the property that every representation is completely
reducible. That is, if V is a representation and W C V an invariant subspace,
then there is a complementary invariant subspace W’ with V = W @ W'. More-
over, the irreducible representations are all finite dimensional. In particular,

R is a G-representation so splits as an infinite sum (or product) of irreducible



MULTIPLICITIES OF CRITICAL POINTS 105

subspaces. Let x be the character of a particular irreducible representation of
G. Then collecting all the irreducible subspaces of R that have character x we
obtain a subset RX of R which, as is easy to see, is an R®-module called the
isotypic component of R with character x. Thus one has the following direct

sum decomposition:
R=Rx,
X
where the sum is over all characters x of G. The modules R? for abelian

characters are special cases of the RX just defined.

Example 3.1 Consider G = Cy acting on V = C with its natural action, iden-
tifying Cy with the Nth roots of unity. The function f(z) = z* is equivariant,

with 9(w) = w* for each Nth root of unity w, and we have the decomposition
N-1
R=@ R™.
k=0

More generally, for an abelian group, all characters are abelian (that is, all
irreducible representations are 1-dimensional), and one has that R is the direct

sum of all the modules of equivariants.

Quotient space The ring of invariants defines the algebraic/analytic structure
of the quotient space. However, this space has a more refined structure, namely
that of a stratified space. The said stratification is by orbit type: the orbit
type of a point = € V is defined to be the conjugacy class (Gz) of the isotropy
subgroup G, C G of z. The subset of V consisting of points with isotropy
conjugate to a given subgroup H of G is denoted V), Tt is a submanifold
of V, and the collection of all such V(H) defines a stratification of V. More
precisely, one should take the strata to be the connected components of the
V(H), Furthermore, the quotient map 7 : V — V/G is of constant rank when
restricted to each stratum, and the images of the strata define the stratification
of V/G by orbit type.

Since G is finite, each stratum is an open subset of VH for some H. Let

z € VMH), with G, = H. Then there exists an H-invariant neighbourhood S of
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z in V, such that any H-invariant function on S, can be extended in a unique
fashion to a G-invariant function on the image of S, under the group action.
This enables us to localize the study of critical points of invariant functions.
Note furthermore that S, N V) = §H,

There is an important result — known as the principle of symmetric criti-
cality — which states that an invariant function f on V has a critical point at
iff the restriction of f to V4= has a critical point at . Since 7 is a submersion
on each stratum, this is in turn equivalent to f having a stratified critical point
at [z] € V/G. This correspondence is taken advantage of particularly by Bruce
and Roberts [3].

The principal of symmetric criticality is proved by noting that if f is invari-
ant, then df, is fixed by G, so is (co)tangent to V°=. Thus if df, restricted to

V= vanishes, then so does df;.

Reflexion Groups Consider a representation p : G — GL(V). This is said
to be generated by pseudo-reflezions if there is a set S of generators of G with
each element s € S having the property that Fix(p(s); V') has codimension 1 in
V. If a generator is of order 2 then it is called a reflexion. The action in the
previous example is generated by pseudo-reflexions.

It is well-known that the ring of invariants for a pseudo-reflexion group action
is a polynomial ring with no relations between the generators. Moreover, each of
the modules of equivariants is a free module over this ring, and R ~ R°®cC.G,

where C.G is the regular representation of G. See for example, Chapter V.5 of

[2].

Real Actions Let G be a finite group acting (linearly) on R". Then there is
a positive definite quadratic form on R"™ invariant under the group action. To
see this, let ) be any positive definite quadratic form on R", and let Q be the

average of @) over the group:

- 1
Q=) = [l > Q(gz).

geG
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Then @ is also positive definite, and so in particular non-degenerate.

Now consider the complexification of the action on R™. This action also has
a non-degenerate (quadratic) invariant function, namely the same quadratic
form @Q considered as a function on C". An action on C" is said to be a real
action if it is the complexification of an action on R™. The existence of a non-
degenerate invariant quadratic form in fact characterizes the real actions, as

was shown by G. Schwarz [16, Proposition 5.7].

Equivariant complexes We describe briefly the effect of an action of a finite
group G on the material in Section 1. If Ris a ring and G a group, one says that
an R-module M is an RG-module if it carries an R-linear action of the group
G; that is, if there is a homomorphism of G to the group of automorphisms of
M. An RG-complex is a complex of RG -modules such that the differentials
in the complex are equivariant: d(g-m) = g - (dm). It follows then that the
cohomology groups are also RG-modules. Furthermore, if there is a short exact
sequence of RG-complexes, then the maps in the associated long exact sequence
in cohomology commute with the G-actions.

One defines the equivariant Euler characteristic of an RG-complex K to be

(-1 HHK))
i

This enjoys the usual properties of Euler characteristics; in particular, if the
RG-modules M' in the complex are finite dimensional, then the equivariant

Euler characteristic is equal to 3;(—1)‘[M].

4 Multiplicities of invariant critical points:
Finite Groups

Consider a function f on C™ with an isolated critical point, and suppose f € R’
where ¥ is an abelian character of a finite group G. Let f; be a 1-parameter
deformation of f, with f, € R” for all t. Note that if « € C™ is a critical point
of fi, then so is g -z for all g € G. The results described in this section are
mostly due to Mark Roberts [15]; he only deals with the case that f is invariant
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under a real representation of G, but the extension to the general case we treat
here is more or less straightforward.

There are three representations of intérest. First, we have G acting on R, and
if f € R? is an equivariant, then G preserves the Jacobian ideal Jf C R. There
is therefore an induced action on the R-module R/Jf. Since f has an isolated
critical point, this module is a finite dimensional representation of G. Secondly,
G acts on the multiplicity module M(f), and thirdly there is the action on
the critical locus C(f:), and its associated permutation representation. The:

isomorphism 1) of Proposition 2.2 shows that as RG-modules
M(f) = A ® (R/Jf)- (4.1)

The remaining problem is to relate the representations M(f) or (R/Jf) to the
G-action on the critical locus C(f3).

Generic multiplicity It is important to note that most modules of equivariants
contain no non-degenerate functions. As a simple example, consider G = Cn
(N > 1) acting as in Example 3.1. Any element of R% (0 < k < N —1)
is a function of the form ¥ ;5 a;z*t*N . For example, for k = 0, RS contains
non-degenerate functions if and only if N = 2, while if £ > 1 then f € R% is
never non-degenerate.

Still worse is the possibility that certain modules of equivariants contain no
functions with isolated critical points. A simple necessary, though not sufficient,
condition for the existence of isolated critical points is that dim V9 < %dim v,
for all ¢ € G with 9¥(g) # 1 This is because if ¥(g) # 1 then necessarily
flve = 0. Consequently, we can write f = Y%, z;f; for some functions f;,
where z; = -+« = 2, = 0 is the equation for V. It is easy to see that if this
sum has an isolated critical point in V7 then a > n — a.

The generic multiplicity is the local multiplicity of a critical point of an
equivariant function that cannot be broken up under equivariant deformation
of the function. The generic multiplicity depends purely on the local geometry

of the action together with the twist ¥, and the local geometry is best described
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by the stratification of V' (or equivalently of V/G) by orbit type — see Section
3. Here we give this description for invariant functions. For the more general
equivariant functions, matters are not so well understood.

Suppose f : S, — C is H-invariant with an isloated critical point at z.
We perturb f to make it generic in two stages (which of course can be done
simultaneously). To begin, we choose an H-invariant splitting S, = S¥ x T —
note that TH = 0. Now, perturb f to f; by adding a function independent of
T, so that the restriction of f; to S¥ is non-degenerate. In a neighbourhood
of each non-degenerate critical point z; € S¥ of f;, we can apply the (equiv-
ariant) splitting lemma to write f; = non.deg.+h;, where non.deg. is a non
degenerate function on S¥ and h; is an H-invariant function on T. We are
now reduced to the local problem of perturbing the h; : T — C. Problem: for a
given representation T of H, how simple can an isolated critical point be? The
multiplicity or G-multiplicity, of such a critical point is the generic multiplicity
in question. Note that since T# = 0 there are no linear invariant functions, so
that the generic multiplicity is at least 1. For a given representation T, it is not
hard to determine the generic multiplicity provided one knows the invariants
of low degree. However, it would be nice to have geometrical or representation
theoretic estimates for this generic multiplicity.

The results known at present are due to Schwarz [16], and Wall [21]. Schwarz
proves that if the representation V of G is real then the representations T of the
isotropy subgroups H that arise as above, are also real. For any real action there
is an invariant non-degenerate quadratic form, and hence the generic multiplic-
ity for a real representation is 1. Wall considers the case that dim V = 2, and
there are no fixed point sets of codimension 1 (pseudo-reflexion hyperplanes).
He produced a formula for the generic multiplicity in terms of the embedding
dimension and the resolution of the quotient space V/G, see Remark 6.8 below.
By the reduction procedure described above, Wall's results also apply to points
on codimension 2 strata which do not lie on pseudo-reflexion hyperplanes.

It is easy to give the generic multiplicity for generic points on pseudo-

reflexion hyperplanes. Here, dim T = 1, and so the isotropy group is H = Cy
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— the cyclic group of order N for some N. The generic invariant is then
f(z) = z¥, and the generic multiplicity is thus [M(f)] = 91 +--- +In_1, a
vector space of dimension N — 1 with all 1-dimensional representations of Cy
present except the trivial one.

It is an important open problem to find further estimates on generic multi-
plicity.

M. Roberts [15] uses techniques of equivariant jet bundles to prove the equiv-
ariant version of Proposition 2.1 for invariants of real actions. The more general
version of Proposition 2.1 for invariants can be deduced from a theorem of Lé [7]
on Morsifications of isolated critical points on analytic varieties. The analogous
statement for equivariants does not follow from Lé’s theorem, as they are not

functions on the quotient space.

Example 4.1 Consider the cyclic group C; of order 3, acting in its natural
representation on C (i.e. by ¥;: notation established in Example 3.1), and let

fe(z) = 2® — 2tz® The action on C.dz is ¥;. For ¢t = 0, we have M(fo) =

t=0 t#0

M(fo,0) = 9,C{z}/ (z*). This has multiplicity 5; as a representation it is
isomorphic to ¥5(2d0 + 29, + ;) = 299 + Y1 + 29,. For t # 0, we have critical
points at 0 and solutions z;,z,,z3 of z*> = ¢t. Then M(f) = M(f,0) ®
@, M(f.,z;). Let u; be a local coordinate about the point ;, and u,,us its

images under elements of the group, then m,M(F'), is given by

_ C{=} z C{ui} u C{us}
AT e

As a representation, [C{z}/ (z?)] = ¥y + ¥;. Thus,

C{us}d‘M3.

Uy @ (ua)

[M(fe)] = F2(Fo + 1) + Fa[{z1, 22, 23}] = (o + 92) + (Fo + 1 + F2) = [M(fo)].
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Thus, [M(f:)] = [M(fo)], and provided we know that any “generic” invariant
function has a critical point at 0 of multiplicity 2 (and more precisely of G-
multiplicity ¥ +9;), we can deduce the representation [C(f;)]. More generally,
of course, one has to deal with generic critical points with multiplicity not

equal to 1 away from 0 too. We now proceed to prove in general that [M(f;)] =

[(M(fo)]-

Theorem 4.2 Let f = fo be an equivariant function on V with an isolated crit-
ical point at 0, and f, an equivariant deformation of f. Then, as representations
of the finite group G, '

M(fe) = M(fo)-

Moreover, if all critical points of f; are non-degenerate, then
(OGN = |72 | = 1 MU)
=177 = o)l

Proof: Using the notation of Section 1, recall that m,.M(F) is a free C{t}-
module, and by the preparation theorem, it is generated as such by any basis
for M(f,). For any element g € G, let pi(g) be the matrix representing g in the
resulting basis of M(f;). Then the entries of p,(g) are continuous in ¢. Since
the set of characters of a finite group is finite, it follows that the representation
M(ft) is constant, up to conjugation.

It follows that [R/Jfi] = [R/Jfo], so there remains to relate [C(f;)] with
[R/Jf:]. I all critical points of F; are non-degenerate then

R/er = @::GC(j;)R/mm

where m, is the maximal ideal of functions vanishing at . The group G acts
on the right hand side as a permutation of the generators 1, € (R/m.), which

coincides with the action on C(f;). o

Remark 4.3 (i) Wall proves in [20] that if f is invariant then

(M(£))(g) = (=1)"™) dim M(f),
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where M,(f) is the multiplicity module of the restriction of f to V¢ and n(g) =
dim V9. His proof involves passing to the Milnor fibration so is outside the
scope of these lectures. However, we'do give a proof in the case of weighted
homogeneous functions in Corollary 6.7.

(ii) The representation [S] does not always determine the action of G on a finite
set S. Thus one cannot in general read off the action of G on the critical locus of
f. from the theorem. To overcome this problem, Roberts [?] introduces a finer
invariant p(f) for invariant functions which depends on the multiplicities of the
restriction of f to the fixed point subspaces VH# of V. He shows that for real
actions, the invariant p does indeed determine the action of G on the critical
locus C;. In particular, if every fixed point subspace of V' is of the form V¢
for some g ( as is the case for reflexion groups) then the representation M(f)
determines the G-action on the critical locus of a ge neric deformation f; of f.

See [15] for details.

5 Multiplicities of invariant critical points:
Reductive Groups

The title of this section is rather over-optimistic, for results on multiplicities of
critical points of functions invariant under the action of reductive groups are
only known for the group C*, or more generally for finite extensions thereof,
see [10]. The first reason that the general reductive case is more difficult than
the finite group case is that critical points z);re no longer isolated, since group
orbits no longer consist of isolated points.

In this section, we describe some pertinent geometry of reductive group

actions in general, and then proceed to give the known results for actions of C*.

Invariant theory Let V be a representation of a reductive group G. (Reductive
means that every representation of G is completely reducible; an important class
of reductive group is the complexification of compact Lie groups considere real
algebraic groups, [6].) Let R be the ring of invariant functions on V (polynomial

or analytic, according to taste — or use).
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The quotient space Y = V/G has to be defined with care; it is not so
straightforward for reductive groups as for finite groups (or compact groups in
the topological setting) since not all orbits are closed. Thus, if the quotient
space were defined as the set of orbits, then the natural topology would fail to
be Hausdorff (or even T;). As a set, the quotient space is therefore defined to
be the set of closed orbits. It can be proved in general, that if ¢ € V, then the
cloéure of the orbit G - ¢ contains exactly one closed orbit. This fact is used to
define the quotient map w: V — Y, by letting w(z) be this unique closed orbit
in G - z. The analytic structure on Y is defined simply by the ring of invariants.
This is justified by the fact that the invariant polynomials separate the closed
orbits( see [11, Corollary 1.2]).

When dealing with invariants of representations V' of reductive groups, an

important geometrical construction is the null cone. This is defined by
Z={z e V| f(z)= f(0) for all invariant functions f}.

If Y is the quotient space, and 7 : V — Y the quotient map, then Z = =~1(0).
Clearly then, z € Z if and only if 0 € G - z.

Example 5.1 Consider the action of the compact group SO(n) on the space
of symmetric matrices of order n, acting by similarity: g- A = gAg”. It is
well known that the invariants are generated by the symmetric functions in the
eigenvalues. Thus, 7 : V — R". If we complexify, we have SO(n, C) acting in
the same way on the space of symmetric complex matrices, with quotient map
m : Vo — C". The null cone is thus the space of symmetric matrices all of

whose eigenvalues are zero.

For reductive groups one has two notions similar to that of invariant forms

for finite groups. Firstly, the invariant forms themselves:
0= {wey |gu=w, Vgcb}.

These are finitely generated modules over the ring of invariants, and can be

interpreted as coherent sheaves on the quotient space Y. However, in contrast
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to the case for finite groups, the invariant forms are in no sense differential
forms on Y; for example, Q° has full support on Y for 0 < p < dimV, and
dimV > dimY. The other class of forms are the basic forms which are more

correctly interpreted as forms on Y. These are defined by
0 ={wef|iw=0 Vbeg}

Here G is the Lie algebra of G, and igw is the contraction of w with the vector
field on V associated to § € G. On the regular part of the G-action where 7 is
a submersion, this means that w € 5 defines a well-defined differential p-form
on Y — or rather on its smooth part. In [10], it is shown that for C*-actions,
2 = 7.0%, where j : U — Y is the inclusion of the smooth part of Y. (The

same is probably true for other reductive groups, but I do not know a proof.)

Isolated critical points For a reductive group action on V/, critical points of in-
variant functions are almost never isolated (except for invariant non-degenerate
quadratic forms in the case of a real action). However, the appropriate notion
is that a critical point should be isolated in Y. Note in particular, that if 0 is an
isolated critical point in Y of an invariant function f, then f may have critical
points throughout the null cone Z. This fact is at the root of the difficulty of
the general reductive case . (Note that asking that a critical point in V should
be isolated in Y makes sense: if z is a critical point of an invariant function f
and the orbit through = is not closed, then any point y € G - z is also a critical
point of f.)

Notice that if f is an invariant function, and w an invariant or basic form,
then df A w is also invariant or basic, respectively. Thus, associated to an
invariant function there are now two complexes of interest:

(@, dfA) : 0aRsQIEL QI ¥, Fhgn1 8o, g

and

(O, FFA) s 10 LaRiey QLE8Q 85, ., SN a1 A oN g,
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where N = dim(Y) and R is the ring of invariants. One can show easily
that away from the critical locus of f, these complexes are exact (because the
complex (2.1) is exact). However, one cannot apply the acyclicity lemma as
these R-modules are not free (and do not even satisfy the depth hypothesis
for the generalized formulation of the acyclicity lemma). Furthermore, the first
complex is too long to have any real chance of being acyclic.

Accordingly as there are two complexes, we can define two multiplicity mod-
ules:

R RN (WY ..
A A? YW= Al

and for a deformation F of f there are the corresponding relative versions M(F)

and My(F)

M(f)

Conjecture Let f; be a family of G-invariant holomorphic functions on C™ for
some reductive group G, and suppose that fo has an isolated critical point on

the quotient space. Then the modules M(F) and My(F') are free .

In particular, this would imply the conjecture of M. Roberts, that for real
actions of reductive groups, the dimension of the module (R/Jf)€ is preserved

in a deformation.

C*-actions Here we give a brief description of the principal results in [10],
though to simplify matters we restrict our attention to the case of real C*-
actions. The problem for general reductive groups (even complex tori) is still
open. It should be emphasised that the results of [10] apply only to invariants,
and not to the more general class of equivariants.

Let C* act linearly on C". Such an action can be diagonalized, so that
t € C* acts on C" via the matrix diag[t*!,...,t*"]. If all weights are positive or
zero then the invariants are just the functions of the variables with weight zero;
we therefore assume that there are some positive weights and some negative
weights. Let a be the number of strictly positive weights, and b the number of

strictly negative weights; so we suppose that a,b > 0. Let ¢ be the multiplicity
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of the weight zero, so that a + b+ ¢ = n. We denote the positive weights by
A1, ..., A, and the negative weights by gy, ..., u. Write C* = C® x Cb x C¢,
with corresponding coordinates 1,...,Za, ¥1,- - -, Yoy 21y » Ze-

It is easy to see that the null cone for this action is the union of two linear

subspaces Z = C® x {0} x {0} U {0} x C* x {0} C C* x Cb x C=.

Example 5.2 Let S! act linearly on R™. The irreducible real representations
of S? are either 1-dimensional — the trivial representation — or 2-dimensional:

) cos(rf) —sin(rf)
Xeid (B sin(rf) cos(rf) |-

This representation can be diagonalized over C to
t — diag[t",t™").

Here t is a priori a complex number of modulus 1. However, any holomorphic
function which is invariant under this S!-action on C" is also invariant under
the corresponding C*-action defined by allowing ¢ to be any non-zero complex
number. Such a C*-action is said to be real, and the real C*-actions are char-

acterised by the fact that the set of weights is of the form {£A,...,+A}.

Suppose now that we have a real action of C* on V = C", and suppose f
is an invariant function with an isolated critical point at 0 in Y. Then there
are deformations f; of f (remaining in the class of invariant functions) such
that all group orbits of critical points are non-degenerate. We are therefore in
a position to give a simple definition of the notion of geometric multiplicity:
Egeom = pgeom(f,0) is the number of closed group orbits of critical points of
fe near 0 for ¢t # 0 sufficiently small. (We say a group orbit of critical points
is non-degenerate if the restriction of f to a transversal to the orbit has a non-

degenerate critical point in the usual sense.)

Theorem 5.3 ([10]) Suppose we have a real action of C* on C", and suppose
that f is an tnvariant holomorphic function, with an isolated critical point on
Y. Then

Hgeom = dimg M(f )
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The geometric multiplicity can be expressed in terms of the Jacobian ideal
using the isomorphism 7 of Proposition 2.2, since for real actions 1 is C*-
equivariant. Consequently, Y(RE) = 2", and Y((JF)®) = df A Q™! Fur-
thermore, (R/Jf)¢ = RC/JfC (by elementary linear algebra), and Jf¢ can be
computed using equivariant vector fields: Jf¢ = O(f) = Oy(f). Here 0 is
the R®-module of equivariant vector fields, and @y is the R® module of vector
fields on the quotient space tangent to the stratification by orbit type, see [16]
and [10, Section 5]. Thus we obtain,

Corollary 5.4 With the above hypotheses,

. rR\¢ .. ( R®
peeom = dimg () = am (o)

Proof: Here we give an outline of the proof of the theorem as given in [10]
(note that there is a change of notation: dim(V) =n + 1 in that paper, and 4
is denoted X). We will write H' := H*(®,dfA) and Hi = H'(Qy,dfA). Thus,
M(f) = H" and My(f) = HE,

The first problem is that both H" and H™! are non-zero; in fact dim(H") -
dim(H""') = 1 independently of f. Consequently, one cannot apply Euler char-
acteristic arguments directly to this complex. However, contraction with the
vector field ¥ generating the C*-action defines a homomorphism H" — oy,
which is an isomorphism (unless the fixed point space in V has codimension 2,
in which case there is a 1-dimensional kernel). Thus, if Hp™! deforms well in a
deformation, then so does H", as required.

Now, the hypotheses of the acyclicity lemma fail for the complex of basic
forms (Qy,dfA), and indeed this complex fails to be acyclic. However, it is
“quasi-acyclic” in that for i < n— 1 the cohomology groups Hj, do not depend
on f: provided f has an isolated critical point at 0 € Y then

Hy =C, fori=3,5,...,n—2

while Hi = 0 for all otheri <n—1 (recall diimY = n—1.) This result depends
on some calculations of the local cohomology of the modules of invariant and

basic differential forms.
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Let F(z,t) be a deformation of f — as always, assumed to be C*-invariant.
Following the proof of Theorem 2.3, we define the modules of relative basic

forms: .
P c/c = QYxC
Y - -1
XC/C ™ de A BN
which is isomorphic to 0} ®c C{t}. The function F defines a map dF :

2% .c /c Q‘,’fxlc sc as in the ordinary case, which gives rise to a short ex-

act sequence of complexes
0 — (Qyxc/cr dFA) — (Qyxc/cidFA) — (Qy,dfA) — 0.

Thus (R ,c/c) dFA) is indeed a deformation of (R, dfA).
Write f,(+) = F(-,t). Since for every t,

dimg H™(Qy, dfiA) = 1

it follows that H"? is a free C{t}-module of rank 1, and so Hy~! = H~1/tH""!,
Consequently, the map Hg~? — H™! of the long exact sequence of Section 1

(with N =n — 1) is zero. Thus, by Lemma 1.2, H""! is torsion free, and
dim My(f) = dim My(fg)

Note that one can argue more simply by conservation of Euler characteristic.
For by Remark 1.3 the Euler characteristic of (%, df;A) is independent of ¢.
Since the dimensions of their cohomology groups H* for i < n — 1 coincide, it

follows that so does that of their top cohomology group. O

Remark 5.5 General C*-actions. If the action is not real, then the main re-
sult remains the same, namely that dim M(f) defines a (fairly) good notion
of multiplicity. The complex (Qy,dfA) is still quasi-acyclic, so M(F) is free
and dim M(f) is preserved in deformations. The problem is one of “generic
multiplicity”, as discussed in Section 4. Indeed, the situation here is worse than
that in Section 4, as there can be generic orbits of critical points where the

multiplicity is 0. This arises for points on pseudo-reflexion hyperplanes, where
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the quotient space is smooth, and a function with a generic critical point on
the hyperplane becomes non-singular on the quotient space. This problem also
arises on pseudo-reflexion hyperplanes for finite groups if one only considers
invariant functions and invariant forms in the analysis of the critical points.
On the other hand, the dimension dim(R/Jf)€ is not in general constant
in deformations, but is only upper semicontinuous as is shown by the following

example.

Example 5.6 (Mark Roberts) Consider the Cr-action on C™ with weights
(1,...,1,-1), and coordinates zy,...,%n-1,¥y accordingly. The invariants are
thus functions of the n — 1 variables u; = z;y. Consider the family of functions

n—1

fi(u)=1 Z—: u? — tuy.

i=1

Then

15} 7] . 3]

3_:;:f1_ = (u1 — t)y, a:‘:‘ =y fori > 1, —66 = Zu;z; — tz,.
Consequently

R C{:D]_,...,(Dn_l,y}

e (w1 — t)y,u2y, . .., Un1¥, L i — £T1) ’

For t = 0, this has a single closed critical orbit at 0, and

() -5,

so dim(R/J fo) = n. There are also many critical orbits that are not closed,

namely all orbits (other than 0) contained in the null cone
Z={y=0}U{zl=---=mn_1 ———0}

On the other hand, for t # 0, f; has 2 critical orbits (both closed) at 0 and at

{u1 =t, Uy =+++=1u,_; = 0}, and

1R

DTS-
J_ft (ul,...u"_l) (Ul—t,’Uz,...,un_l),
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which has dimension 2. Thus dim(R/Jf,) = dim(R/Jf.) if and only if n = 2, in
which case we have a real action of C*. See [3] for a geometric interpretation
of this loss of multiplicity in terms of the geometry of the quotient space.

If instead we consider the differential forms, we find that
dft A Qn_l = (u1 == t, Uy ... ,un_]_) Qﬂ,

and thus M(f;) has dimension 1 for all £. Note however, that the critical point
at 0 for ¢ # 0 is not seen by M(f). The same result is found if we consider
the basic forms, since if n > 2 then My(f) = M(f). Alternatively this can
be proved by inspection since on a smooth quotient, the Q% coincide with the

usual holomorphic forms.

6 Weighted homogeneous functions

In this section we will have continuous recourse to the following simple fact. It

can easily be proved by putting T in Jordan canonical form.

Lemma 6.1 Suppose T is a linear transformation of a vector space W of di-
mension n. Then T induces transformations T, of the ezterior powers N(W),

and
n

3 (—1)Ptx(Tp) = det(I — 1),

p=0
where I is the identity transformation of .

Now we suppose that the function f is weighted homogeneous of degree d
with respect to the weights wy, ..., w,. This means that there are coordinates

zj,...,Z, and an action of C* on C™:
A (B Ty @n) = (XD @1y b e g N 2),

and f satisfies
f(A-z) = A f(=).
The weights w; are supposed strictly positive, so the action is a so-called good

action.
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For each integer 7 > 0, we have the linear subspace R; of R consisting
of weighted homogeneous polynomials of degree ¢ (with respect to the given
weights), and similarly QF consists of the p-forms of degree i. For example, if
all the weights are equal to 1, then dz; A ... A dz, € 25. In particular, there

are no p-forms of degree less than p.

Poincaré series Suppose M is a finitely generated R-module which is graded:
M = @; M; with
R.’Mj [ M,‘+J-.

Each graded part M; of M is finite dimensional, and one defines the Poincaré

series (or Hilbert series) of M by

P(M, t) = E dimc(ﬂf;)t‘.

Remark 6.2 The Poincaré series of a graded module is @ prior: a formal power
series, and as such P(M,t) can be interpreted as the character (or trace) of the
action of £ € C* on M. In a neighbourhood of ¢t = 0, this formal power series
is convergent and can be expressed as a rational function with denominator
M=, (1 — t*¥). If M is finite dimensional over C, then P(M,t) is a polynomial,
and dimg(M) = P(M,1).

Suppose that M; and M, are graded modules over R; and R, respectively. A
basic property of Poincaré series is that if M = M; ® c M, is given the induced
grading, then P(M,t) = P(M,,t)P(M,,t). It follows by induction on n that
the Poincaré series of R = C[zy,...,z,] with respect to the weights wy,...,w,
is
i 1
PR =[] =

i=1

It also follows that
P(Qp,t) = P(R:t)P(/\p(V*)rt)'
Observe that
P(AP(V™),t) = tr(my(t)),
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where 7,(¢) is the action of ¢t € C* on the p-th exterior power AP(V*).
If f € Ry, then
af A C 08,

The differential dfA in the complex (2.1) is therefore homogeneous of degree d,
and the complex is a graded complez. Under the usual assumption that f has
an isolated critical point, we can compute the Poincaré series of the multiplicity
module M(f) as follows.
The cohomology of the complex (2.1) is
ey _J0 ifi#n
H ) = {M(f) i
Now, this complex is not of finite dimensional vector spaces. However, for each

7 > 0, there is a subcomplex consisting of finite dimensional vector spaces

0. Rpand 25 Q5 25 - Z5 0l B gn g, (6.1)
The cohomology of this complex is H® = M(f),, with the other H = 0. Recall
that the Euler characteristic of a complex K = (K", d) of finite dimensional
vector spaces satisfies

n n

;’(—1)*’ dim(H'(K)) = g(—l)‘ dim(K*).
Thus,
dim M(£), = 3(-1)'dim(5),
and so
P(M(f),t) = 3 (=1)"PtérPIP(Q,¢t) (6.2)
= P(R,t) H(t‘”" —t9).
Here we use Lemma 6.1 with T' = diag[t":, ..., %]

Using the fact that the isomorphism 1 of Proposition 2.2 is homogeneous of

degree 3°; w;, we obtain the following theorem of Milnor and Orlik [9].
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Theorem 6.3 Suppose f is a weighted homogeneous function on C™ of degree
d, with respect to the weights ws, ..., w,, and has an isolated critical point at 0,
then

nof1— pd-wi

i=1 -

A series of interesting corollaries to this result is given in [1]. They also
give an example of weights and degrees in dimension 4 for which there is no
function with isolated critical point, and yet the expression I, (%) is a
polynomial.

Evaluating the expression in the theorem at ¢ = 1 gives the following.

Corollary 6.4

pgeom = dimg M(f) =[] (d — "") :

i Wy
(Note that d —wy,...,d — w, are the degrees of the partial derivatives of f,
i.e. the generators of Jf. There is a more general result, a weighted version of
Bezout’s Theorem: if I is a weighted homogeneous complete intersection ideal
of n generators of degrees dy,...,d,, then dim(R/T) = [](d:/w;). See [2] for

more details.)

Invariant functions We now turn to the case of a weighted homogeneous
function which is invariant under the action of a finite group G. We suppose

that the action of G preserves the weight spaces, so we can write
V = ®&rWi

where each W; is invariant under G, and has weight w,. We will denote by pk :
G — GL(W,) the representaion of G on Wj. Note then that the representation
on V* given by g-£ = {og™!, satisfies V* = ®rWy, and if pj is the representation
of G on Wy then,
Pi(9) = pr(9) ™.
It follows that each of :the summands in R = ®;R; is G-invariant. We say M
is a graded RG-module if it is an RG-module, which is graded as an R-module,
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and the grading is such that each M; is G-invariant. This all amounts to saying
that we have an action of G x C* on C" and hence on R, and that M is an
R(G x C*)-module.

The results of this section are due to Orlik and Solomon [13], though they
give their formula in the case that all weights are equal, and ¢ = 1 (the function
is invariant).

The equivariant Poincaré series of a graded RG-module M is defined as

follows. For each g € G,
Po(M,t)(g) i= LMot = 3 te(g; M,)E

In particular, Pg(M,t)(e) coincides with the ordinary Poincaré series of M.
Moreover, if M is finite dimensional (over C) then evaluating at t = 1 gives the
ordinary character of the representation M. Note that, taking Remark 6.2 a
step further, Pg(M,t)(g) is the character of (g,t) € G x C* which is a formal
power series in t, and as such it would perhaps be more elegant to write it as
Pexc+(M) € C[[t]] ®c Char(G, C), where Char(G, C) is the ring of complex-
valued virtual characters of G.

The equivariant Poincaré series of the ring R is given by

r 1
FolB,006) = 11 St —matan

This can be proved by induction after diagonalizing p(g). Note that applying
the trace formula (3.1) gives Molien’s formula for the Poincaré series P(RC,t)
of the ring of invariants.

Consider again the complex (6.1). This is a complex of finite dimensional

representations of G, and the maps are equivariant with a twist 9:
ar 5 e g g,

For such a complex K = (K", d) the equivariant Euler charatteristic satisfies

S (1P HP(K)P = 3 (~LF[K¥]07.

=0 i=0
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Consequently, in analogy to (6.3), the equivariant Poincaré series of M(f)

is given by,

Po(M(f),t) =97" Z(—1)"—p19p[Qf_(n_p)d]t"‘("-P)dt(n—p)d.

pr

We now repeat the argument prior to Theorem 6.4, but taking the repre-

sentations into account. Note that, as with ordinary Poincaré series,
Ps(9P,t) = Pg(R,t)Pe(AP(V"),t).
Thus
Po(M(f),t) = 97" Pa(R,t) 3 (=1)" P9t PH Po(AP(V7), 1).
P
Applying Lemma 6.1 with
T = —9(g)t™ diag[t" pi(g), - - -, t* 7 (9)];
we deduce

Theorem 6.5 Suppose f is a weighted homogeneous function on V with an
isolated critical point at 0, and which is an equivariant for the G-action with

twist ¥, then

det(t" pi(9) — ¥(9) "t Iw,)
det(Iw, — t*+pi(9))

Pg(M(f),t)(9) = 1;[

The isomorphism v : R/Jf — M(f) is homogeneous and equivariant, so if
we divide by t“A(g), where w = ¥, wy dim(W;) we deduce the following result
due to Orlik and Solomon [13]. Note that A(g) = [Ii det pi(g) = detp*(g) =
det p(g)~".

Corollary 6.6 With the same hypotheses as the theorem,

r det(Iw, — t4%k -1
Ps(R/Jf,t)(9) = ,,EII d t({ie:(lv:k - tifiz(g;?;(g))'
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For each g € G, let n(g) = dim(V9) = the multiplicity of 1 as an eigenvector
of p(g). And suppose wy,...,wn(,) are the weights on V9, then one easily

evaluates the expression in the theorem at ¢ = 1 to deduce

Corollary 6.7 Suppose in addition that f is invariant (or more generally that
¥(g) = 1), then

M(H(g) = (-1)* n(a)H<d w.)

Remark 6.8 If the action of G is free off the origin (i.e. for all g # e one
has V¢ = 0), then [M(f)](g) = (—1)" for g # e. Such a character is easy to
interpret. Note that the character [G] of the regular representation C.G satisfies

[Gllg) =0 ifg#e

and of course [G](e) = |G|. Thus for f with an isolated critical point and G
acting freely off the origin, -

[M(f)] = v(HIG] + (-1)"C,

for some integer v(f), where C is the trivial representation. In [21, Section
5], Wall uses this in the case dim(V') = 2 to produce a formula for the generic
multiplicity — see Generic Multiplicity in Section 4. Suppose f is a generic
critical point and write v(f) = v(G,V). Wall’s formula is in terms of the
embedding dimension of V/G and the resolution of V/G, and states that for
dimV =2 and G free off 0,
@V ={225 G s mn eyetc st =3,

where e is the embedding dimension and —b is the self-intersection number of

the central curve of the resolution.

The dimension of the fixed point subspaces M(f)¢ and (R/Jf)€ can be
computed by applying the trace formula to the formulae in Theorem 6.5 and
Corollary 6.6 respectively.

It is interesting to translate the corollaries of Theorem 6.3 given in [1] into

corollaries of the theorem above.
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7 Weighted-homogeneous C*-invariant functions

We continue with the notation used in Section 5 for C*-invariant functions.
In particular, the weights of the C*-action are A; > 0 and p; < 0 (with
i=1,...,a, 3 =1,...,b). In this section we consider C*-invariant functions
on V that are also weighted homogeneous with respect to some set of (strictly
positive) weights w; and v;. We thus have two C*-actions, and we suppose that
they commute. That is, we have an action of the torus (C*)?, and correspond-
ingly every monomial has a bidegree (a,d) with d > 0; in particular, bidegree
(0,d) corresponds to invariant functions of degree d with respect to the positive
weights w;, v;. The monomial z; has biweight (A;,v;) and the monomial y; has
biweight (p;,w;).

If an invariant function f is weighted homogeneous of degree d, then the
good C*-action defines a grading on M(f), and we wish to compute its Poincaré
series. To this end, we reconsider the complex (2.1), each term of which has a

bigrading, and for each bidegree (o, €),
df A [Qp](u.e) c [Qp+l](a.e+d)-

The Poincaré series of a bigraded vector space A with finite dimensional

bigraded parts is a formal power series in two variables:
P(A;s5,t) =Y dim(A(a,))s*t".

(Again, this is the character of the representation of the torus C* x C* on A.)
Note that the ring S = Clz;,y;] is bigraded with finite dimensional graded
parts, since S(q,) C Se which is finite dimensional (S, being the subspace of S
consisting of functions of degree e with respect to the weights w;, v;).

The Poincaré series of the ring Clz;, y;] with biweights (A;, w;), (3, v;) (with
Ai,w;,v; > 0 and p; < 0) converges to

Sl = H 1 —.:"-‘t'”-') ﬁ a —.:“:‘t"f)’
i=1

i=1
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provided that |s*¢“| < 1 and |s#it%| < 1 for all 4,j. This domain of con-
vergence contains no value of ¢ with |t| > 1, and for each ¢t with |t| < 1 it is
an annulus in s-space: [t[™ < [s| < [t7}|™, where m; = min{);/w;} and
my = min{v;/(—p;)}. In particular, if || < 1 it contains the circle |s| = 1.

Now a polynomial is invariant under C* if and only if it is invariant under
the maximal compact subgroup S! C C*. To calculate the Poincaré series of
the ring R of invariants, one therefore applies the trace formula (3.1 to the
S!-action:

1

27

27 r
/ P(S; €%, t)d6
(1]
1

ds
Eigla 1 }'4"=1 P(S;s,t) =

211

P(R)(t)

One can use the residue theorem to compute this as a sum of residues at the
poles of the rational function s~'P(S;s,t). It seems unlikely that this can be
expressed as a simple closed formula for general weights.

Now, by Lemma 6.1 the Poincaré series for the complex (', dfA) is given
by

P(Q,df A)(s,t)

P(S)(s,t) 11(3'\%'"‘ —t) E(suitw —t9)
oy (820 — 8) o (2% — g 7H91D)
-1 (1 — shitwi) J]-;[l (s=#i —tvi)

i=1

(Recall —pj > 0.) Since f does not in general have an isolated critical point in
C", this series is not a polynomial.

The Poincaré series P(Q', df A) for the complex of invariant forms is deduced
from P(§,dfA) by the same method as P(R) is found from P(S): averaging
over the S'-action. Thus for |¢| < 1,

PN = g f, plart)ds

™

where

( t) H?:l(sAitWi - td) H?:l(t"j - 8—“itd)
s,t)= .
PO = e (1 — ot [T, (5% — t4)

(7.1)
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For fixed t, the disc |s| < 1 contains poles of the integrand at s = 0 and at
all solutions of s~#i = t%, for j = 1,...,b. Thus there are 1 + 3_; |p;| poles,
counting multiplicity. For |¢| < 1, let

Sy ={s|s# =1t%, forsome j=1,...,b}. (7.2)

Thgn
P(,dfA)(t) = resq,=o} p(s,t) + Z 1es{,=4} P(5,1).

80 €St

The first summand is easy to compute: resg,—o} p(s,t) = t**. The other terms
are not so easy for general weights. In practice, for given weights they can
easily be computed with the aid of a computer package such as Maple. Note
that taking the disc |s| > 1, one obtains an analogous formula, involving the
residue of p at s = oo and at solutions of s* = t*i for i = 1,...,a. Which
formula is chosen in practice would depend on the specific weights and their
multiplicities.

We thus have, in principle, a formula for P(Q',dfA)(t). It remains to see
how this is related to the Poincaré series for the multiplicity module M(f).
Let m = min{a,b}. The information we require on the cohomology H' of the
complex (£2,dfA) is given in [10, Proposition 3.6]. It is shown there that the

following are exact sequences:

a=b:0— C.lu™ - H* > H" ! - 0;

la—bl=1:0— H* - H" ' - C.[w™] - 0;
la—b/>1:0— H* = H* ! - 0 and H™ = C.[w™];

and all other H' = 0. The map H™ — H™ ' is given by contraction of differen-
tial forms with the vector field ¥ generating the C*-action, which is of degree 0.
The 2-form w is defined by w(¥, —) = df, so w has the same degree as f. Thus,
with M = max{a, b},

a=b: P(M(f)) = (1 - t4)"(P(Q,dfA) — t=+1));

a#b: P(M(f)) = (1 - t9)7(P(R, dfA) — t49)
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We have therefore proved

Theorem 7.1 Let f be a weighted homogeneous polynomial of degree d with
respect to the weights w;,v; that is also invariant under the C*-action with
weights i, pu; (see above for precise notation). Suppose that f has an isolated
critical point in the quotient space. Let p be given by (7.1) and S, by (7.2).
Then

P(M(f)) =R +C(a, b);

where
1
R=-—= resg,=,,3 P(s,1t
) ’OEZS‘ {e=20} (s,1)
and
tod ifa=1>
C(a,b)=<0 ifa>b
(¢ —t*)/(1—t?) ifa<b.

Examples 7.2 We give a few examples involving real actions. The case n = 2
is trivial, for the quotient space is 1-dimensional and smooth, so our examples
are for n = 4 and 6.

(1,1,—1,—1):  Suppose C* acts on C* with these weights, and let f be
a homogeneous invariant polynomial of degree d with all weights =1. The
invariant polynomials are polynomials in the z;y;, and therefore d must be

even. Then )
(st —t1)*(t — st?)?
plst)= s(1—st)?(s—t)2"

Using Theorem 7.1, one finds

401 _ pd-2
P(M(f),t)=t2d+t((11_—ttz)3) [1+t2+td—2_6td+td+2+t2d—z+t2d ]

This is a polynomial if and only if d is even. Evaluating this at ¢t = 1 gives

dim M(f) = 1+ %(d _9)(d? —2d + 4),

which is an integer if and only if d is even.
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(1y3,—1,—3): Consider this C"-action on C*%. The invariants are functions

of z1y1, 2y2, 242, T2y;. Consider first the case that f is homogeneous of degree

d (all w; = vj =1). Then

(st — t9)(s%t — t¥)(t — st?)(t — 5°t%)
s(1—s)(1—s?)(s —t)(s2 — )

p(s,t) =

Applying Theorem 7.1 gives

t4(1 _ td—Z)
aooa-oa-o""

P(M(f),t) ="+
with
p(t) = [1 bt gd? gl gl gdt ga+2 4 g2d-2 _g2d-1y g2d]

P(M(f),t) is a polynomial if and only if d is congruent to 0 or 2 modulo 6.

Evaluating at t = 1 gives
dimt M{Fy=T+ %(d— 2)(d? — 2d +6),
Consider now the case that w, = v, = 1, w; = v, = 2 (corresponding to
(Al =—p1 = 1, /\2 = —Uz = 2) ThEIl

(st — t4)(s%t2 — td)(t — st?)(t? — s°t9)
(1 — st)(1 — s2t2)(s — t)(s2 — t2)

P(s’t) =
Applying Theorem 7.1 and evaluating at ¢t = 1 gives
1
dimM(f) =1+ ig(uls — 6d* + 20d — 32),

which is an integer if and only if d is a multiple of 4.

(1y2,2,—1,—1,—1): Now C~ acts on C® with these weights, and f is
invariant and homogeneous of degree d with respect to the weights 1. Again,
the invariants are generated by the z;y;, and d is necessarily even. We have

(st — t4)3(t — st?)?
S ey P

From Theorem 7.1, one deduces

dim M(f) = Ilg (3d5 — 18d* + 484° — 72d* + 72d — 32) "
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Using generating functions, it is possible to express more explicitly the for-
mula of Theorem 7.1 in the case that all the weights are +1.

Consider the real action of C* on €2V with weights 41 (so generalizing two
of the examples above). Let f be a homogeneous function of degree d invariant
under this C*-action, and with an isolated critical point in the quotient space .
The Poincaré series of the multiplicity module of the critical point is given by
Theorem 7.1. More explicitly, introducing N into the notation,

P(My(f),t) = —— (i. F onla,t)ds - t~+1) ,
1 —td \2mi Jjs|=1
with
(st — t4)(t — std))”

1
pn(s,t) = 3 ( (1—st)(s—1t)

Now form the generating function,

G(t,T)= Y P(My(f),t)T".

N>0

For T sufficiently small, this converges to

i 1 ds t
G 1) = (1—1td) (2—7; f{.]:l s(L—spi(s,t)T)  1-— tT) ‘

The integral can be evaluated by the residue theorem. After “clearing the

fractions”, the denominator of the integrand becomes
s[s*(t*T — 1) + (1 + t3(1 — T) — £%9T) + ¢(¢°T — 1)).

The integrand thus has three poles, at s = 0, at s; ~ t and s, ~ 1/t. The first
two are within the unit circle, the last is without.
The residue at s = 0 is simply 1/(1 —¢*T'). The residue at s = s, is too long

to be reproduced here, but when evaluated at ¢ = 1 gives the following result.

Theorem 7.3 Let M(N,d) = dim(My(f)), where f is a C*-invariant func-
tion, homgeneous of degree d, with an isolated critical point in the quotient.
Suppose the C*-action to be real with weights +1. Then

1
S M(N,d)TY = o =T T)~3%(1 - (d — 1)*T)™12,

N30
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Remark 7.4 The case of real actions with weights 1 was considered under a
different guise by van Straten [18]. Let H; be a homogeneous non-degenerate
quadratic form on C?¥ invariant under C* and Hy a degree d invariant function
with an isolated critical point on the quotient space Y (these are not exactly van
Straten’s hypotheses, but they are equivalent). Consider the map (H;/z, Hy):
¥4 C?, and let T be its singular locus. Suppose further that N {H,;=0}=
{0} (verified for generic Hy). Let S(N,d) be the number of branches in Y of X.
Van Straten proves by algebro-geometric methods, that

Y S(N, )T = T(1 - T)™[1 - (d - 1)’T] 7/~

N>0
(Note that van Straten’s n 4 1 is our N, and his 2d is our d.)

The relation between this result and our Theorem 7.3 is as follows. Consider
the deformation Hy = Hg + /\d/z‘le‘of Hy (which is homogeneous in Y X C).
Now, if (z,]) is a critical point of Hy then z is a singular point of the map
(HE? Hj). Let T C Y x C be the set of critical points of Hy+ A4-2H,, which is
1-dimensional. One branch of this curveis {0} x C C Y x C. Let X' consist of
the remaining branches. The projection £ — C, ([],A) — A has multiplicity
M(N, d) ([z]is the C*-orbit through z). The projection &’ — Y has multiplicity
1(d —2), and is onto the critical set of (H;/z, Hg). Thus,

M(N,d) — 1= 1(d - 2)S(N,d).

This provides an alternative proof of Theorem 7.3.
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