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GEOMETRY AND SINGULARITIES OF

ORTHOGONAL PROJECTIONS
OF 3-MANIFOLDS IN R°

Dirce Hayashida Mochida

Introduction

Our aim in this paper is to analyse the generic contacts of a compact 3-manifold
with hyperplanes in IR® from the geometrical viewpoint. This is done by con-
sidering the generic singularities of height functions on the 3-manifolds in the
same spirit that it was done for surfaces in IR* in [6]. In fact, this form part of a
more general study on submanifolds of codimension higher than 1, developped
in [7].

The main tool in our work consists in using the canal hypersurface CM (that
can be thought as the unit normal bundle) on the submanifold M, together
with the natural projection C M %, M restricted to the parabolic set of the
hypersurface C M, whose generic singularities we study.

The singularities of the family of height functions on generic hypersurfaces
of IR™ were considered by J.W. Bruce [2] and M.C. Romero Fuster [11]. Their
results relied on the following Looijenga’s genericity theorem:

“There is a residual subset of embeddings f : M® — IR®, for which the
family of height functions:

Mf):MxS* — R
(m,v) —< f(m),v >= f,(m)
is locally stable as a family of functions on M with parameters on S*” ([4]).
Now, the singularities of the orthogonal projections on submanifolds of R"

are tightly related to those of their canal hypersurfaces. So, we shall use here
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the already known facts on hypersurfaces, in order to get conclusions about the
geometry of a 3-manifold M generically embedded in R®.

We shall see that the points of M cz.m be classified according to the number
of directions at them for which the germ of the corresponding height function is
no Morse. Indeed, such a direction will be called binormal, and the hyperplane
that passes through the considered point being orthogonal to it, will be the
osculating hyperplane of the 3-manifold at the given point (by analogy to what
happens with curves in 3-space). We shall prove then that there are at least 1
and at most 3 binormals at each point of a 3-manifold generically embedded in
RS.

We shall also distinguish among the different points of M attending to the
kind of degeneracies of the height functions on the binormal directions at them.
For instance, we shall see that one of these has a singularity of fold type if
and only if the torsion of a “special” normal section of the 3-manifold does not
vanish at the given point. Otherwise, the singularity is more degenerate. We
also characterize geometrically the umbilics of the height functions.

By means of the projection ¢ : CM — M we shall associate to each binormal
direction at a point, a tangent direction that we call asymptotic direction. As
D. Mond [8] did for surfaces in IR*, we shall see that the contacts of these
tangent directions with the 3-manifold M are of higher order by showing that
the projections of M onto their orthogonal hyperplanes are more degenerate
than the corresponding to the other tangent directions.

The content of this paper is part of the author’s Ph.D. Thesis at the ICMSC-
USP - Sdo Carlos. The author would like to thanks her advisers M.C. Romero
Fuster and M.A. Soares Ruas for their enthusiasm and patient guidance. With-

out them this paper would not have been written.

1. Degenerate Directions of M

Let f : Rsao e Rsyo given by (z,y, z) = (:c,y,z, fl(mvyaz)y fZ(E:yy 2)), be
the local expression of the embedding of the 3-manifold M in Monge’s form.
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With respect to these coordinates, the second fondamental form of f(M) is

characterized by two quadratic forms:

q1(z,9,2) = a11&? + 2a122y + 201322 + azy? + 2a23y2 + azzz?
q2(z,y, 2) = b11x? + 2byazy + 2b13yz + baay® + 2by3y2 + baz2?,
whose matrices we denote by M(g;), 1 =1,2.
. The height function f,, in a direction v € IR® has the local form:
R3,0 — IR,0
(:l:, Y, Z) == fv(mry) z) =Nz sk v2Y et V3z 2 v4fl(za Y, Z) =+ UE.fZ(myyr 2)7

and its Hessian matrix H(f,)(0) at zero is given by

a11v4 + by1vg a12v4 + b1avs a13V4 + b13vs
H(£,)(0) = a12v4 + byovs @22v4 + byavs a23v4 + baavs

a13v4 + by3vs a23v4 + ba3vs a33vs + basvs

Let det H(f,)(0) = 2%.hm(vs,vs), where
hm(‘U4,Us) = Al‘l}g + 3A2‘U:’U5 + 3A3'U4'Ug + A4‘Ug, (1)

with A; = det M(q)

A = 3 [E?,jzl bi; det(a.'j)], where a;; is the 2 x 2-minor cofactor of the
matrix M(q;) obtained by eliminating the %2 line and jt& column.

As =13 [E?,j=1 ai; det(ﬂi,-)], where ;; is defined as above, replacing M(q;)
by M(qz).

Ay = det M(gqz)

We denote by A the matrix:

A Az — Al HA1A4 — Ay A3)

(2)
1(A1As — ArAs) AgAy — A2

Lemma 1: m is a degenerate critical point of f, & v € Nym)f(M) and the
pair (vs,vs) of the coordinates of v in Nyim)f(M) is a solution of hym = 0.

If m is a degenerate critical point of f,, v is called a degenerate direction at
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Let A: M — R defined by A(m) = det A(m), where A is given in (2):
Lemma 2: Let m be a critical point of f,. Then,

1. If A(m) > 0, there ezists a unique degenerate direction b at m.

2. If A(m) < 0, there are ezactly three degenerate directions b; (i= 1, 2, 3)

at m.

If A(m) =0, and rank A(m) = 1, there ezist two degenerate directions b;
(i=1, 2) at m.

4. If rank A(m) = 0, there exists one degenerate direction b at m.

Proof: The result follows from the real classification of the cubic form in two

variables h,(vq,v5) = 0.

Remark: When m is a degenerate critical point of f;, the hyperplane Hy,
orthogonal to b has a higher order contact with f(M) at f(m). Therefore, by
analogy with curves in IR®, we shall say that b is a binormal vector of f(M) at
f(m) and H, an osculating hyperplane.

Conditions (a), (b), (¢) and (d) above depend only on the 3-jet of f,. Fur-
thermore, conditions (a) and (b) are open in J3(3;1), condition (c) holds on a
algebraic subset of J3(3,1) of codimension one and condition (d) holds on an
algebraic subset of J%(3,1) of codimension two. Then, these conditions hold for-

a residual set of embeddings f. For such a generic f, M can be decomposed in:

(i) two open regions:
M;(1) = {m € M /there exists a unique binormal direction at m, that is,
A(m) > 0}
and
M;3(1,1,1) = {m € M /there exist three binormal directions at m, that
is A(m) < 0}.
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(ii) a subset, locally defined as an algebraic subset of codimension 1:
M,(1,2) = {m € M /there are two binormal directions at m, that is,
A(m) = 0 and rank A(m) =1}

and

(iii) a subset, locally defined as an algebraic subset of codimension 2:
M,(3) = {m € M /there is a binormal direction at m, that is, rank
A(m) =0}

2. The Canal 4-Manifold of M in IR®

The canal 4-manifold of M in IR® is defined as CM = {(m,v) € M x S*/v is
orthogonal to Ty(m)f(M)}. We denote by f the natural embedding of C M into
R,

oM L R

(m,v) — f(m,v) = f(m)+ev, where
¢ is a sufficiently small positive real number. We thus have two families of height
functions A(f) and A(f) respectively defined on M and C M, whose singularities
are tightly related [10]. In fact, the singularities of f, at (m,v) and f, at m
are stably equivalent (Arnold, [1]), which implies that the family A(f) is locally
versal if and only if A( f ) is also locally versal. The singularities that may appear
for a generic f, are of one of the following types: Morse (A;), fold (4;), cusp
(Asz), swallowtail (A4), butterfly (As), elliptic or hyperbolic umbilic (D,ii) and
parabolic umbilic (Ds). Moreover, the singularities of the normal Gauss map,

I': CM — S* (also called generalized Gauss map on M) can be described in

terms of those as follows:

Lemma 3: Given a critical point (m,v) € CM of the height function f, (or
equivalently, given a critical point m € M of f,),

m is a degenerate critical point of f, & (m,v) is a singular point of T.

Proof.: [see 10]
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Let X. : CM — IR be the Gaussian curvature function on CM. The
parabolic set, X£71(0), of CM is the singular set of I'. It can be shown that,
for a generic f, K;!(0) is a 3-submanifold except along a curve consisting of
singular points of type Y°? or equivalently, umbilic points (D:,t) or (Ds) of f,.
We denote this curve by 3%(T).

Let £ : CM — M be the natural projection of CM onto M, i.e, é(m,v) =
m, and £ its restrition to the submanifold K;1(0) — %(T'). At each point of
K:1(0) — %(T) there is a unique principal direction of zero curvature for C M.
This field of directions is tangent to X !(0) along a surface made of points of
type U, which is in turn tangent to this surface along a curve of points of
type X 1'''. Moreover, at isolated points of type Y'*'**}, this principal direction
is in fact tangent to this curve [see 3].

Let us consider

B; = {(m,v) € K71(0) - £X(T)/p € My(b> 1)} (i=1,3)
B, = {(m,v) € K*(0) — Z*(T)/p € My(1,2)} and
By(3) = {(m,v) € K;*(0) — £X(T)/p € My(3)} in C(M).

Theorem 1:
(t) ZZ(P)OB, =0 , 1=1,3
(i) &b, : Bi— M; (i=1 or 3)is a local diffeomorphism (more precisely it
18 a diffeomorphism when t = 1, and a triple covering when i = 3).
(#ii) A(m) =0, rank A(m) =1 and m is not an umbilic point & there erists
v € S* such that (m,v) is a fold point of €.
(tv) rankA(m) =0 and m is not an umbilic point of M & there exists v € S*
such that (m,v) is a cusp point of €.
Proof:

(1) Let (p,v) € T*(T), that is, f, has an umbilic singularity at p. Choosing
coordinates such that p = (0,0,0), v = (0,0,0,0,1) and f, = 2? + h.o.t.,
it is easy to compute A(p) and show that A(p) = 0.
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Now, we choose coordinates for CM such that m = (0,0,0) and v =
(0,0,0,0,1). So, it is sufficient to notice that in (1), if the vector v =
(0,0,0,0,1) is a degenerate direction then hm,(vq,1) = Ajvd + 34,02 +
3Asvs = K. (m,v4) = 0.

(Observe that A4 = det M(g;) = 0, since f; = f, is degenerate).

Then,

(ii) v4 = 0 is a simple root of K.(m,vs) =0 & %%(0,0) #£0 < £1is alocal

diffeomorphism.

(iii) v4 = 0 is a double root < $%=(0,0) = 0 and %C,&(O,O) #£0 & (m,v)is a

fold point of €.

(iv) A(m) = 0, rank(A(m) = 1 and m is not an umbilic & v4 = 0 is a
triple root of K(0,v4) = 0 and (m,v) € K;1(0) — ¥*T) g—ﬁ‘(0,0) =
5 (0,0) =0, %(0,0) # 0 and (m,v) € K£;1(0) — £*(T). This implies
that v,-direction is not tangent to the curve By(3) and then (m,v) is cusp

point of . Now, the converse follows easily.

Definition: We call asymptotic direction of M at m to the direction 6§ C
Tym)yM image by T¢ of the unique principal direction of zero curvature of CM
at (m,v).

In the following theorem we show that, as expected, an asymptotic direction
is a tangent direction at m with contact of higher order with the manifold. We
measure the contact of the direction § with the manifold by looking at the
singularities of the projection:

po: M — R
m +— pg(m) = f(m)— <6,f(m)>0, 6eS*

Then, we have:

Theorem 2: The direction 8 is not asymptotic at m € M if and only if the

germ of pg at m i3 a cross-cap.
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Proof:
R0 — RR°,(0,0)
(23,2) = (8,9 Fi(#,5,2), fo(#,3,7)), where

fi(z,y,2) = anz? + 2ay,2y + agy? —+— 2a1322 + 2a23yz + azsz® + €1(z,y, 2)

fa(z,y, z) = b11z? + 2b1azy + bagy? + 2b12z2 + 2by3yz + baz2? + €2(z, y, 2),

gem® (1=12).

Let us assume 6 = (1,0,0,0,0) and we can suppose ga(z,y,z) = byz? +
by2y® + bazz?, non degenerate. Then, po(z,y, z) = (¥, 2, 112 + 2a122y + azzy +
a2y? + 201372 4 2a23y2 + a3z’ + €1(2, Y, 2), biiz? + byay® + basz? + €2(z, v, 2))
and in these coordinates systems, the condition so that fp has a cross-cap at 0
is @12b22 # 0 and aqabaz # 0. So, if 0 is not a cross-cap, then a;3 = a3 = 0,
implying that € is an asymptotic direction.

Reciprocally, let us assume that 6 is an asymptotic direction associated to
the binormal vector v, chosen in such a way that f, = f,.

Then, (m,v) € Y)(T) and, if necessary, by a change of coordinates in the

source, we can take fy(z,y, z) in the form:

(i) 2® + fo(y,2) if (m,v) € VT or,

k-2

——
(i) zt+zy? + foly, 2) if (m,v) € SH L 10Ty (k=45 or 6).

This will imply that § = (1,0, ...,0) and

po(z,y,2) ~ (¥, 2, a1z + 2z(a12y + a13z), %) in case (i)

or

po(z,y,2) ~ (¥, 2, a112% + 2z(a12y + a132), z*+zy?) in case (ii).

The normal forms (i) and (ii) are more degenerate than a cross-cap ([8]).

3. Geometric Characterization of Singularities of
Height Functions on M

For each unit vector § € Ty(m)f(M), let 45 be the curve obtained as the inter-
section of f(M) and the 3-space containing Ny(m)f(M) and 6. Such curve is

called normal section of f(M) in the direction 6.
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We have seen that a height function f, : M — IR has a degenerate singularity
at m, if and only if, v is a binormal vector of f(M) at f(m). From now on, we
shall consider a height function f, : M — IR, where v is a binormal vector of
f(M) at f(m), and we denote by 6 the asymptotic direction associated to v.
Then, we characterize followingly the type of degenerate singularities that may

generically appear, into:

Theorem 3: For each m € M such that A(m) # 0:m € §(X"°(T)) < 7o has
a nonvanishing normal torsion at m.

Now, if 7 has vanishing normal torsion at m, then m € £(X"*(T')) and we

have that:
(i) m is a cusp singularity of f, < 6 is transversal to {(X""%(T))

(ii) m is a swallowtail singularity of f, < 6 is tangent to £(X""°(T')) and
transversal to £(X1110(T)).

(iii) m is a butterfly singularity < 6 is tangent to E(XV""O(T)), with first

order contact.

Proof: We saw that m is a degenerate critical point of f, < (m,v) € K1(0).
Furthermore, if A(m) # 0 then m € M;(1) when A(m) > 0 and m € M;(1,1,1)
when A(m) < 0.

We can choose orthogonal systems of coordinates to obtain:
(i) f locally given by:
R0 — IR%0
(E, Yy Z) — (13, Y, 2, fl(mv Y, z)) fz(m; Y, z)))
fl(mayyz) = ql(z’ya z) + les + ...

fa(z,y,2) = foz,y)+22 with fo(z,y) = y>+ Piz®+3Pyz?y+3Pszy®+ Pyy®
+Q1z* + ...+ Qsy* + Rix® + ... + 528+ ... and f, = f,.
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(ii) K. locally given by:

R*x R0 — R0
(z,9,2,v4) — Kc(z,y,2,v5) = Ai(z,y, 2)v] + 345(z,y, z)vi+
343 (z,y, z)vs + A4z, y, 2), :

where:
Ai(z,y,2) = det M(qu(z,y,2))
As(2,9,2) = 3(froofryyfrue + o fracfoy, + fup, fronfooa)+
+ 2(fro. fryefoey + Froy froSoy.) + (froy f1y. fon.)—
= (Jiealtypiliee  Figiliny ¥ Flox Ll )~
= (frfryefo. + 1, Fo0) = Qhroy frinfouy + L, F20)]
As(z,y,2) = 3[(freefryyFrue + Frygfree free + froofooafo,,)+
+ 2(frs fouy frye + Froeryefouy + froy foufay.)—
— (frocfrfoy + F, 3, + i foy, fou)—
= Qhy.frefo + Fi.f3)) = (3, fru. + 2f1s, fouy fo.)]
Aq(z,y,2) = det M(go(,y,2)).

Now, the only principal direction of zero curvature at (m,v)ise; = (1,0,0,0,0)
and, hence, Dé(m,v)e; = e; = §. Under these conditions, 74 has the following
parametrization:

76 : (IR,0) — (IR",0)
s +— 79(8) =(s,0,0,a118% + ..., Pis®* +..)
Then, 45 has non zero torsion <& P; # 0 ¢ m is a fold point of f,. So, if
Py =0,(m,v) € ©"(T) and the rest of the proof follows from the description
of the singularities of the Gauss mapping T, from Lemma 3 and Theorem 1
(part (i1)).

The characterization of the singularities of the height functions on the points
of A7}(0) away from the umbilics is given by Theorem 4 when m € M,(1,2)
and by Theorem 5 when m € M;(3). Using a transversality’s argument we can
see that, generically, singularities of butterfly type do not occur in M,(1,2) and

singularities more degenerate than cusps are away from M;(3).

Theorem 4: For each m € M such that A(m) = 0, rank A(m) =1 and m is

not an umbilic point for f,:

(i) m s a fold singularity of f, < 6 is transversal to M(1,2).
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(i) If m is an Ay singularity of f,(k =3 or 4) then 6 is tangent to M,(1,2).

Moreover,
m is a cusp singularity of f, < {(X1"°(T)) is transversal to M,(1,2) at m.
m is a swallowtail singularity of f, < £(X""%(T)) is tangent to M,(1,2) at

Proof: We recall that (m,v) € B, & m € M(1,2) and m is not an umbilic
point of f, & (m,v) is a fold point of £. Then, there exists a neighbourhood U
of (m,v) in B, such that (z,y,2,vs) € U & K.(z,y,2,vs) = g—iﬂ(m,y,z,m) =0
and %;?‘(z,y,z,v.,) # 0, that is

(1) Ai(z,y,2)v3 + 34;(z,y, 2)v2 + 3As(z,y, 2)vs + As(z,y,2) =0

(2) Ai(z,y, z)vi+ 245(z,y, z)vs + As(z,y,2) =0

(3) Aule,y,2Jou+ Ax(z,3,2) # 0

Since the discriminant of ‘;—ﬁﬂ(0,0,0,w) is 442%(0,0,0) > 0, it follows that
A2 — A, A3 is positive in a neighbourhood of the origin and then equation (2)
defines a function v4 = v4(z, ¥, 2y, such that K (z,y, z,v4(z,y, 2)) = 0 reduces to
A(z,y,z) = 0. Furthermore, in a neighbourhood of the origin, rank A(z,y, z) =
1, which implies that (z,y, z) belongs to a neighbourhood of m in M,(1,2). In
other words, é(B;) C M,(1,2). Observe that if m is an Aj singularity of
fuolk = 3 or 4), A,(0,0,0) = 0.

Now, the result follows as in theorem 3, from Lema 3, from the description
of the singularities of I' and from theorem 1 (iii).

We must remark that if A..(0,0,0) = —P}{P2(24Q, — 36P7) — 2[12(M, +
as3P1)]*} # 0, the contact of the asymptotic direction with Ma(1,2) is of order
one. Although this condition is verified for a residual set of embeddings, it does

not follow from the conditions defining a cusp or swallowtail point.

Theorem 5: Let m € M1(3) and v the unique binormal direction at m. Then:
(1) m is a fold singularity of f, < @ is transversal to M;(3).

(ii) m s a cusp singularity of f, < 0 is tangent to M;(3) with contact of first
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order.

Proof: The points of B;(3) are the cusp singularities of £. As in the Theorem
4,if U is a neighbourhood of (m,v) in B;(3), then

{ (1)=(2)=(3)=0
(z,y,2,v4) U & and (Theoremd)
(4)A1(x)y’z) # 0,

that is, locally, £(B1(3)) = M1(3). So, M;(3) is given by

Kl :A;—AlA:;:O
Kz = A1A4 == AzAs = 0

Now, the result follows observing that 6 is transversal to K; N K; if only if
M, + as3P; # 0. a

In the following theorem we discuss the umbilic points for a generic embed-
ding f. Recall that if m is an umbilic point of f, then (m,v) € T*(T). In this
case, CM has two principal directions with zero curvature and two principal
directions with non zero-curvature, one of which projects onto a tangent direc-
tion of f(M) at f(m). Let us denote by M, the section of M by the 4-space
orthogonal to this unique direction with non zero principal curvature wich is
tangente to f(M) at f(p). Locally, this section is a surface embedded in RR*
and, hence, we have the concepts of inflection point as in [4]. That is, the
curvature ellipse of f(M) at f(m) degenerate on a radial segment of straight
line. We call that this inflection point of real type when f(m) belongs to the
curvature ellipse and of imaginary type when it doesn’t. An inflection point is

flat when f(m) is an end point of the curvature ellipse, [6].

Theorem 6:

(a) m 1is an elliptic or hyperbolic umbilic for f, < m is a non degenerate
inflection point of M,. Furthermore, in a neighbourhood of m, A~1(0) is
diffeomorphic to a cartesian product of A;7(0) by an interval. The generic
models for A7'(0) were given in [6]. (Figure 1)

(b) m is a parabolic umbilic <& m is a degenerate inflection point of M,.
(Figure 2)
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Figure 1. (a), (b), (c) and (d) show a non degenerate inflection point

Proof of Theorem 6: Let m be an umbilic point of f,. As in Proprosition 2,
we assume that f is in Monge’s form, with f, = f,. Now, we use the Splitting-

Lemma to write f; as:

(2) z3+zy? + 2? if m is an elliptic or hyperbolic umbilic, or

(b) z* + zy? + 2% if m is a parabolic umbilic.

Then, z = 0 produces a section M, of M with the desired properties.

Notice that, in these coordinates, the 2-jet of the Gaussian curvature func-
tion, j2(X.)(0) is independent of z. Furthermore, in (b), m is a singular point
of the curve A;1(0).

Reciprocally we may assume, with no loss of generality, that z = 0 is the

section M,. In this case, f has the local form:

(R*,0) — IR*(0,0)

(mvy1z) == (%y;z;fl(“’:y;z);zz + fz(a:)y))

with (0,0) singular point of f, of type D¥, in case (a), and Ds, in case (b).

Then, m is an umbilic point of fy(z,y, z).
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Figure 2. Inflection point of flat type.
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