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SELF-TRANSLATION SURFACES

Clint McGrory * Juan José Nuio-Ballesteros ®
Maria Del Carmen Romero-Fuster {®

Abstract

We study the singularities of self-translation surfaces and their Gauss
maps. If a is a generic closed space curve, the locus of midpoints of
secants of a is a Mdbius strip with boundary a, and with normal crossings
and crosscap singularities. We use the topology of this surface to obtain
some new global geometric properties of closed space curves.

Given two curves a(s) and B(t) in R?, a surface swept out by translates
of the curve a(s) as each of its points describes a translate of 3(t) is called a
translation surface of a and B (cf. [5, vol. 1, p. 137], [6, §71], [12, p. 109)).
Any such surface is a translate of the surface a(s) + A(t), (s,t) € R?, which
is homothetic to the locus 3(a(s) + A(t)) of midpoints of line segments joining
points a(s) with points 8(¢).

We consider here the particular case when a = 3, which we call the self-
translation surface of a. Suppose that o : S* — R? is a closed curve, where

S' = R/2nZ. Then the self-translation surface of « is given by
Te + 8 % 5* = R,

Ta(s,t) = a(s) + a(t).

Since To(s,t) = Tu(t, s), we have symmetry about the diagonal, as in the case of
the secant map studied by Bruce [3]. Therefore we cannot expect T, to behave

generically near the diagonal; to obtain local models we work in the space of
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Z,-invariant maps. We also 20 consider the self-translation surface of a to be
parametrized by the Mobius strip S* x S'/((s,t) ~ (¢, s)).

In this note we study the topology of self-translation surfaces of generic
closed space curves. In the first section we obtain local normal forms, and
we show that the self-translation surface is topologically stable. In the second
section we apply this result to the geometry of closed space curves. In particular
we show that a generic convex curve admits a family of inscribed parallelograms,
and that a generic curve with less than four torsion zero points also has this
property. In the third section we apply a general formula for the Euler number
of a topologically stable surface with boundary to get a relation between the
number of pairs of parallel tangents of a generic closed space curve, and the
numbers of certain trisecant lines and inscribed octahedra. In the last section,
we analyze the singularities of the Gauss map on the nonsingular part of the
self-translation surface of a generic curve.

We are grateful to M. A. S. Ruas for helpful comments about local normal

forms for the Gauss map.

1. Singularities of self-translation surfaces

Let a be a smooth closed space curve, and let T, be the self-translation surface of

a. A generic smooth curve is a regular embedding with nonvanishing curvature.

Lemma 1. If '(s0) # 0 and the curvature of a does not vanish at so, then
the germ of T, at (so,80) is equivalent, as a Zj-invariant map, to the germ

(R?%,0) — (R?,0),
(z,9) & (2,9%,0),
with Z, action (z,y) — (z,—y).
Proof. We choose local coordinates so that s = 0 and the germ of T, at 0 is
given by
Ta(s,t) = (s + 8" + £ + p(s) + p(t), a(s) + 4(t)),
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where p and ¢ vanish to second order at 0 (ie. p(s), q(s) € (s)%). Now let
X =s+tand Y = s —¢t; we have

Ta(X,Y) = (X, 5(X? + Y2) + p(X +¥) + p(X — ¥), (X +¥) + g(X — V).

Since To(s,t) = Ta(t,s), we have To(X,Y) = To(X,-Y). By the Malgrange

preparation theorem we can write
T(X,Y) = (X, 5(X + Y) 4 (X, Y2), §(X, V),

with p(X,Y?), §(X,Y?) € (X,Y)3.

Now we can use the following result of Bruce on Z,-invariant germs of maps
(R?,0) — (R?,0) (see the appendix of [3]): Let F be a germ of the form
F(z,y) = (z,9(=,y?)), where g(u,v) satisfies 09/0u(0) = 0 and 8g/0v(0) #
0. Then F is stable as a Z,-invariant germ, and it is equivalent to the germ

(R?,0) — (R?,0),
(z,9) = (=,9).

In our case g(u,v) = }(u® + v) + §(u,v); we conclude that T, is equivalent to
the germ (R?,0) — (R?,0),

(X,Y) — (X,Y?,r(X,Y?)).

Therefore, by making the change of variables Z = Z — r(X,Y?), we obtain the

desired result. O

Therefore, if the curve a is a regular embedding, the parametrization

Pa i 8 x SI/((*’)t) ~(t,s)) - R®

pals,1) = a(s) + aft)

of the self-translation surface of a is a regular embedding in a neighborhood of
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the boundary of the Mébius strip S* x 5/((s,t) ~ (t,s)).

Figure 1 The space cardioid and its self-translation surface.

Theorem 1. For an open dense subset of the space of closed smooth curves
a in R3, the self-translation surface @, has one of the following local normal

forms at each point:

a) simple points:
i) regular interior point, pa(s,t) = (a,t,lO).
ii) regular boundary point, pa(s,t) = (s +t,(s —¢)%,0).

i1i) crosscap singularity, pa(s,t) = (%, st).

b) double points:
i) two regular interior points at which the surface has normal crossings.
ii) an interior point and a boundary point, both regular, at which the

surface has normal crossings.

c) triple points: three regular points at which the surface has normal cross-

ings.
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Thus, except for crosscaps, the self-translation surface is immersed with

normal crossings. From this we immediately get the following:

Corollary 1. For a generic closed curve a in R3, o, is locally stable as a map
of a surface with boundary, and T, is locally stable as a Z,-invariant map.

Figure 1 is a Mathematica plot of the self-translation surface of the space
cardioid

a(s) = ((1 4 cos s) cos s, (1 + cos s) sin s, sin s).

The surface has 3 crosscaps (corresponding to the values of the parameters
(s,t) = (0,%), (0,%4), (¥,%)), one boundary double point, and no triple
points.

The theorem is a consequence of the following lemmas.

Lemma 2. The critical points of the map T, are the pairs (s,t) such that
a'(s) x /() = 0. Moreover, for a generic curve o, all the critical points (s,t)

with s # t are crosscaps, and correspond to pairs of parallel tangents o'(s),

a(t).

Proof. We have that 8T, /8s = o/(s) and 87T,/dt = a'(t). But since the generic
curve a is regular, we have o/(s), o/(t) # 0, for all s,t, and hence rank T, > 1.
Moreover, rank T, = 1 if and only if o/(s) is parallel to o'(t).

If M and N are smooth manifolds, the rth multijet space ,J*(M,N) is
the set of r-tuples of k-jets of smooth maps from M to N. We have that
(s,t) is a crosscap if and only if the 1-jet 51T is transverse to S, where S; C
JY(S? x S',R3) denotes the submanifold of 1-jets of corank 1.

Consider the submersion

m:JY(SLRY) — JYS! x S R?)
w(s1, 82,70, 79, i ) = (81,825,170 +19,71,73)
We have 7(2j'a) = j!T,; hence if 5% is transverse to 771(S,), then j!T, is
transverse to S, since 7 is a submersion. Now from the Thom transversality
theorem we know that the set of curves a such that ;j'a is transverse to 7=1(5;)

is open and dense in the set of all smooth closed curves in R3. O
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Lemma 3. The self-translation surface of a generic curve has normal crossings
at its self-intersection points. Moreover, the boundary of the surface does not

contain triple points.

Proof. First we prove that for generic a, the surface ¢, does not have self-
intersections of multiplicity n > 4. If we denote the coordinates of the jet space
8J°(S, R®) by r2,79,...,73, then the desired property is obtained by requiring
transversality of the map g% : (S!) — §J°(S*, R?) to the submanifold defined
by the equations

0, .0 _ —_ 0.0
rtry=...=r7+r7g.

Now this locus has codimension 9 in §J°(S?, R3), so the result follows from the
Thom transversality theorem.
So we just need to analyze the structure of ¢, at double and triple points.

We shall treat separately the three possibilities:
(i) two interior points with the same image,
(i) an interior point with the same image as a boundary point,
(iil) three points with the same image.

To prove the assertion for case (i) suppose that we have a(s;) + a(t1) =
a(sz) + a(tz). Then it is enough to see that ¢, is regular at each of the two
points (s;,¢;),8; # t;,7 = 1,2, and that the tangent planes to o, at these points

do not coincide. But this amounts to the following conditions:
(1) o(s:) x &/(t;) #£0, i =1,2,
(2) (a/(s1) x &'(t1)) x (e(s2) x /(t2)) # 0.

The first condition holds provided that the image of the multijet map 45'a :
(SH™ - JY(S*,R®) does not intersect the subset of the multijet space
4J1(S', R?) defined by the equations

0 0 0 0 1 1
rytry=r3+ry, T X1 =0,
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where 70,739,793, 73, 71,73, 73, v} are the standard coordinates in 4J*(S*, R?). But
this subset has codimension 5, so it is avoided by a generic curve as a conse-
quence of the Thom transversality theorem. To ensure the second condition,
4J'a must avoid a codimension 5 subset of 4J(S?, R?).

For case (ii) we take s,t,r € S? with s # ¢ such that a(r) = a(s) + a(t).
We must show that ¢, is regular at (s,t) and that the tangent line to « at r is
transverse to the tangent plane of ¢, at (s,t). These conditions translate into
the requirement that 3j'a does not meet the subsets of 3J(S?, R?) defined by

the equations

o _ 0,.0 .1..1_q.

Ty = Ty+ry, Ty XT3 =05

0 _ 1(,.0 4 .0 1.2 .1y _
Y = E("z +1r3), det(r},r?,ri) = 0.

But these subsets have codimension 5 and 4 respectively in 3J!(S*, R?), and
again the Thom transversality theorem ensures that they will be avoided by a
generic curve.

For the third case we consider pairs (s;,¢;) such that a(s;)+a(t;) = p € R3,
it = 1,2,3. We observe first that generically s; # ¢;, 7 = 1,2,3, and thus the
triple point will not lie on the boundary of the self-translation surface. For
otherwise the image of the map ;5% : (5?)®) — 5J°(S,R®) would intersect

the subset of codimension 6 defined by the conditions

m=ratri=ri+ry,
which can be avoided for generic a. On the other hand, the facts that ¢ is
regular at the three points and that the three tangent planes meet in general

position follow from the transversality of the multijet map gj'a : (S')®) —

6J'(S', R®) to the codimension 7 subset of ¢J°(S*, R?) given by the equations

0,.0_.0,.0 0, .0 1 1,1 ,.1 .1, .1
Tyt Ty =T33+ 1y =15 +1g, det(r; Xry,ry X1y X T5)=0.
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2. Geometric consequences

To study the geometry of the curve a, we consider the locus of midpoints of

secants of a, a singular Mobius strip with boundary o, parametrized by

2pa(s,t) = (als) + (1)),
For a self-intersection point of ¢, of type b(i) in theorem 1, we have four distinct
points 3, 83, 83, 84 such that
3(als1) + as2)) = 5(a(ss) + alsy)).

These four points define a parallelogram which is inscribed in the curve a.
Moreover, if a is a generic curve such that its associated translation surface Pa
has a self-intersection, then there must be a 1-parameter family of such inscribed
parallelograms, corresponding to the curve of double points of ¢,. This curve
of double points may end either at a crosscap (type a(iii)) or a boundary double
point (type b(ii)). At a crosscap the inscribed parallelogram degenerates to a
line segment joining two points at which a has parallel tangents. At a boundary
double point the inscribed parallelogram degenerates to a trisecant line of a with
the property that the middle intersection point is equidistant from the other
two intersection points. We’ll call such a trisecant line a symmetric trisecant.
Isolated points of the curve of double points may correspond to quadrisecants
(degenerate parallelograms with distinct collinear vertices).

From these considerations we immediately. get the following:

Corollary 2. For a generic closed curve o, the number of pairs of parallel

tangents has the same parity as the number of symmetric trisecants.

For the space cardioid (Figure 1), there are two arcs of inscribed parallelo-
grams. One arc joins two pairs of parallel tangents, and the other arc joins a
symmetric trisecant to a pair of parallel tangents.

B. Segre [11] proved that if a closed curve a with nonvanishing curvature
has no parallel tangents, then it has at least 4 zero torsion points. So we can

assert:
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Corollary 3. A generic closed curve with less than j zero torsion points admits

a family of inscribed parallelograms.

On the other hand, we know that a generic convex curve has at least 4 zero
torsion points (see [9] for a proof in the generic case, or [10] for C*-embedded

closed curves with nonvanishing curvature). Nevertheless, we have:

Corollary 4. A generic convezr curve admits a family of inscribed parallelo-

grams.

Proof. Otherwise the self-translation surface would have have no self-
intersections. So the map lp. : S* x S'/((s,t) ~ (t,8)) — R® would be
an embedding of the Mdbius strip with the convex curve a as boundary. Let
S be the image of this embedding. Now « lies on the boundary of its convex
hull H, which coincides with the convex hull of S. The convex hull H is a
closed 3-ball, since a is nonplanar. The boundary of this 3-ball may also con-
tain some interior points of S, but we can slightly perturb H to get another
3-ball H. whose intersection with S consists only of the boundary points of S.
For let g : 8H — [0, 1] be a continuous function such that g='(0) = a(S*). Now
OH — a(S?) is a C'-surface, so it has a continuous outward unit normal vector
field N. We then have, for sufficiently small € > 0, an embedding f. : 0H — R?,

fl(z) = 2 + eg(z)N(=),

that leaves a(S?) fixed. Let H, be the closed 3-ball bounded by f(0H). We
have S € H C H., and 8S = SN 8H.. If we collapse the boundary dH, to a
point, we obtain a sphere which contains the embedded projective plane 5/95S.
But this is impossible. o

3. The Euler number of a self-translation surface

A triple puint of the self-translation surface ¢, corresponds to an octahedron

O inseribed in the curve, with the property that each pair of opposite faces of
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O is parallel and congruent. (In other words, O is the dual of a parallelepiped.)
We'll call such an octahedron a parallel octahedron. In this section, we use a
variation of a result on topologically stable surfaces with boundary in R3, due
to Izumiya and Marar [7] (cf. also [8]), to obtain a formula for the Euler number
of the self-translation surface of a in terms of the numbers of parallel octahedra,

pairs of parallel tangents, and symmetric trisecants of a.

Theorem 2. For any compact surface M with boundary and topologically stable
map f: M — R3,

X(F(M)) = (M) + T + 3(C - B),

where x(M) is the Euler number of M, and B,T and C are the numbers of

boundary double points, triple points and crosscaps of f, respectively.

Proof. The argument is similar to that used by Izumiya and Marar. Choose a
stratification of f. If U; and V; are the strata of codimension 7 = 0,1,2, in M
and f(M), respectively, we have

x(M) = x(Uo) — x(U1) + x(U2),
x(f(M)) = x(Vo) — x(V) + x(V2).

We define the strata U; and V; as follows:

Uo = {z € int(M) | f is nonsingular at z, #f~(f(z)) = 1};

Ur = Un U Uy,

Un = {z € OM |#f7'(f(=)) = 1},

Uz = {z € M| f7(f(z)) N OM =0, #f~'(f(z)) = 2};

Uz = Uz U Uzz U Uy,

U = {z € M| f is singular at z},

Ur = {z € M|f(f(2))NOM # 0, 20#f7*(f(z)) = 2},

Uzs = {z € M|#f7'(f(=)) = 3}.

On the other hand, let V; = f(U;), and20 V;; = f(U;), 4,7 = 0,1,2. Then
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the following relations hold:

x(Uzn) = x(Va)=C,
1(Us) = x(Vi)= B,
%X(Uza) = X(st) =T
Therefore,
x(Uz) =C + 2B + 3T.
Furthermore,

x(U1) = x(U22) = x(V11),
x(Urz2) = 2x(Viz) = C + B + 6T,
x(Uo) = x(Vo).
Therefore we can write
x(M) = x(Us) — (B+(C + B +6T))+ (C + 2B +3T),

and thus
x(Uo) = x(M) + 3T.

Finally we have

x(F(M)) = (x(M)+3T)— (x(Un) + 3x(Ur2)) +(C + B+ T)
= x(M)+3T-%C+3B+6T)+C+B+T
= x(M)+T+3(C - B)
as required. O

Remark. The difference between our result and that of Izumiya and Marar is
that each of our boundary double points has just one of its preimages on the
boundary- of M, whereas in [7] both preimages lie on the boundary.

If a is a closed space curve with self-translation surface parametrized by

Pa s St x §1/((s,t) ~ (t,8)) —» R3, let S, be the image of pq.



72 C.McCRORY J.J.N.-BALLESTEROS M.D.C.R.-FUSTER

Corollary 5. Let a be a generic closed curve with self-translation surface S,. If
a has ¢ pairs of parallel tangents, b symmetric trisecants and t parallel inscribed
octahedra, then

X(52) = t+ 5(c— b).
For example, if a is the space cardioid (Figure 1), thenc=3,b=1,¢{=0 and
x(S.) = 1.

4. Singularities of the Gauss map

Let a be a generic smooth closed curve in R?, and let T,, : S* x S* — R3 be
the self-translation surface of a. Denote by C the subset of S* x S consisting
of all crosscaps of T,. Let 7 : S — RP? be the natural projection. We define
the Gauss map of the self-translation surface, N, : S x S! —C — RP?, by

Na(s,t) = m(el(s) x (1)), s £ 1,
No(s,t) m(a(s) x a"(s)), s =t.

20 Recall the following normal forms for map germs (R?,0) — (R?0). A

fold is a germ equivalent to (z,y) — (z,¥?), a cusp is a germ equivalent to

I

(z,9) = (=,y*+=y), and a handkerchiefis a germ equivalent to (z,y) — (z?,3?).

Theorem 3. Let a be a generic smooth closed space curve with torsion T.
Given a point (s,t) € S' X S* — C with s # t, the germ of N, at (s,t) is
1) a fold if o/(t) is parallel to the osculating plane of o at s, but a’(t) is not,
and 7(s) # 0, '
2) a cusp if o'(t) is parallel to the osculating plane of o at s, but o"(t) is

not, 7(s) = 0 and 7'(s) # 0,

3) a handkerchief if the osculating planes of a at s and t are parallel, T(s) # 0
and T(t) # 0.

Proof. To describe the singularities of the Gauss map N = N, we consider the
family of height functions H : §* x §! x §? —» R,

H(s,t,v) = (afs) + a(t)) - v
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and analyze the singularties of H, for all v € S2. Now (s,t) is a singularity of
H, if and only if a’(s) x o/(t) is parallel to v. So, unless a'(s) x o/(t) = 0 (which
occurs only if (s,t) € C or s = t), we have that v must be a normal vector to the
self-translation surface. This singularity is nondegenerate, and hence a regular
point of N, if and only if the Hessian of H, has maximum rank at the given
point (s,t). But this means that o/(s) is not parallel to the osculating plane of
aat t and a'(t) is not parallel to the osculating plane of a at s.

The singularities of N thus occur at points for which rank HessH, is less than
2, [v] = N(s,t). Suppose rank Hess H,(s,t) = 1, which occurs when either o/(t)
is parallel to the osculating plane of a at s or o/(s) is parallel to the osculating
plane of a at £. In this case, N has a singularity of type S;, which is a fold or
a cusp according to whether the torsion of a does not vanish or vanishes at s
(or t respectively). On the other hand, suppose rank Hess H,(s,t) = 0, which
corresponds to the case when the osculating planes at s and ¢ are parallel. Here
the map N has a handkerchief singularity provided the torsion of a does not

vanish at either s or t. (This is true for generic curves.) O

Corollary 6. If a is a generic closed curve with no parallel tangents, then the

germ of the Gauss map N, at (s,t) is stable for s # t.

Remark. A component of the set of critical values of the Gauss map N is
dual (in the sense of classical projective geometry) to a component of the set of
critical values of the unit secant map S studied by Bruce in [?]. More precisely,
N takes the diagonal to the binormal curve of a in R P?, whereas S takes the
diagonal to the tangent curve of a in R P?, and these curves are dual (cf. [4]).
Furthermore the other component of the set of critical values of S consists of
the unit secants corresponding to bitangent planes of a, which is dual to the
Maxwell stratum of the family of height functions on the curve (cf. [9]). (The
family of height functions on the curve is the restriction of the family of height

functions on the self-translation surface.)

Remark. The Gauss map N of the self-translation surface of the curve a is
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a Lagrangian map with generating family H, the family of height functions on
the surface (cf. [2]). The classification of singularities of N given in theorem 3
corresponds to the following classification of singularities of H.

Let v € §% be normal to T,(s,t). If the tangent vector o'(t) is not parallel to
the osculating plane of a at s, and a'(s) is not parallel to the osculating plane
of a at ¢, then the germ of H, at (s,t) has type A;. In case (1) of theorem 3,
the germ of H, has type A3, in case (2) the ge;m of H, has type Aj and in case
(3) the germ of H, has type Dy. Except in case (3), the germ at (s,¢,v) of the
family H is versal, so the germ of N at (s,t) is a stable Lagrangian germ.

At points of the boundary s =t of the self-translation surface T, the height
function H has boundary singularities (cf. [1], [2, 17.4]). If v € S? is normal
to a(s), but v is not normal to Ty,(s,s) (i.e. v is not parallel to the binormal
vector of a(s)), then the germ of H, at (s, s) has a boundary singularity of type
A;. If v is normal to T,(s,s) and 7(s) # 0, then the germ of H, at (s,s) has
type C3. If v is normal to T,(s, s), 7(s) = 0 and 7'(s) # 0, then the germ of H,
at (s, s) has type K, .
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