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THE EULER CHARACTERISTIC OF THE IMAGE
OF A STABLE MAPPING FROM A CLOSED
n-MANIFOLD TO A (2n-1)-MANIFOLD.

S. Izumiya W. L. Marar®

1. Introduction

One of the themes in the global theory of singularities of mappings f: N — P
between manifolds is to study the relationship between the topology of N, P
and f(N) in the case when dim N < dim P ([3]).

Recently, there appeared a considerable progress in the local theory of sin-
gularities of mappings ([4],[5],(6],[7]) mainly due to the work of David Mond. In
(4] a method has been introduced to compute the Euler characteristic of the im-
age of a stable perturbation of an A-finite map-germ. Here we shall apply this
method to compute the Euler characteristic of the image of a stable mapping
from a closed n-manifold to (2n-1)-manifold. As an application of our theorem,
we determine the set of values of the Euler characteristic of the image of stable
mappings from a closed n-manifold to a (2n-1)-manifold.

All mappings considered here are differentiable class C', unless stated

otherwise.

2. The main result

It is well known that a mapping f: N — P from an n-manifold to a (2n — 1)-
manifold is stable if and only if it is an immersion with normal crossings except
at the isolated singularities of cross-caps ([8], fig.1). It follows that the number
of cross-caps is finite and we denote it by C(f). There also exist finitely many
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three-to-one points in f(N) where three sheets of regular images meet in general
positions. Such a point (fig.2) is called a triple point of f and the number of
triple points is denoted by T'(f).

fig.1 fig.2

We denote the Euler characteristic of a topological space X by x(X). Our

main result is the following:

Theorem 1 (i) x(f(N)) = x(N) + T(f) + C(f)/2, i n=2.
(i) x(F(N)) = x(N) + C(f)/2, if n>3.

Proof: (i) Let us consider the following sets:

D*(f) = cl{z € N|#f~'f(z) > 2},

D*(f) ={=z € D*(f)I#f7' f(z) =3} and

D*(f,(2)) = {= € D*(f)l#f 7 f(z) = 1},
where clX denotes the topological closure of X.

By the characterization of stable mappings ([8]), D*(f) is a union of closed
curves on the n-manifold N whose set of self-intersection is D3(f), which is the
inverse image of triple points, and D?(f,(2)) is the set of cross-cap points of f.
It follows that these are immersed submanifolds of N with dim D?(f) =1 and
dim D3(f) = dim D?*(f,(2)) = 0, if not empty.

In order to prove the theorem, we consider the following problem: find real
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numbers a, 3,7 and § such that

xX(f(N)) = ax(N) + Bx(D*(f)) + ¥x(D*(,(2)) + 8x(D*(f))- (1.1)

We shall solve this by a purely combinatorial method.

Initially we construct a triangulation Ky of the set (V) as follows: we start
to triangulate f(N) by including the image of D?(f,(2)) and the image of D?(f)
among the vertices of Ky. After this, we build up the one-skeleton K}l) of Ky
so that the image of D?(f) is a subcomplex of K}l). We complete our procedure
by constructing the 2-skeleton K}z) of Ky.

Since f and its restrictions to D?(f), D*(f,(2)) and D3(f) are proper and
finite-to-one mappings, then we can pull back K; to obtain triangulations for
N, D*(f), D*(f,(2)) and D3(f) respectively. Let C be the number of i-
cells in X, where X = f(N), N, D*(f), D*(f,(2)) or D*(f). Then the equa-
tion (1.1) can be written as ¥;(—1)/C/™) = a 3;(~1)iCN+ ﬂzi(—l)"C,-D’U)+
15i(—1yCP Oy 55, (—1)y 0P, where CX =0 if i > dim X. So, if we
can find real numbers o, 3,7 and § such that

C'.-I(N) - aC‘-N i ﬂCiD’(f) £ 70}-”(!»(2)) 4 JCPJ(f) (1.2)

for any ¢, then we have an answer for the problem. By the construction of
the triangulation, we may concentrate on solving (1.2) in the case when i = 0.
We remark that f is 3 to 1 over the points in the image of D*(f), 1 to 1
over the points in the image of D?*(f,(2)), 2 to 1 over the points in the image
of D*(f) — (D*(f,(2)) U D3(f)), and 1 to 1 over the points in the image of
N — D?*(f). It follows that the equation

C(.)f(N) - aC;V d ﬂcté)z(f) + “‘/C(,Dz(‘f'(z)) 4. 60(?3(”

is equivalent to the system of linear equations:

QO = DN =
W = N O
O = O O
w o oo
N ™R

1
1
1
1
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Then we have the solutions a =1, 8 = —1/2, y = 1/2 and § = —1/6 so that
xX(F(N)) = x(N) — x(D*(£))/2 + x(D*(£,(2)))/2 - x(D*(f))/6.  (1.3)
By definition, x(D*(f,(2)) = C(f) and x(D*(f)) = 3T(f). Since D*(f) is a

union of closed curves on the surface N with 3T(f) crossings and circles, then
we can triangulate it with 3T'(f) + n O-cells and 6T(f) + n 1-cells, where n is
the number of circles. It follows that x(D?*(f)) = —3T(f). Finally, substituting
these on the equation (1.3), we get

X(f(N)) = x(N)+ T(f) + C(f)/2.

This completes the proof of (i).
(i) When n > 3 then D*(f) = 0, for any k > 3. So, following the same

arguments as above we get

X(f(N)) = x(N) + C(f)/2-

3. An application

In this section we shall determine the set of values of the Euler characteris-
tic of the image of stable mappings from a connected closed n-manifold to a
(2n — 1)-manifold as an application of the theorem.

We now define x(N, P) = {x(f(N)) | f: N — P is stable }. Then we have
the following:

Proposition 2 (1) Suppose that n = 2.
(i) If N is not homeomorphic to the connected sum of a projective plane and an

orientable surface, then
X(N,P) = {n € Eln 2 x(N)}.

(i5) If N is homeomorphic to the connected sum of a projetive plane and an

orientable surface, then

X(N,P) = {n € Z|n > x(N) + 1}.
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(2) Suppose that n > 3, then

X(N,P) = {n € Eln > x(N)}.

Proof: (1) (i) In this case we can always construct an immersion f : N — P
with normal crossings without triple points. Then we have x(f(N)) = x(N).
We now define a stable mapping g : D — P by g(z,y) = (z,¥% yz* + y* — r’y)
in suitable local coordinates, where D is a disc centred at the origin of IR? and r

is any positive number smaller than the radius of D. Then g has two cross-caps

(fig.3).

g f
@ T
fig.3

If we consider the connected sum of f and g, then we obtain a stable mapping
f#g: N — P with C(f#g) = 2 and T(f#g) = 0. It follows that x(f#g(N)) =
x(N) + 1. By this procedure, we can construct a stable mapping h : N — P
such that x(h(N)) = n, for any n > x(N).

(i) It is enough to consider the case when N = IP?. In this case we cannot
construct an immersion with normal crossings without triple points ([1]). If we
consider f(IP?) as the Boy surface, then the number of triple points is 1 ([2])
and x(f(IP?)) = x(IP?) 4 1. Now, by the same procedure as that of (i) above,
we can get the result.

(2) By the immersion theorem ([8]), we have an immersion with normal crossings

f: N — P. Since n > 3, then f has no triple points. Then, if we use the
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mapping
g: D™ o P; g(z1,..., 2n) = (21,23, Ta, .20, (2] + 23 — 7)T2, 2123, ..., T12Z0)

in suitable local coordinates as in (1) (ii) above, we can complete the proof.
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