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STABILITY AND GENERICITY OF COMPOSITION
OF MAPS

‘M.C.R. Fuster '®S. Mancini’ M.A.S. Ruasi®

Abstract

With the purpose of obtaining a unified viewpoint on some of the ap-
plications of singularity theory, we consider compositions of smooth maps

XLy s Z, and study the relation between their stability and that
of g (resp. f) when f (resp. g) is fixed (under convenient restrictions on
the maps f and g). We also study the analogous problem when one of
the maps is substituted by a family of smooth maps.

1 Introduction

In various contexts of the applications of the singularity theory, eg. stability of
caustics (6], Generic Geometry [7], [8], weak transversality [2], stability of the
cut-locus in a Riemannian manifold (3], one has to analyze a situation which
could be generalized as follows:

Given a composition of C*-maps
b JEI JENY

find the relations between the G-stability (G- genericity) of the map f o g and
the G'-stability (G'- genericity) of the map g when f is fixed, or viceversa, of the
map f when g is fixed. Here G and G’ are appropriate diffeomorphism groups,
which for most of the applications purposes we may take as subgroups of A or

K.
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Looking at the literature, we see that for each particular case, the group G
is well defined, usually A(X, Z) as in [7], [11] or K(X, Z) as in [2], [8]. Whereas
G' is not explicity given, but just suggested either by a concept of stability, or
by a constructive process in the proofs in which the candidates for the orbits of
7*G'in J¥(X,Y) or in J*(Y, Z) are sketched ([2],(8]). Indeed, the knowledge of
G' is not needed in any explicit way for carrying out the proofs of most of the
stability and genericity theorems of the kind we refer to. Nevertheleés, we think
that the introduction of such a group may give a more enlightening and unifying
viewpoint on various of the results already known, apart from introducing some
other new results that will be presented in this paper.

We shall define a group G’ which will depend on G and f or g in each case, so
it will be denoted by Gy or G, respectively. This G (resp. G,) will be expected
to be such that, for sufficiently well behaved fixed f (resp. g), for instance a
submersion (resp. an immersion), G;-stability of g (resp. Gy-stability of f) will
imply G-stability of fog.

We shall consider the problem of stability in Section 1, and in Section 2 the
problem of versality of the families obtained by composing a single map with a

family of maps.

Conventions, notations and basic facts:

We impose here some general restrictions to the problem in consideration:

a) X is a compact manifold;
b) dim X, dimZ < dimY ;

c) the group G is either A(X, Z) or K(X, Z), although one expects that the
obtained results can be adapted to others subgroups of K(X, Z).

All the maps and manifolds we consider in this work are smooth. The

topologies on the function spaces are the corresponding Whitney C'*-topologies.
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We denote by Subm® (Y, Z) the subspace of all smooth submersions from Y
to Z and by Emb®(X,Y’) that of all smooth embeddings from X to Y.

We denote by R(M) the group of diffeomorphisms on a manifold M. Given
f € C*(X,Y), we understand by Iso( f) the isotropy subgroup of f in A(X,Y)=
R(X) x R(Y') that is, Iso(f) = {(h,h') € A(X,Y): h'o foh™! = f}. By abuse
of language we also call Iso(f) the subgroups {h € R(X) : 3’ € R(Y) with
h'ofoh™ =f}or {h €R(Y):3h € R(X) with h'o foh™' = f} when no
confusion can arise.

Given any group G- of diffeomorphisms acting on a space C%(X,Y), we
have induced group actions of the groups of germs of diffeomorphisms of G at
appropriate points on the set £ ,(X,Y") of germs of maps in C*(X,Y) at some
point z with fixed target y. The associated equivalence relations both among
maps in C°(X,Y’) and among germs in &, 4(X,Y) will be denoted by the same
symbol ~g. Given g,g9' € C*(X,Y) we shall denote by g, the germ of g at
z € X, and by g, , the germ of ¢’ at ' € X. Then we shall write g, ~g g’/ ,
whenever there are manifold charts: (¢, U) for X at z, (¢, U’) for X at 2', (¢, V)
for Y at g(z) and (¢/,V’) for Y at g/(2’) such that ¢(z) = ¢'(z') = 0 € R™,
Y(g9(z)) =¢'(¢'(z')) =0 € R and pogo ¢~ ~g ' 0go ¢! as germs at 0 of
maps from R™ to R™.

We also notice that the action of G on C*°(X,Y’) induces an action of the
group J*G of k-jets of elements of G on the space J¥(X,Y) that will be denoted
by ~g too.

2 Group actions and stability

Consider a composition of maps
diXx-Ly-Lz

and a group G acting on C*°(X, Z). To say that ¢ = f o g is G-stable means
that the G-orbit of f o g is open in C*(X, Z). Or in other words, that there is
a neighbourhood A of ¢ = fo gin C®(X, Z) such that V¢' € N, 36 € G with
¢’ = 0 x ¢, where * denotes the action of G on C>=(X,Z). This action defines
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an equivalence relation, ~g, on C*°(X, 7). And this induces in turn, for each
fixed f € C®(Y, Z) another equivalence relation, ~; , on C*°(X,Y), namely:
g~y g < fog~g fog' The relation ~y defines a stability criterion on
C*(X,Y) studied by G. Wassermann [11]. It would be interesting to iden-
tify this stability criterion with the one associated to some group action on
C>(X,Y).

In an analogous way, given a fixed g € C*°(X,Y), we can define a relation
~g from ~g by requiring that f ~, f' <= fog ~g fog' Thereis also a
stability criterion associated to ~, on C®(Y, Z), that we would like to relate to
the standard one defined by some group action on C*(Y, Z).

We are thus looking for groups, that we denote by Gy and G, respectively,
whose orbits coincide with the equivalence classes of the relations ~¢ and ~,
respectively. We shall restrict our study to the cases G = A, K.

The path that we shall follow consists in defining groups Gy and G, and
prove that they provide the correct setting for the local situation, when g is
an embedding and f a submersion. For the global situation we shall have to

content ourselves with some more restrictive results when G = A, namely:

a) fognr~g fog =>g~g, g = fog~gfog;

b) fog~g flog=>fr~g, f'=>fogr~gfog;
where G* = {(h,k) € G : k is in the component of 17 }.

In order to get the global equivalence one slhould prove that given
6,9 € C°(X,Z) : ¢ ~g ¢' < ¢ ~g+ ¢' , with, perhaps, some conditions
on ¢ and ¢, like ¢ and ¢’ being near enough. We leave this question unan-
swered.

For G = K, both the local and the global situation are solved when g is an

embedding and f a submersion.

We finally get, for G = K,

fogis G-stable <= f is G,-stable <= g is Gy-stable.
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2.1 Fixing the 2" map in the diagram
Consider a fixed map f € C*=(Y,Z). We define
Gr={(h,€) € A(X,Y): h € R(X), £ €Isog(f)},
where we distinguish two different cases:
a) For G = A(X, Z), Isog(f) is the usual isotropy subgroup of f in A(Y, Z).

Remark: This definition is suggested by the following commutative diagram

X =Ly A B
hl le Lk
x 2 1,z

b) For G = K(X, Z), as is usual in problems arising from the contact view-

point we put Z = RP and define, for f a submersion,

Isog(f) = {£L € R(Y)/L(f71(0)) = £7(0) }.

Observe that the group Gy acts on C*=(X,Y) in the obvious way and we
have the following.

Lemma 1

a) ForG=A(X,Z):g~g, g = fog~g fog', Yg,9' € C®(X,Y).

b) For G =K(X,Z) and f € C*(Y, Z) being a submersion at every point of
FHoyc Y ;

g~g, 9 = fogn~g fog, Vg4 €CX,Y).

Proof.

a) Follows easily.
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b) If g ~g, ¢', then there exists (k,£) € A(X,Y) such that g’ =logoh™™.

Therefore we can write locally:
I[fotog]=h*(I[fog]) (1)

where I | denotes the local ideal generated by the map inside the brackets. Now
from [9] it follows that the contact class of the composed map doesn’t depend

on the submersion f or f o £. Consequently
I[folog]=1I[fog] (2)

Now (1) and (2) imply that (f 0 g')or ~x (f © 9)a-

Using a standard argument of partitions of unity on X we can obtain a
global diffeomorphism H : X x R? — X x RP such that the pair (h, H) will
give the K-equivalence between fog and fog'. O

In the case when f is a submersion and g is an immersion, Lemma 2 shows
that the inverse implication of Lemma 1 holds either at germ level for G=A, K

or globally for some special subgroups of G.

Lemma 2 Let f € Subm™(Y, Z), then for all g,g' € Emb™(X,Y) we have:
a) For G = A(X, Z):
i) (fog)e~g(fod)e = gu ~g, b ;
ii) fogrg. fog = gnrg, g
b). For G = K(X, 2) :

i) (fog)e ~x (fog)e = go ~k, g

ii) fogre fog' =g~ ¢,
where, as usual C = C(X, Z) is defined as the subgroup
{(LH) e K(X,2)}.

Proof.
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a) To prove i) one notice that the condition (fog). ~g (f o g'). means that
there exist local diffeomorphisms h : (X,z) — (X,z') and-
k:(Z,z) = (Z,2'), where (f o g)(z) = z and (f o ¢')(z') = 2, such that

the following diagram commutes

(X,z) 5 (Ye(x) L (2,2)
N la (3)
(X,2) & (vd@E) L (2,2)

We now need to find (A',£) € G; such that

(X,2) > (Y, g(z))
R le
(X,2) £ (¥,9(")
be a commutative diagram.
Observe that f and ko f are both local submersions at some neighbourhoods

of y' = ¢g'(z') and y = g(z) respectively. And thus thereis a local diffecomorphism
£:(Y,y) — (Y,9') such that

kof=fol (4)

We now define b’ € R(X) by conveniently modifying h in such a way that
(h',€) € Gf (in a local sense). Firstly observe that from the commutativity
of the diagram (3) it follows fog = k™ o f 0 g’ 0 h, and from (4) we have
ko fol™ = f. Therefore fog= fof='og oh. That is, in a small enough

neighbourhood N, of z in Z we can write

g () =k og o l(f7(c)), VeE N,,

(g™ (f7(c) = ¢ (UF(c))), Ve € N,,

So we can define a germ of diffeomorphism

T:(X,z) — (X,z')
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as follows: given a € X sufficiently close to z, then g(a) € f(¢c), for some

c€ N, C Z. Put T(a) = (b 0 g'" ! 0 £)(g(a)).

The fact that g’ is an embedding ensures that T is a germ of diffeomorphism

at .

If we take k' = ho T it is not difficult to see that this is the local diffeomor-

phism satisfying the required conditions.

ii) We can use an analogous argument to part i) but assuming that k is in the
component of the identity, 1z, on Z. Hence ko f ~r(y) f and we can get a

globally defined diffeomorphism £ € R(Y), for g and g' are embeddings.

b) The proof of i) can be found in [9]. The idea is the following: suppose
first that dimX = dim(f*(0)). We can view Y locally as R x RP and f :

R* x RP — RP as the usual projection.

We can also consider locally, g(X) and g'(X) as the graphs of the maps
¢ : R* — RPand ¢' : R* — RP respectively. (Observe that for this particular
case we have X = f~1(0) = R*). Now, we know from the hypothesis that
¢ ~x ¢'. Hence any diffeomorphism £ € R(RF x RP) taking ¢ to ¢' will carry
g(X) onto ¢'(X) and leave f~*(0) invariant. Therefore, for the equidimensional
case we have proven that (f 0 g)e ~x (f 0 ¢')o implies g- ~x, g5 . It also
follows from this, that by taking h = (¢')"* 0 £o g and k = f o £, we can obtain

a diagram for the K-equivalence.

The case dimX # dimf~!(0) reduces to the equidimensional one by con-
sidering a suspension of the smaller dimensional manifold. Montaldi [9] proves

that the contact class is invariant by suspension.

ii) It follows from the compactness of X and standard arguments of partitions

of unity. O

Consider the map
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f:C2(X,)Y) — C=(X,2)
g — fog
T L o oyilies il
f«(G4-orbit of g) C G-orbit of fog .
On the other hand from Lemma 2 it follows:
a) f7! (A*-orbit of f 0g) C Ag-orbit of g .
b) -t (C-orbit of Fog)C Cpombitolg .

Definitions. We say that g is G;-stable if the Gs-orbit of g is open in C°(X,Y).
We say that ¢ € C=(X, Z) is G-stable if the G-orbit of ¢ 1s open in C=(X, Z).

Theorem 1 Let f € Subm™(Y,Z), then given any g € Emb™(X,Y), g is
Gg-stable <> f o g is G-stable.

Proof. Consider the continuous map
T IMX)Y) — LJEX, 2)
rJ*h(z) — 5 (foh)(z) ,

where ¢ = (z;, — ,z,) € X(") (see [5] for notation). The assumption that f is
a submersion ensures that ,I"’} is also a submersion, hence transversal to all the
+G*-invariant submanifolds of ,J*(X, Z), Vk, Vr. Then, we have that given any
+G*-invariant submanifold W of ,J*(X, Z) :

J*(fog) MW = 5% T (T5) (W) .

Suppose that g is Gs-stable and let ¢ = fo g. Let W, C ,J*(X, Z) be the
+G*-orbit of ,j*¢(z). Then we know from Lemma 1 that (,I'%)~!(W,) must
contain the ,Gj-orbit, ,0% of ,j*g(z). Now,
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Li*g M LQF = j*g W ([%) " (We) = T oj*g M We, ¥r, Vk .

Hence ¢ is G-stable (see [6]).

Conversely, let ¢ be G-stable. Then there is a neighbourhood Ny of ¢ in
C*(X, Z) contained in the G-orbit of ¢ . Let g’ be an embedding sufficiently
close to g , such that fog' € Ny .

Now, N4 may be taken small enough such that f 0g' ~g ¢ where the diffeo-
morphism in the G-equivalence is sufficiently close to the identity. Consequently,
from Lemma 2 if follows that g’ ~g, g and hence g is Gy-stable.

Observe that for G = K we consider Z = RP. Also notice that in this case
the proof may be simplified by just considering transversality of jets instead of
multijets. Moreover Va, ' & (f 0 g)7*(0), 5*(f o g)(z) and 3*(f 0 g')(=') are in
the same K-orbit. O

Remark. When G = A, it is possible to give a more direct proof for the neces-
sary condition in Theorem 1, which is valid for all g € C*=(X,Y). In fact, let ¢
= fogand f.: C®(X,Y) — C=(X, Z), f.(g) = fog. Being f a submersion,
f. is open; hence, given ¢' sufficiently close to ¢, there exists g' close to g such
that ¢' = fog'. The rest of the argument follows easily from the Gy stability of
g. Indeed , we think that the first proof presented above is more coherent with
the purposes of ‘this paper. Moreover, for G = K it is not clear how to obtain a
simpler proof as in the case G = A.

The sufficient implication in Theorem 1 may not remain true under the
weaker hypothesis on the stability either of g or f. In fact, let us consider the
following situations:

(a) g : R? — R2?, g(z,y) = (:z:.,y3 + zy), and f : RZ — R the projection
on the second factor;

(b) g: R — R2,g(t) = (t,0), and f: R? — R2, f(z,y) = (=, ¥?).

In both cases f o g is A-stable, but g is not G- stable.
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2.2 Fixing the 1* map in the diagram
We now fix g € C=(X,Y). We also consider here two cases:
a) G = A, then we define

G, = {(&,k) € G(Y, 2) : g(X)) = 9(X) }

b) G = K, then we put
G, = {(¢, H) € G(Y,R) : £(g(X)) = 9(X) } ,

where each (£, H) corresponds to a diagram
Y 5 YxRr L Y
t] i le
Y —Lv YxRF ™ Y
and the map ¢ is the inclusion ¢(y) = (y,0).
Lemma 3 Given a 1:1 immersion g from X to Y and

i) G = A(X, Z), then

fr~g, f'=>fogr~g flog, Vf, f€eC™(Y,2) .

i) G =K(X,Z2), Z=RP, then

fr~g, f'=>fogr~g fog, Vf, f € C*(Y,R).

Proof.

ii) If G = K(X,RP) and f ~g, f'. This implies of (¢, H) € K(Y,R?), with
£(9(X)) = g(X) making commutative the diagram

Y S pane My oy

L £ I le

y S wmame 2,
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and we define b : X — X by h(z) = (g7 ofog)(z). Clearly h is a diffeomorphism
and the pair (h, H), where H = (g xid)o Ho(gxid), H = H lo(x)xRe defines
the required K-equivalence between f o g and f' o g.

Analogous arguments adapted to G = A(X, Z) prove part 7). O

As in 2.1, we need additional conditions to obtain the inverse implication of

Lemma 3:

Lemma 4 Let g be a fized 1 : 1 tmmersion from X to Y. Then the following
holds

) fG = A(X,Z): fog~g flog = f ~g, f' Vf,f' € Subm™(Y, 2),

close enough;
i) fG=K(X,2), Z=Rr,

a) (fog)e ~k (f 0 9)er = fofe) ~g, foery » VS, f' € Subm™(Y,RP) .

b) (fog) ~c (flog) = f ~c, ', Vf, f sufficiently close submersions
fromY to RP. Here Cy is the obvious subgroup of K, .

Proof.

i) Let G = A(X, Z) and G* as previously defined. If f o g ~g. f' 0 g this

means that there is a commutative diagram

x & 7w Lz
hl Lk
X 2 1 0z

with A € R(X) and k € R(Z) lying in the component of 1;. Then provided
that f and f' are close enough submersions we can assert that ko f and f'
are right equivalent. That is, 3¢ € R(Y) such that ko f = f' o £, where this
£ can be taken in the component of the identity. Now, (¢, k) is not necessarily
an element of G, for it is not clear that £(g(X)) = g(X). We shall hence find
another diffeomorphism £ : Y — Y satisfying:
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L. £(49(X)) = 9(X) ;

2. { carries the fibres of f' into the fibres of f' ;ie. 3k': Z — Z diffeomor-
phism, such that (£, k') € Iso(f’) .

First observe that f'ofog ~g. f'og, for 1z0(f'ofog) = (fog)oh,
with (h,1z) € G*. So from, Lemma 2 we conclude that £0 g ~g, g. That is,
3(h',€') € Gy, such that £ o (Lo g) = go k', with £' € Iso(f'); so there is a
diffeomorphism k' € R(Z) satisfying k' o f' = f' o £'.

Hence the pair (£ 04, k'ok) is in Gy and (k'ok)o f = f'o(£'0f). Consequently
f~g, f.

ii) a) Follows from the main result in [9]. Observe that this proof becomes
analogous to that of Lemma 2 b) i) by interchanging the roles of the 1 : 1
immersion g and the submersion f .

b) This proof is also similar to that of Lemma 2 b) ii) in which we
interchange f~1(0) with g(X) and g'(X) with (f')~'(0). O

Remark. The corresponding result for X, in above lemma can be obtained
with the additional hypothesis that the diffecomorphism h in the source of the
K-equivalence between f o g and f' o g be close to the identity.

In a similar way to Section 2.1 we may consider here a map
g :C=2(Y,Z) — C=(X,2)

f +— fog
which is continuous, for X is compact (see [5, pg.49]).
Then from Lemma 3 we deduce that g* carries G,-orbits into G-orbits. So

the inverse image of a G-orbit through (g*)~! must be a union of G,-orbits.

Again the map f is said to be G,-stable if its G,-orbit is open in C*(Y, Z).
Theorem 2 Let g € Emb™(X,Y), then

f is G,-stable <= fo g is G-stable , Vf € Subm™(Y, Z) .
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Proof. Denote by J;(X)(Y, Z) the subset of k-jets of maps from Y to Z with
source in g(X) C Y. Analogously ,.J:(x) represents the multijets of such maps

with sources in (g(X))") C Y(). We can define continuous maps

,I‘: ',-J:(X)(Y,Z) —_— ,.Jk(X,Z)

(*h(), —,3* k() — (R0 9)(g7'®)), — ,5*(hr 0 9)(g7' (%))
Vk, Vr > 1 .It can be seen that they are submersions.
Let us suppose that f is G,-stable, then given any y € Y if we denote
w = ,j*f(y) and W, is the ,G*-orbit of w in ,J*(Y,Z), k > 1,7 > 1 we can

write
L F M, W, *)

where ,j*f : Y(*) — . J¥(Y, Z) is the multijet extension map of f .

Let ¢ = f o g and 0, be the ,G*-orbit of ¢ = ,j*¢(z) with z = g~*(y), for
some y € (9(X))™) C Y. In order to prove that ¢ is G-stable it is enough to
see that ,j*¢M, Q, , forany z € X, Vk , Vr>1, (see[6]).

Observe that we can write ,j%¢ as the composition
PRI . rifl gl
w346 X0 5 (9(X)) IS L Tjx(Y, 2) B L IM(X, 2)

where the vertical bar on the right of a map denotes the appropriate restriction
of the considered map. _

Notice that ,J:(x)(Y, Z) is a union of ,g:-orbits. In fact the orbits of g;
coincide with the G*-orbits outside from J:(x)(Y, Z) and, on the other hand a
k-jet with source in g(X) cannot be g:-equivalent to another k-jet with source
off g(X) .

Now, from (*) we have that
Ty oi* f(Teg (T X)) + TWo = T, T x)(Y, 2) .

where z = (¢") " }(y) .

And by applying T, ,.I‘: on both sides we get
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To' v YTXX) + T WL TuWa) = To "X, 5} .

From Lemma 3 it follows that ,F:(Ww) C Q, and hence we have

To vi* $(TuX)+ 10, =T - J% X, 2),

ie. ,j%¢ M, Q,, as we wanted to show.

Conversely, suppose that ¢ = f o g is G-stable. This means that the G-orbit
of ¢ contains some ope.n neighbourhood Ny of ¢ . Let f’ be in a sufficiently
small neighbourhood V; of f such that f’ is a submersion too and f'og € Ny.
Then f'o g ~g ¢. In fact we can take V} small enough such that f' o g ~g. ¢.
Then from Lemma 4 we can conclude that f' ~g, f. Hence Vj is contained
in the Gg-orbit of f and therefore this is an open Gg-orbit. Consequently f is
G,-stable.

As in Thm. 1 we must remark that, for the case G = (X, R?), this proof

can be simplified by just considering jet extensions instead of multijets. O
Corollary 1 Given f € Subm®(Y,Z) and g € Emb™(X,Y),
f is Gg-stable <= g is G;-stable.

Proof. It follows immediately from Thms. 1 and 2. O

Following J.P. Dufour [4] we define a diagram X %Y 4, Z to be stable iff
there exists a neighbourhood N of (g, f) in £ = C®(X,Y) x C>®(Y, Z) such
that for any (¢',f') € N, 3(h,{,k) € Diff(X) x Diff(Y) x Diff(Z) making

commutative the diagram

¥ Ly L 3z
hl lte Lk (%)
x & v 4Ly g

Corollary 2 Given f € Subm®(Y,Z) and g € Emb™(X,Y),
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the diagram X Y 4, 7 is stable <> fog is A-stable.

Proof. For the necessity, we shall show that the stability of the above diagram
is equivalent to the A, stability of f and then from Thm.2 if follows that fog
must be A-stable.

If X % Y 2 Z is stable, then we can find a neighbourhood N of (9,f)
in L, satisfying the requirement of the above definition. Observe that we can
take N to be of the form N, x N; , with N, a neighbourhood of g in C>(X,Y)
and N; a neighbourhood of f in C*(Y, Z). Now the commutativity of diagram
(**) means that g’ = Logoh™ and f'=kofo £'. But this implies that
flog=ko(fog)oh™?, thatis ffog'~a fog.

With this we have proven that Vf' € Ny, f' ~a, f and hence that fis
Ajg-stable.

Let’s see the sufficiency. Suppose that fogis A-stable. From Thm.1 we know
that g is Ajs-stable and hence there is a neighbourhood V; of g in C=(X,Y)
such that Vg' € V, : g’ ~4, g. In other words, we must have a commutative
diagram

x Ly L

Rl Lt Lk with h € Diff(X), £ € Diff(Y) and k € Diff(Z).
¥ 2 v L7

Now, given g’ € V,, we must have that g’ is an embedding and it is also
Aj-stable. Hence from Corollary 1 it follows that f is Ay-stable. Therefore we
can find a neighbourhood V; of f in C*(Y, Z) such that Vf' € Vj, I ~a, f

i.e., there is a commutative diagram:

x Ly Loz
hll l[l lkr
x Ly L2

and from both diagrams we get

Xy s
h'oh | Lot L rok

el s 7
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which implies that X & Y £ 7 s equivalent in the sense of Dufour [4] to
X%y y Y(g', f') € Vg x V;. The stability of the diagram then follows. O

3 Versality of families of composed maps

We shall study in this section families of compositions of the two following kinds:
a) XxU -y Lz Heo=(X xU,Y), f € Subm™(Y, 2) ;

and

b) XxU Wy xv Lz helmm™(X,Y), FeO=YxU,2Z), U

being a parameter manifold in both cases and 1y the identity map on U.
For case a) we have the following results:

al) If f is a fixed submersion and H varies among the C®-families of immer-

sions from X to Y, then
H is Gy-versal <= f o H is G-versal.

a2) If H is a fixed C*-family of immersions and dim U is small enough (e-g.
dimU < 6for Z = Rand G = A ) then 3 residual subset F of
Subm®(Y, Z) such that Vf € F, the family f o H is G-versal.

And the following holds for case b):

bl) If h is a fixed immersion and F' varies among the C*-families of submer-

sions from Y to Z, then
F is Gp-versal <= F o (h X 1y) is G-versal.

b2) If F is a fixed C*°-family of submersions from ¥ to Z and dim U is small
enough, then 3 residual subset H C Imm™(X,Y) such that Vh € H, the
family F o (h x 1y) is G-versal.
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Remark. Actually just results al) and bl) will be treated from our group
actions viewpoint. Nevertheless, we have included a2) and b2) in order to ex-
hibit a more complete picture of the possibilities that arise with these kinds
of compositions. We give below the proofs of al), a2) and bl). A proof
of b2) for G = K was first given in (J. Montaldi [8]) and for G = A in
(G. Wassermann [11]). In a recent paper Montaldi [10] proved b2) under the
hypothesis that the fixed family F is G-versal, for a large class of groups G,
including G = A and K. The dual result of this extension of b2) would corre-
spond to an extension of a2) for the case of a fixed versal family H. This seems
to be true, but the methods used by Montaldi apparently do not apply in this

case.

al) Let f be a fixed submersion from Y to Z and consider the compositions
. xxvLyLz.
We denote,
ke X xU — JKX, Z)
() — §*u(z)
and
FH X xU — JHX,Y)
(z,u) +— j*Hu(z)
Note. When G = K it would be enough to ask f to be a submersion at f~(0).
Proposition 1 Given any (G*-invariant) submanifold S of J*(X, Z) the sub-

set {HeC®(XxUY):jk® M S} isresidual in C°(X x U,Y) with the
Whitney C>™-topology.

Proof. As in Theorem 1, Section 2, the mapping
I"} (JMX,Y) — JMX, 2)

i*h(z) — §*(foh)(z)
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is a submersion, Vk, and Q = (I"})_I(S) is a Gy-invariant submanifold of
J*(X,Y). Now,

FHMOQ < ThojtH M S

<~ oM S (for It o 4fH = j1@) .

And the required result follows immediately from the following version of the
Thom’s transversality Theorem whose proof can be found in (Bruce [2]): Let Q
be a submanifold of the jet space J*(X,Y’). There is a residual subset of smooth
maps H € C®(X x U,Y) such that the jet extension j*H : X xU — J*(X,Y)

is transverse to ). O

Corollary 3 Let f: Y — Z be a fized submersion. Then, for any C*®-family

of immerstons H from X to Y we have
fo H is a G-versal family <= H is a G;-versal family.

Proof. It follows easily from Proposition 1 above together with Lemma 2 in
Section 2 and the characterization of versality in terms of transversality to the

orbits of the corresponding group actions. O

Remarks. Observe that in general given a G*-orbit S in J*(X, Z), the sub-
manifold (I'%)~!(S) may contain more than one G;-orbit. So when we consider
H:X xU —Y as a C®-family of maps (not necessarily immersions) from X
to Y, we can only say that, when the dimension of the parameter manifold U is
small enough (see [11] for an analysis of the relevance of this dimension), there
is a residual subset of families H € C*(X x U,Y) such that f o H is G-versal.

Notice that when G = K the relevant orbits are those in J}’_,(o)(Y,Z), for
the complement of this subset in J¥(Y, Z) is a unique K-orbit.

a2) Let H € C=(X x U,Y) be a fixed family of immersions from X to Y.

Proposition 2 Given any (G*-invariant) submanifold W of J*(X, Z), the
subset Rw = {f € C(Y,Z) : j*® M W}; with & as above, is residual in
C>(Y, Z) with the Whitney C*™-topology.
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Proof. Let’s define for each u € U a map
% : I (Y, 2) — JMX,2)
j*h(Hu(a)) +— j*(ho Hu)(a) .

Notice that these must be submersions Yu, for all the maps H, are immer-
sions (see proof of Theorem 2 in Section 2).

And hence we can define a map from the disjoint union | |,cv J}}‘( X)(Y, Z)
to J¥(X, Z), as

Fk . I—IuEU ‘]I’}“(X)(Y’Z) — Jk(X, Z)

F*h(Hu(a)) +— j*(ho Hu)(a) ,

which is also a submersion.

Observe that | yecv J,'}‘(X)(Y,Z) is a submanifold of J*(Y,Z) x U which
is stratified by the pull-backs of the G-orbits in J*(X,Z) by the submersions
Fu,,uvelU.

Now, the jet extension map j¥@ is also given by the composition

i*f ILﬂu(x)

8 X x U Uer Hu(X) Uueo Thuin(Y: 2) — JH(X, 2)

(z)u) —  Hu(2) — P*f(Hu(z)) > §*(foHu)()-

Then given a G*-invariant submanifold W in J k(X,Z), the pull-back
(I"‘)_I(W) is a submanifold of | |,cp j;‘[‘(x)(Y, Z). In fact it is a union of pull-
backs of W by the maps T'. It is also a submanifold of JMY, Z)x U,

We can use at this point the following variation of the Thom'’s transversality

theorem as given in [2]: If C is a submanifold of J*(Y, Z) x U, then the subset
Tc = {f (S CM(Y,Z) $ (]kf X lu) m C}

is residual in C*(Y, Z) with the C*-Whitney topology.

Now a similar argument to the one used along the proof of Theorem 2 in
Section 2 shows that Vf € T¢, j*(foH) M W . And the required result follows
from the fact that T¢ C Rw. O



STABILITY AND GENERICITY OF 49

bl) Let h be a fixed immersion 1 : 1 from X to Y. If F € C*(Y x U, Z) is
a family of submersions from Y to Z with parameters in U, we denote their

composition by
:XxUWyxv -5 z.

. The jet extensions of the families F' and ® will be respectively written as
JEF and jr® .

Proposition 3 With h, F and & as above and for any G*-invariant submani-
fold S of §*(X,Z) we have that the subset {FeC®(YxU2):j*@ M S}is
residual in C°(Y x U, Z) with the Whitney C>-topology.

Proof. The proof is similar to the proof of Theorem 2, in Section 2, and we

omit it. O

Corollary 4 Let h be a fized injective tmmersion from X to Y. Then for any

smooth family of submersions F' fromY to Z we have.
Fo(h x 1y) is G-versal <= F 1s Gy-versal .

Proof. It follows as a consequence of Proposition 3 above, Lemma 4 in Section 2,
and the characterization of versality of families in terms of transversality to the

orbits of the considered group actions. O

Comments.

1. J.W. Bruce obtains in [2] a result which is similar, in some sense to our
Proposition 1in Section 3. The difference resides in the fact that we study
here not only the finite-singularity-type but the versality of the composi-
tion. On the other hand we restrict our attention to smooth families H
of immersions, whereas Bruce’s result holds for arbitrary smooth families

of maps.

As a consequence of a2) we have that Yu € U the local submanifolds

H,(X) are weakly transversal in Bruce’s sense to f~(z), Vz € Z , for all
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submersion f € F. Then all of the Bruce’s considerations in [2, pg.116]

apply. As a particular case we may consider the following
s'xrr Lpd LR

to conclude that, given any p-parameter family H of curves in R3(p < 6),
there exists a residual subset  in Subm®(R3, R) such that all the surfaces
f7Y(t), t € R , are tangent to each curve of the family at most at a finite

set of points.

2. An extensive geometrical study of the implications of resul b2) for G = K

in low dimensions can be found in [8].
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