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COBORDISM AND SINGULARITIES

Oskar Burlet

Cobordism groups have been invented by René Thom in the early fifties
to solve in particular the problem of representability of homology classes in
manifolds. R. Thom [1]

But the methods, introduced a little bit earlier by Pontrijagin in a special
case, proved to be powerful in several other situations.

In the present case we look at embeddings and immersions of closed n-
dimensional manifolds into euclidean space IR™*; k is called the codimension
of the embedding.

There are different equivalence relations among embeddings which have been

considered.

Isotopy: Two embeddings (V, fo) and (V, fi) of V into IR™* are isotopic if
there exists a differentiable family of embeddings f; : V — R, ¢ e [0,1] ,

connecting fo to fi.

Regular Homotopy: Similar to the preceding one, regular homotopy is an equiv-
alence relation among immersions. The family f, : V — IR™**,t € [0,1], has to

be a differentiable family of immersions connecting fo to fi.

Observe that in these equivalence relations the source manifold V' remains

fixed. This will not be the case for cobordism.

Cobordism: Two embeddings (immersions) (Vb, fo) and (V3, f1) are cobordant if
there exists a compact manifold W with boundary W = V, I V4, the disjoint

union of V, and V4 , and a relative embedding (immersion).

(W,8V) -1 (R™* x I, R™* x 8I), where I=[0,1],
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such that
F1Vo = fo: Vo — IR™* x (0) = R™*

and
fIVi=fi: i — R** x (1) = R"*,
Notice that f : W — IR™* x I has to meet the boundary transversally
and OW = f~1(R™** x 8I).
(W, f) is called a cobordism between (Vp, fo) and (V4, f1).

or example if V =V, = V; and fo is isotopic to f; , (Vo, fo) and (W4, fi1)
ai: cobordant. A cobordism is given by W =V x I and f: W — IR™* x I
such that f(z,t) = (fi(z),t) where f; , t € I , is an isotopy joining fo to f; .

Hence cobordism is an equivalence relation among embeddings, cruder than
isotopy and in which the source manifold may change.

An equivalence class is called a cobordism class. Let us denote by Emb¥ the
set of cobordism classes of embeddings of closed n-dimensional manifolds into
IR™**. Similarly Imm* denotes the set of cobordism classes of immersions of
closed n-dimensional manifolds into IR™**,

To study cobordism classes we need only consider embeddings up to isotopy
and immersions up to regular homotopy. Therefore disjoint union defines an
abelian group structure on Emb* and Imm*.

In fact if [V, f],[V’, f'] € Emb} we can assume, up to isotopy, that f(V) C
{z1 < 0} and f/(V') C {21 > 0}. Then [V, f]+[V', f] & [VIIV', f1I f]. Where
“II” denotes disjoint union. The neutral element will be [4,1], ¢ é IR™**, The
inverse of [V, f] is given by [V, o f] where o is a reflection in a hyperplane not
meeting f(V).

In the same way we can define an abelian group structure on Imm*.R. Wells [2]

While groups of isotopy classes and regular homotopy classes are rather
difficult to deal with, cobordism groups turn out to be easier to handle. In
fact the Thom-Pontrijagin construction identifies Emb* with m,,x(MO(k)) and
Imm¥ with 72, (MO(k)) where MO(k) is the Thom space of the universal O(k)

vector bundle and 7! denotes stable homotopy in dimension x .
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Recall that if £ is a vector bundle over a space X , with orthogonal structure,
we may consider BE(£) the set of elements of length less or equal to one in the
total space E(&) of the bundle £. The boundary SE(§) of BE(() is the set of
elements of length one in E(£). It is called the associated sphere bundle. The
Thom space of £ is defined to be M(¢) = BE(é)/SE(f) ;

If ¢ is a differentiable vector bundle M(¢) will be a manifold except at the
base point SE/gp and it will contain X as a submanifold with normal bundle
£.

The universal O(k) bundle is just the canonical vector bundle on the Grass-
mannian BO(k, N) of k-dimensional subspaces of IRY , N large. We denote this
bundle by A. Its fiber over P € BO(k, N) is the vector space P, a subspace of
IRY. Let us write BO(k) instead of BO(k, N) and MO(k) instead of M(Ax).

There is a natural mapping
Tnsk MO(k) — Embk

which sends [¢p] € mnieMO(k) to the cobordism class of the submanfolds
¢~ (BO(k)) C S™tk.

Here ¢ : (S™*, %) — (MO(k),*) is chosen to be a representative of [p]
transverse to BO(k) C MO(k). The map mn4rMO(k) — EmbF is a homo-
morphism and its inverse is given by the Thom-Pontrijagin construction [1].
Hence

Tnsk MO(k) = Emb¥ .

It turns out that the most interesting applications concern often embeddings
with some special structure in the normal bundle. For example an orientation
or a complex structure. This means that the structure group of the normal
bundle is reduced to a closed subgroup G of O(k). Equivalently the classifying
map of the normal bundle — denoted by v or vy — has a well defined lift, up
to homotopy, into BG the classifying space for G bundles.

In this case the corresponding cobordism group is denoted by Embf(G) and
the Thom-Pontrijagin construction identifies it to m,1x MG where MG is the

Thom space of the universal G-vector bundle.
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Examples:

1. The cobordism group of embeddings with a trivialization of the normal
bundle, so called framed embeddings, is identified with m,(S*). Pontri-
jagin [3]

2. The cobordism group of embeddings of closed n-dimensional manifolds V
in R™*** | with a normal {-frame is identified with mpyks(S¢A MO(k)).

Smale-Hirsch theory shows that regular homotopy classes of immersions in
codimension k+£ with a normal ¢-frame are the same as regular homotopy
classes of immersions in codimension k, k > 1. But if
k+£ > n+2 any immersion of V in codimension k is regularly homotopic

to an embedding in codimension k + £ with a normal £-frame.

Moreover if two embeddings in codimension k + £, with normal ¢-frame,
are cobordant as immersions with normal ¢-frame they are also cobordant

as embeddings with normal /-frame.
Hence
Imm:'l = 7r,,+k+g(Sl ANMO(k)), k+£>n+2.
But the last group is just stable homotopy of MO(k) in dimension n + k.
That is Imm} = =2, , MO(k).

The mapping Emb} — Imm* which considers an embedding as an im-

mersion can be identified with the suspension homomorphism

Tk (MO(k)) = 74, (MO(E)) .

The same construction holds for cobordisms with structure a general

closed subgroup G C O(k).

3. This example will give a link of these groups to singularity theory.

Let W™ be an affine complex variety in €*** with isolated singularity at
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a point p.

=

G2n+k)-1

The intersection of W with the boundary of a small ball centered at p
will be a closed submanifold V C S¥™**)-1 with a U(k) structure in the
normal bundle. V is called the link of the singularity. The corresponding

cobordism class is a well defined element in my(nx)-1 MU (k).

A necessary condition for the smoothability of the singularity is that the
link should be cobordant to 0. Smoothable means that there is an alge-
braic flat one parameter family W; of affine complex varieties, ¢ varying

in a neighborhood of 0 € €, such that Wy = W and W, is smooth if ¢ # 0.

For example W = {( Fadiaiia ) € C° | rank (1:1 oy ) Sl} :
Y1 Y2 Y3 Y1 Y2 Ys

W is of complex codimension 2 in €° and 0 € €° is an isolated singular

point.

The link V of W is a 7-dimensional submanifold of S'! with complex
structure in the normal bundle. Its cobordism class is an element of
w11 MU(2) which turns out to be non zero. This has been proved first by
R. Thom.

In the unstable case, where m > 4k — 1, the homotopy groups m,, MU(k) are
difficult to compute (E. Thomas & E. Rees [4]). But the ranks of these groups,
or more precisely the groups 7, MU (k) ® @, obtained by tensoring m,, MU(k)
with the rational numbers, are easily determined (O. Burlet [5]).

Their direct sum, as Lie algebra, with brackets the Whitehead product, is an
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extension of ) by a free Lie algebra on infinitely many generators. Hence there
are lots of non zero elements, even rationally. But in any case there remains the
problem of finding invariants which give a way to test if a given element is non
zero. Such invariants have been defined for links of affine varieties W which are
cones over projective varieties. But not all elements in the cobordism group are
represented by such varieties.

For instance m MU(2) ® @ is isomorphic to @ but no non zero element is
representable by the link of the cone on a projective variety (H. Shiga [6]).

We will now indicate how one can define another type of invariants, than
those of Thom, for testing elements in m,12e MU (k).

Recall that the cohomology ring H*(BU(k); Z) is the polynomial algebra
Zlcy,...,ck) on the Chern classes ¢; € H*(BU(k);Z), i = 1,2---k, of the
bundle A.

Let a = (a1,...,ak-1) and B = (B1,...,Bk-1) be multi-indices and
E=c gt B 5! the corresponding monomials in the Chern
classes. Write |a| = 2a; + 40 + -+ + 2(k — 1)atg_1.

Then ¢* € H'®/(BU(k); Z) and there is a map ¢, unique up to homotopy,
from BU(k) into the Eilenberg-MacLane space K(Z, |k|) such that ¢}(L) = ¢*,
L € H®I(K(Z,|a|); Z) beeing the fundamental class of K(Z, |a|). We note K;
the space K(Z, |a).

In the same way c® corresponds to a map
va : BUK) — K(Z,18]) = K .

For any integer N and some integerm we have the following diagram, com-

mutative up to homotopy:

BUMRY; — % . g = (K1 V K)V

Byt By e e rpynean T (K1 x Ky
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In this diagram E.s -2+ K; x K, is the principal fibration associated to the
cohomology class Ly x L, € HI*HPI( K, x K,; Z), where L, is the fundamental
class of K¢, £ = 1,2. The map pqg is the product mapping ¢q X g and BU(k)as
is the fiber product of ¢, and p. The map m denotes multiplication by the
integer m on each component K; of K; x K,. Notice that all space involved
can be realized as simplicial complexes and XV denotes the N skeleton of the
simplicial complex X.

Now except the cohomology class Ly x L, the map K; V K, — K; x K, has
only torsion k-invariants. Hence for some integer m, depending on N, there will
be a map m lifting m.p restricted to Eivﬁ The maps p and @,g are canonically
defined by the fiber product.

Up to (n + 1)-homotopy type BU(k)as and K; V K, are manifolds, even a
connected sum in the case of K; V K,.

Let Emb,U(k)as denote the group of cobordism classes of embeddings of
closed n-manifolds in IR™*?* with complex structure in the normal bundle and
a lifting of the classifying map into BU(k)ags.

Let A;” be the bundle induced from A, by the fibration

BU(k)ap — BU(k) and MU(k)ss its Thom space.
Then by the Thom-Pontrijagin construction
Emb,.U(k)aﬂ o] 7r,,+szU(k)a5 .

Moreover by a result of Thom [1] there exists an integer £ > 0 such that the
cohomology classes £L; and £L, are dual to submanifolds in K; and K, hence
to disjoint submanifolds in K; V K.

Making i1+ @ag transverse to these submanifolds, by a homotopy, and taking
their preimages, we have two disjoint submanifolds Vi, 7 = 1,2, in BU(k)ap
which are dual respectively to m - £5*c* and m - £5*cP.

Hence for [V, f] € Emb,U(k)as we have the following situation:
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BU(k)apg D V4, V2 disjoint submanifolds
of codimension |a| and
|3| respectively.

4

1% 4 BU(k)

Here 7 is the classifying map for the normal bundle to the embedding f :
V — §ntik

We may assume © transverse to V4 and V3.

It follows that 5~1(V;) & C, and 71 (V3) % Cjy are disjoint submanifolds
of V dual to fmc™ and ¢mcP respectively.

Observe that the fiber of § is an Eilenberg-MacLane space K(Z, |a|+|8] —1)
and the only obstruction for lifting a map ¢ : V — BU(k) to BU(k)qg is the

cohomology class ¢*(c*+P).

Remark: From the construction it is clear that if [Vo, fo] = [V1, f1] in Emb,U(k)aps
and if (W, f) is a cobordism joining (Va, fo) to (V4, f1) with the required restric-
tions on the normal bundle, the disjoint submanifolds CJ,Cg for (Vo, fo) and
C},C} for (4, f1) are cobordant CF ~ C; and Cj ~ Cj by disjoint cobordisms
embedded in W. The image of these cobordisms by f will give disjoint chains
in §™*?* x I whose boundaries are respectively C2 I C} and Cg II Cj.

For [V, f] € Emb,U(k)ap define Log(V, f) € Z to be the linking number of
f(C.) and f(Cg) in S™*+2*,

Proposition: L.s(V,f) depends only on the cobordism class of (V,f) in
Emb,U(k)ap and the map Emb,U(k)ap 2o, 7 is.a homomorphism into Z.

Observe that Lsg can be non zero only if
n—|a|+n—|8l=n+2k—1, thatis n—2k+1=]|a|+]B].

The proof of the proposition relies on the definition of the linking number

as intersection number of chains which bound f(C.) and f(Cp) in D™+2*+1,
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By the remark above this intersection number will not change if we modify
(V, f) by a cobordism alowed for Emb,U(k)qg.

N
@y

Example: Consider mappings f : $® — MU(3) and g : S'® — MU(3) such
that f*(Uc,) and g*(Uc;) are non zero. Here U € H8(MU(3); Z) denotes the

Thom class of the canonical bundle over BU(3).

To f corresponds a submanifold V; of dimension 2 in D® with normal Chern
class ¢; # 0. Similarly there corresponds to g a submanifold V, of dimension 4
in D' with normal Chern class c; # 0.

Then V = V; x S°II S x V, will be a manifold of dimension 11 and
F :V — S'7 defined as the mapping 4, x id Il id x 1, from V; x S°I1 S7 x V; to
D® x 52U 57 x D' = §(D® x D'°) = S*7, will be an embedding. Here i;,1, are
the inclusions of Vj, V; into the interior of D® and D' respectively.

By construction Lag(V, F) is defined if a = (1,0) and 8 = (0,1) and more-
over Log(V, F) # 0.

Notice that if [V, f] € 7,12 MU(k) is an element such that in V' the class

v*c®*P is zero then [V, f] is in the image of the natural homomorphism
h . 7rn+2kMU(k)aB = 7!'n+szU(k)

induced by p : BU(k)ag — BU(k), see page 7.

Theorem: The kernel of the homomorphism

h . 7l’n+2kMU(k)aﬂ — 7|'"+2kMU(k)
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is a finite abelian group.

Proof. Since (Kerh) ® Q = Ker(h ®id) and kerh is finite abelian if (Kerh) ®
Q =0, if will be sufficent to show that

h ® id : 1r,,+2;,MU(k)a5 ® Q —F 7l',|+2kMU(k) ® Q .
is injective.

The fiber K(Z,|a| + |8] — 1) of BU(k)ap -2, BU(k) is a rational ho-
motopy sphere Sl2l*1A1=1 and the Gysin sequence of the fibration shows that
p* : H*(BU(k); Q) — H*(BU(k)ag; Q) is surjective with kernel the ideal gen-
erated by c**#. Indeed, H*(BU(k); Q) is a polynomial algebra.

As in [5] we have the following commutative diagram, where the lines are

exact.

0 — W*(VSQ') ® Q ianlie W*MU(k)aﬁ ® Q —— Q — 0

o' €A

0 — m(VS)®Q — mMUK)®Q — Q — 0

a0

Here o' is a multi index (af,...,0_,), A' = {a' | ¢’ is not divisible by
P } and S, is a sphere of dimension |&/|.

The vertical arrow on the left is injective because V' | Sar 1s a retract of
V Sa. wed

a' #0
By the five Lemma the middle vertical arrow is also injective. O

Corollary: If [V, f] € mn12eMU(k) is in the image of the homomorphism
Tnt2kMU(k)ap — Tniae MU(k) — that is if the classifying map of the normal
bundle of a representative, (V, f), lifts to BU(k)ag — then L(V, f) is defined
and if it’s non zero we have [V, f] # 0.
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Example: Let W™ C C™** be a complex affine variety with isolated singular
point at 0 € C"*.

Assume that W admits a desingularization W — W of 0 € W with residue
variety Z = 7~1(0) of dim¢ Z < n — k. Recall that by definition =/W — Z is
a homeomorphism onto W — (0). Then we can show that the classifying map

lfor the normal bundle of its link V C S*"+k)-1 lifts to BU(k)ss whenever
|a| + |8] > 2(n — k). To see this consider the classifying map ¥ for the stable
normal bundle of W, say v : W — BU(k+m). Because W —Z is homeomorphic
to W —(0), 7 | W — Z is homotopic to o-v | W — (0) where v is the classifying
map for the normal bundle of W — (0) C €"* and o : BU(k) — BU(k+m) is
the suspension induced by the natural inclusion of U(k) into U(k + m).

By restriction to a sufficently small neighborhood of 0 in €*** we can assume
that Z is a deformation retract of W. That means that for any map % :
BU(k + m) — K; x K,, the map 9 - ¥ lifts to Eug if |a| + B8] > 2(n — k)
just because all obstructions vanish trivially. Moreover this lift is unique up to
homotopy.

Take ¢ : BU(k + m) — K; X K, such that ¢ - 0 = pas. This is always
possible because the first k¥ Chern classes correspond under the homomorphism
induced by the suspension o : BU(k) — BU(k +m). Then ¢ - ¥ is homotopic
to Y -ov = pap . Henceif ¢ - U lifts to E,p the same holds for g - v. But this
is equivalent to a lifting of v into BU(k)ag. It follows that for V C S2+k)=1 the
invariant Lag(V,1) is well defined. As before V is the link of the singulalrity.

Let us look at the example of the Segre cone.

W = Ty T3 T3 €(U6|rank Ty Tz T3 <1
Y1 Y2 Y3 ViY2Y )
dim¢ W = 4, and W has an isolated singularity at 0 € s,
We describe a desingularization as follows:

W = E3X the total space of the vector bundle which is the sum of three

copies of the canonical line bundle A on the complex projective line IP*.
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w
[

E3\ —B . EAXEAXEA —— @xCxC

| |

P! P! x IP! x IP!

3) is induced from the vector bundle EX x EX x EX — IP! x IP! x P! by the
diagonal map A(z) = (z,z,z). By definition EA = {(:c,v) eP!'xC*|ve X}.
Therefore we have a canonical projection of EX onto €? which is a homeo-
morphism of the complement of the zero section onto € — (0).
We define the mapping EX x EX x EA — €% x €* x €? as the product
of three times this projection. Its composition with Ais a map 7: W — C°

whose image is W. More precisely
W= {([:c,y],ul,vl,uz,vz,ua,vs) EP' xC®|yvi=xy i= 1,2,3}

Uy Uz Uz
V1 V2 U3

) . Observe that 7=}(0) = IP! and

and ([z,y],uv1,v1,...,Uu3,v3) = (
outside of IP! 7 is a homeomorphism.

So in this case the residue variety is IP! = Z. Take a = (1), 8 = (1)
then we have |a| + |8| = 4. But n — k = 2, hence |a| + |8] > 2(n — k) and
dim¢ Z =1 < n — k. The invariant Log is well defined. From TW ~ TIP! @ 3\
we find easily that the first Chern class of the stable normal bundle of W is
c}(7) = 5t where t € H%(IP!; Z) is the orientation class of IP'. It is dual to a
point in IP!,

This implies that c'(¥) is dual to 5 fibers of W — IP! or equivalently to 5
fibers in the associated sphere bundle S3). But m: S3X — V C S*! describes
exactly the embedding of the link of W. Any two fibers of S 3] are 5-dimensional
spheres whose images by m are linked in S''. In fact these images bound 6-
dimensional discs in D'? which intersect exactly in the point 0 € D'? C C°.

Moreover the intersection is transverse because they are the graphs of two linear
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z

v
and ¢/ =| 0
0

O Owjn o

o

o o

maps of the type £ = with % i—:. Here 2

L8

O Owin
Cwin o
¢l O O

and :—: correspond to the points in IP! on which th bers are considered. Hence
the intersection number is +1.

More generally consider r + s distinct fibers of $3\ — IP! and chose the
union of 7 of them to be the manifold C: and the union of the remaining ones
to be C;. Then the linking number of 7(C1) and m(C;) in S is s - 7.

In our example the disjoint manifolds we have to consider are dual to some
positive multiple of ¢;(v). That is they consist in bunches of fibers. It follows
that the linking number of their images in 5! is non zero and therefore [V,i]is
non zero in my; MU(2).

It would be interesting to find examples of isolated singular points of varieties
which are not of the type of the cone on a projective variety and whose link is

non cobordant to zero.
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