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DIFFERENTIAL FORMS AND VECTOR FIELDS
WITH A MANIFOLD OF SINGULAR POINTS.

M. Zhitomiriskii*®

Vector fields vanishing at each point of a submanifold form a codim oo set in
the space of all vector fields on a manifold. Nevertheless, these vector fields
appear typically in various problems, especially those related to singularities of
differential forms. We give a few examples in Sections 1-4.

It is well known that a germ of a vector field at a singular isolated point is
not stable with respect to the C'-equivalence. Let \7;" be the space of vector
fields on R™ vanishing on some (non-fixed) codimension k submanifold. Are
there stable germs in 17: (of course, if to consider only perturbations in V* in
the definition of the stability)? The answer (surprisable from the first point of
view) is yes: for certain conditions on (n, k) a generic germ of a vector field of
V* is stable. We study stability and give normal forms in Sections 5-6 (Section
6 is devoted to the case k = 1 which leads to the classification of pairs of a
vector field and a hypersurface). In Section 7 we give some open questions.

All objects considered below are assumed to be of class C™ unless it is

explicitly mentioned otherwise.

1. Vector fields with a manifold of singular points related

to typical singularities of closed differential 2-forms (see
[M,R,AG,GT])

Let p be a generic differential 2-form on a manifold M of dimension 2k. Near a
generic point a € M the 2-form g defines a symplectic structure since p*|, # 0.

The degeneration p*|, = 0 holds on a hypersurface S C M (S might be also a
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stratified codim 1 submanifold). At a generic point a € S the kernel Kerp|, is 2-
dimensional, and the intersection of Kerp|, and T,S defines a direction in T, S.
Therefore, we have a field of directions on S. This field of directions is singular
at points B € S such that Keru|s C TS, or, equivalently (u*~!|s)|s = 0. The
points 8 with this property form a codim 2 submanifold S; C S. One can define
a smooth field of directions in a neighbourhood of a point of S; coinciding with
Kerp|a N ToS at a generic point a. To define such a field of directions take a

volume form 6 on S and introduce a vector field v on S by a relation
6(”) Yl) ey Y2k—2) = /"k_l(yla ceny Y2k—2)y

where Y;, ..., Y33 are arbitrary vector fields on S. It is clear that the vector
field v vanishes at every point of S;, and that its direction at every point a ¢ S;
coincides with the intersection of Kerp|, and T,S. So, v generates a field of
directions on S, and has a codim 2 manifold of singular points. The field of
directions generated by v is an invariant of the singularity (the field v depends
on the choice of §, the field of directions does not).

2. Vector fields with a manifold of singular points related
to typical singularities of Pfaffian equations on an odd-

dimensional manifold (see [M,Z1,22])

The following example can be considered as the odd-dimensional analogus of
the previous one. We consider singularities of Pfaffian equations, i.e. differential
1-forms defined up to the multiplication by a non-vanishing function.

Let w be a generic differential 1-form on a manifold M of dimension 2k + 1.
Near a generic point a € M, w defines a contact structure since w(dw)*| # 0.
The degeneration w(dw)* = 0 holds on a hypersurface S C M (S might be
also a stratified codim 1 submanifold). At a generic point a € S the kernel
Ker w(dw)*~! is 2-dimensional, and the intersection of K er w(dw)*!|, and TS
defines a direction in T,S. Therefore, we have a field of directions on S. This

field of directions is singular at points § € S such that Ker w(dw)*!|s C TpS
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or, equivalently, (w(dw)*~*|s)|s = 0. The points 8 with this property form a
codim 2 submanifold S; C S. One can define a smooth field of directions in a

neighbourhood of a point of Sy coinciding with Ker w(dw)**|,

NT,S at generic
points a € S. To define such a field of directions take a volume form 6 on S

and introduce a vector field v on S by a relation
6(”) },l) saey YZk—l) = (w(dw)k_l)ls(]/la ooy Yik—l))

where Y3, ..., Yar_1 are arbitrary vector fields on S. It is clear that the vector
field v vanishes at every point of S;, and that its direction at every point a ¢ S,
coincides with the intersection of Ker w(dw)* !|, and T,S. So, v generates a
field of directions on S and has a codim 2 manifold of singular points. The field
of directions generated by v is an invariant of the singularity of the Pfaffian
equation w = 0 (the field v depends on the choice of §, the field of directions

does not).

3. Vector fields with a manifold of singular points related
to typical singularities of Pfaffian equations on an even-

dimensional manifold (see [M,21,23))

Given a generic differential 1-form w on a manifold M of dimension 2k, introduce

a vector field v satisfying the following equation
5(0, Yiy s Yobor) = 0(do)* (Vi o Yoos).

Here, § is a volume form on M, and Yj, ..., Y31 are arbitrary vector fields on
M. The field of directions generated by v is invariantly related to the Pfaffian
equation w = 0. It is singular at points where v vanishes, i.e. at points a
such that w(dw)*~!|, = 0. These points form a codim 3 (maybe stratified)

submanifold (this is a non-trivial fact, see [M]).
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4. Vector fields with a manifold of singular points related
to Pfaffian systems

A field of directions on a manifold M of dimension n can be given as the
intersection of the kernels of n — 1 differential 1-forms wy,...,wp_3. So, every
Pfafian system w; = ... = w,_; = 0 defines a field of directions on M. This
field is generated by a vector field v given by the equation

6(1), }’1, aeey K:—l) = wlwg...w,,_l(Yl, veny Yn—l),

where § is a fixed volume form on M. The field v vanishes at the points

where the 1-forms wy, ...,w,_1 are dependent, these points form a codimension

2 submanifold.

5. Stable germs of vector fields with a codim > 2 mani-
fold of singular points

The vector fields defined in Sectioﬁs 1-4 are not invariantly related to the sin-
gularities of differential forms, they depend on the choice of the volume form
8. On the other hand, generated by them fields of directions do not depend
on the choice of §, they are the invariants of the singularities. This means
that an interesting question is the classification of fields of directions generated
by vector fields with a manifold of singular points, or eqﬁivalently, the orbital

classification of vanishing on a submanifold vector fields.

Definition. Two germs of vector fields v; and v, are said to be C" orbitally
equivalent (r < oo) if there exists a local diffeomorphism @ of the class C"
and a non-vanishing function germ H of the same smoothness class such that
®.v; = Hv,. Two germs are called almost C* orbitally equivalent if they are

CT orbitally equivalent for any r < co.

The basic definition in any classification problem is that of stability. Local
stability means that the local structure does not change under a small pertur-

bation of a globally defined object (it is a local property). Defining stability
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one has to fix a class of all possible perturbations. We are interested in the
stability within the class of vector fields vanishing on some submanifold (the
submanifold is not fixed, but its codimension is).

Let V* be the space of vector fields on R vanishing on some codim k&
submanifold of R*, n > 2. By V* we denote the space of germs at singular

points of vector fields of %

Definition. A germ v € V* of a vector field V € VEF is called C"-stable in
V¥ if for any neighbourhood U of the source point of the germ there exists a
neighbourhood UofV such that for any vector field V] € Un 17,{' there exists
a point of the neighbourhood U such that the germ of V; at this point is c*
orbitally.equivalent to the germ v. A germ is called almost C* stable in Vk if

it is C" stable in V* for any r < oo.

Note. From now we will use the notion of stability meaning stability in V%,

and the notion of equivalence meaning the orbital equivalence.
Theorem 1. If k > 21 then none of germs of V¥ is almost C™ stable.

Theorem 2. If2 < k < % then a generic germ of V* is almost C* stable
and almost C™ equivalent to one and only one of the germs

7] 0 0
(A + 'yl)zléz_l + oo (k=1 + yk—l)zk—léz_k_—l‘ + -’Dka—z;- (1)

Here z,..., 2% and 9y, ..., Yn_k are the coordinates on R" (the coordinates
z are transversal to the manifold of singular points {z; = ... = z = 0}, the
parameters )y, ..., \g_; are the moduli of normal form (1)). It is interesting
that the moduli do not prevent stability, we shall explain this in the proof of
Theorem 2. The genericness conditions in Theorem 2 are as follows.

Let v € V* be the germ of a vector field V € \_/,:‘ at a singular point 0 € R".
Let S be the set of singular points of V, S be the germ of this set at the origin.

At every singular point a € S the spectrum of the V’s linearization contains
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n— k zero eigenvalues (corresponding to the directions tangent to 5). Denote by

Ai(@), ..., Ae(a) the others k eigenvalues. Let A;j = A;(0). The first genericness

condition is that these eigenvalues are'different and form a non-resonant tuple,

i.e. for any integer non-negative numbers my, ..., my such that m; +...4+my > 2
and every j =1,..., k

Aj Fmad; + ..+ ms. (2)

Condition (2) implies that A;(0) # 0,i =1, ..., k. Multiplying v by a nonva-

nishing function we can make Ai(a) be equal to 1. Then the function germ

fo: 5> Rkul,fﬂ(a) = (/\1(0), "'1’\l¢-1(a)) (3)

is an invariant of the field of directions generated by v. The second genericness

condition in Theorem 2 is that the origin is a non-singular point of f,, i.e.

rankf)(0) =k —1. (4)

Theorem 3. A germ of V* is C* stable if the etgenvalues Ay,..., A, form a
non-resonant tuple and lie on one side of a straight line passing through the
origin of the complez plane (i.e. the tuple of the eigenvalues belongs to the

Poincaré domain, see [Al]).

In the proofs of the theorems we follow the notations given after the formu-

lation of Theorem 2.

Proof of Theorem 1: The function f, maps the (n— k)—dimensional manifold
Sto R*1 Ifk > 24l thenn—k < k—1, and fv is not stable with respect to the
R-equivalence (see [AVG], moreover, the image of £, is a functional modulus).
The germ f, is invariantly related to v (i.e., if v; is equivalent to v, then fo, 18
R-equivalent to f,,), and Theorem 1 follows.

Sketch of the proof of Theorem 2: Let S = {z; = ... = z; = 0}, and

Y1, ..., Yk be the coordinates on S. Consider v of the form

v= Za‘,,(y z,— + Zb.x(y z. g+ elll=ll). (5)
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It follows from the genericness conditions that a coordinate transformation
z - T(y)z, y >y + B(y)=

with a suitable non-degenerated k x k matrix T(y) and a suitable (n — k) x k
matrix B(y) reduces (5) to the form

& 0
v=2 (h+ hi(¥))eig- + olll=[]), (6)

i=1
where h;(0) = 0. Multiplying v by a function we can reduce A; to 1 and hi(y)
to 0. Condition (4) allows to change the coordinates y (y — ®(y)) to reduce
hi(y) toyi, t =1,...,k — 1. After this

k-1 8
v =Y + Wiz -+ ofllal). ™

i=1
Arguing as in the proof of the Poincare-Dulak theorem (see [AI]) and using

condition (2) one can prove that for given arbitrary p < oo there exists a

transformation of the form

P
z -+ E valy)z®,

|a|=2
P
y—oy+ Z ¢a(y)zai (8)
|la|=2
bringing (7) to the form
k-1 8
v= 30+ wne + o l=|P) ©
i=1 L

The condition A; # 0, i = 1,..., k (following from (2)) implies the hyperbol-
icity of v on S and a possibility to “kill” the terms o(||z||P) by a change of the
coordinates of the class C", where r depends on p and r — oo as p — oo (we use
results by G.Belitskii, see [Z1,Ch.2,Section 8, B1,B2], see also [H]). Therefore
(7) is almost C* egivalent to (1).

It remains to prove that germ (1) is almost C* stable. Let V be a vector

field of 17,:' with the germ v at the origin. Take a small perturbation V] € \7:
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of V. Let §; be the manifold of singular points of V;. It follows from (4) that
there exists a point a € 5; close to the origin 0 € S such that fui(a) = fr,(0).
Then, as we have proved the germ of Vi at a is reducible to (1), the stability

follows.

Sketch of the proof of Theorem 3. We follow the proof of Theorem 2, but

instead of transformations (8) we use transformations of the form

z—>z+ E valy)z®,

|o|=2

gyt S BB (10)

|la|=2
Using the condition that the tuple (Ay, ..., Ax) lies in the Poincare domain, and
arguing as in the proof of the Poincare-Dulac theorem one can prove that a
suitable transformation of form (10) with functions ¢a(y), ¥a(y) defined in a'

common neighbourhood of the origin brings germ (7) to the form

k-1 a 1
v=> (A4 yi)zig—+7(z,9), (11)
i=1 1

where 7 is a flat on S germ, i.e., all the coefficients of the vector field = vanish on
S along with all their derivatives. Now, the hyperbolicity of v .on S implies the
reducibility of (11) to (1) by a C™ transformation (we use results by G.Belitskii,
see [Z1,Ch.2,Section 8, B1,B2], see also [H]).

6. Stable germs of vector fields with a hypersurface of
singular points

The orbital classification of vector fields of V,! reduces to the classification of
pairs consisting of a vector field and a hypersurface (every v € V! has the
form fv,, where v; is a new vector field, and f is a function germ). The

degeneration v;(0) = 0, f(0) = 0 has codimension n + 1, so it is not typical.
8

For typical singularities v,(0) # 0, and we may assume that v; = 52 Where
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z € R, y € R*! is a suitable C* coordinate system. Now the classification
problem reduces to the classification of functions f : R* — R with respect
to transformations preserving the field of directions generated by b%' Such
transformations have the form

z — &(z,y),y — ¥(z,9).

Consider at first transformations of the form
z — &(z,y).

We may consider y as a tuple of parameters, then the problem is to find a versal
unfolding of a function f in one variable z. This is a well-known problem (see
[AVG]), and the answer is

f=2"+4ay(y) + az(y)z + ... + ap_1(y)zP?

for the degeneration of codimension p

o =Zo=..=T0-0 (12)

For typical singularities p < n, therefore a typical singularity has a normal form
0
v= (2 + ai(y) + a2(y)z + ... + a,_l(y)z"‘z)gg. (13)

Degeneration (12) has codimension p, and the degeneration

8(ay, ..., ap-1)

12) 4+ k
( ) ( ran a(yly"'ryﬂ—l

<p-1)

has codimension p+ (n — p+ 1) = n + 1, therefore for typical singularities with
degeneration (12)

6((11, '"7al7—1)
rank ———~ =p—1.
a(yh"'vyﬂ—l) 7
This condition allows us to reduce (13) to
a
v=(zP+y +y,z+...+yp_1:c"‘z)£ (14)

by a transformation y — ¥(y).
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We have proved the following

Theorem 4. A generic vector field V. € 17,‘1 ts locally equivalent to a normal
form (14). Any stable germ v € V! is C* equivalent to one and only one of

germs (14).

T. Comments and open questions

1) Classification of singularities of closed differential 2-forms on M?* gee in
[M,R,AG].

2) Classification of singularities of differential 1-forms and Pfaffian equations
see in [M,Z1,72,Z3). ,

3) The fact that the vector fields defined in Sections 1-3 have a manifold of
singular points is not their only specific. It is easy to see that the sum of the
eigenvalues of these vector fields at every singular point is 0. f a singular point
was isolated then this would not mean that a vector field with this property is
divergence-free. The vector fields considered in Sectians 1-3 are divergence-free
(see [R,Z1]). Classification and stable normal forms of vector fields vanishing
on a codim 2 or 3 submanifolds and having the zero sum of the eigenvalues at
every singular point (see in [M,R] (codim = 2) and in [Z1] (codim = 2,3)).

4) Is it true that the fields of directlions defined in Sections 1-4 are the only
invariants of the corresponding singularities? For degenerations of small codi-
mension it is true (see [Z1]).

5) We do not know how to describe all the fields of directions which can be
obtained by the constructions of Sections 1-4 (they have the mentioned specific,
but they might have an extra specific).

6) It seems to be true that if 2 < k < “4L then a germ v € V* is almost C*
stable if and only if conditions (2) and (4) hold true (if some of the eigenvalues
are equal then normal form differs slightly from (1)), but this has not been
proved.

7) If not all of the eigenvalues )y, ..., A are real, then normal form (1) holds in
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special complex coordinates.

8) What are the normal forms of resonant germs of V¥, 2 <k < ™1 7

9) It seems to be true that one can change “if” by “if and only if” in the for-
mulation of Theorem 3.

10) Degeneration (12) with p = 2 (resp. p=3) corresponds to the fold (resp.
cusp).singularity of mappings (R",0) — (R",0). More deep degenerations
(p > 4) correspond to the generalized Whitney singularities, see [AVG]. A
generic germ of V! reduces to (13) with p = 1, i.e., to the normal form zZ, the

genericness condition is.the transversality of the hypersurface of singular points

and the field v;.
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