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SUBMERSIONS, MAPS OF CONSTANT RANK,
SUBMERSIONS WITH FOLDS, AND IMMERSIONS

Vera L. Carrara Zanetic

1. Introduction

The aim of these notes is to give global characterizations of maps of constant
rank and submersions with definite folds by means of their Stein factorizations.
We also stablish a relation between the problem of existence of these maps
and the problem of extensions of immersions. A theorem on the existence of
submersions with definite folds is proved.

Let M and N be connected differentiable manifolds of dimensions m and
n. Assume that M is closed and m # n. Let f : M — N be differ-

entiable. The Stein factorization of f is given by the commutative diagram

M
ql <‘ where W is the quotient space of M by the equivalence relation
w 5N,

that identifies to a point each connected component of each fiber of f, q is the
quotient projection map onto W and g is the induced map from W to N.

As an example, let N be R and let f : M — R be a Morse function. Then
W is the Reeb graph of f.

Let f be a submersion. Then the local form of f as a projection is known.
Its Stein factorization provides a global characterization of f as the composite
of the projection of a bundle with connected fiber with a covering map.

When f is a map of constant rank k, 0 < k < m,n, its local form is also
known. f is locally the composite of a projection with an embedding. In
this case, the Stein factorization of f also gives a global version of this local

characterization of f.
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Let now f be a submersion with definite folds. Then f is a quotient of a
submersion h : E — N, where E is an m-manifold with boundary §F and the
restriction h |pg has rank n — 1. There are several recent results in the study of
submersions with folds (1], [3], [4], [6]. We also prove a result in this direction.

The author would like to express her sincere gratitude to O. Saeki for many
important suggestions. She is also thankful to the referee for his helpful com-

ments.

2. Maps of constant rank

Let f : M — N be a submersion. Then m > n, f is onto N and N must
also be closed. In this case g is a local homeomorphism; thus, W is a closed
n-manifold with the differentiable structure induced by g. It follows that g is
an immersion. As dim N = dim W and g is onto then g is a covering map.
Also g is a submersion. It follows that M —% W is a differentiable bundle with
connected fiber. Converrsely, if M - W is a bundle with connected fiber and
W £ N is a differentiable covering map then f = g o ¢ is a submersion.

We have many non-trivial examples. When N is simply-connected gis a
diffeomorphism. Take N = S*. Then there is an $7-bundle over S* that is not
orthogonal (7]. If N = S then W is diffeomorphic to S! and g : W — S! is
an r-fold covering, where 7 = number of connected components of a fiber of I
In this case the bundles over S* are determined by wo(Diff F'), where F is the
typical fiber of the bundle M - W. We have for example the non-orthogonal
S°-bundle over S! obtained from S x [0, 1] under identification of S8 x {0} with
§° x {1} by a diffeomorphism not isotopic to an orthogonal one [2].

Now let f : M — N be of constant rank k, 0 < k < m,n. In this case,
f(M) is locally given by submanifolds of dimension k of N. Thus g:W—N
is locally given by topological embeddings with submanifolds as images. We
can give a differentiable structure to W so that it becomes a smooth manifold
and that g becomes an immersion. Since W is compact, it becomes a closed

k-dimensional manifold. Here also M -2 W is a differentiable bundle with
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connected fiber. Thus we have proved the following proposition.

Proposition Let f : M — N have constant rankk, 0 < k < m,n. Then W is
a closed k-manifold, M -2 W is a bundle with connected fiber andg : W — N
s an immersion, where f = g o q is the Stein factorization of f. The converse

is also true.

3. Submersions with folds

Let f : M — N be a submersion with definite folds (m > n). This means that
all the singularities of f are definite fold points. At those points f is locally given
byyi==z;,i=1,...,n—1, yo = 22 +---+2z2 . Let S denote the singular set of
f. This is an (n—1)-submanifold of M. In this case, g |qar—s,): (M —So) — N
is a local homeomorphism. It follows from this and from the normal forms of f
at fold points that W is an n-manifold with boundary W diffeomorphic to So
and that g : W — N is an immersion. We also have that g |s_s, is a proper
submersion. Thus q |pr—s,: M — So — W — W is a bundle map. This bundle
extends to a bundle E £ W where E is a manifold with boudary 8E. That
follows from the behavior of the bundle on a collar neighbourhood of OW. We
also have a projection map j : E — M such that p = go j. Now it follows
from the normal forms of f at points of Sy that the fiber of those bundles is
diffeomorphic to S™ ™. Let C = ¢(0W x [0,1]) be a collar neighbourhood of
OW in W, where ¢ : OW x [0,1) — W is a diffeomorphism into W. Then, if
C is sufficiently small, p; oc ' o q: ¢7}(C) — W is a D™ "*+!.bundle, where
p1: OW x [0,1] — OW is the projection to the first factor. The structure
group of this bundle can be reduced to the orthogonal group (see [6]). This
implies that OF P8 5 is an orthogonal bundle.

There are many recent results on the study of manifolds which admit sub-
mersions with folds into R™. We present here a contribution.

Let f : M™! —SR™ be a submersion with folds such that M is closed
and n > 6. Assume that Sp is the disjoint union of two simply connected

components S; and S,. Also assume that a closed tubular neighbourhood N of
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51 with boundary AN is such that (M — So, ON) = 0.

Theorem. Under the above conditions M is a differentiable S*-bundle over
Sy '

Proof: The boundary W of W is the union of two components ;W = ¢(5;)
and 0,W = ¢(S;). Fori=1,2let ¢; : ;W x [0,6) — W be a diffecomorphism
into W such that C; = ¢;(8;W x[0,¢/2]) is a closed collar neighbourhood of 8;W
in W. Then N; = q%(C;) is a tubular neighbourhood of S; in M. It follows
that m, (M — S, ON;) = 0. We may assume that C;NCy = 0. Thereis a strong
deformation retraction from M — S, onto the closure Ey of M — (N1 U N,).
Thus we have m,(Eo, ON;) = 0. Set Wy, = closure of W — (C1 U C,). Then
Eo L3 Wo is a fibration that maps AN onto ¢,(8,W x {e/2}). It follows
that m,(Wo, c1(8;W x {e/2})) = 0. From the collar neighbourhoods we get a
diffecomorphism between W and W,. This implies (W, ;W) = 0. Now for
i=1,2, 6;W is diffeomorphic to S;. Thus & W and 8,W are simply connected.
It follows from the condition (W, 01W) = 0, together with the fact that 8, W
is simply connected, that W is also simply connected. As n > 6 we have from
the h-cobordism theorem that W is diffeomorphic to 8, W x [0,1]. We may
now assume that W = 6,W x [0,1]. The composite map p; 0 q: M —s 8,W
is a submersion, where p, : W — 8, W is the projection to the first factor.
This follows from the normal forms of f on Sy. This means that M %% ow
is a differentiable bundle. Now for any z € ;W y Qz=(prog) M z)is a
differentiable 2-manifold. If p, : ;W x [0,1] — [0,1] denotes the projection
to the second factor then p; 0 ¢ |g.: Q. — (0,1] is a Morse function with two
critical points. This implies that Q, is diffeomorphic to S?. This completes the

proof.

The S2-bundle M — S, in the theorem must be orthogonal. Indeed its
structure group can be reduced to O(2) (C O(3)). In fact, there is a bundle map
from the bundle E - 8,W x[0,1] to 8, E x [0,1] (pla’E)xm"mv 0:Wx[0,1], that
covers the identity on ;W x (0,1], where 8,F = p “1(O1W). We view E as E,,
for simplicity of notation. Recall that p;oq: N; —s 8, W x {i—1} are orthogonal
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D?-bundles, for i = 1,2 , where p; : ,W x [0,1] — W x {i — 1} are the
obvious projections. Then there are bundle maps h : dN; —s 6, E x {0} and
h': 0N, — O, E x {1}, that cover the respective identities on the base spaces,
such that M is diffeomorphic to Ny U, (8,E X [0, 1])Up N,. The structure group
of E is reduced to O(2), since every smooth S'-bundle is orthogonal. Thus the
structure group of 8, E x [0,1] — 6;W x [0,1] is also reduced to O(2). Since
any diffecomorphism of N, on itself, which is a bundle map, is isotopic to an
orthogonal bundle map, the structure group of the D2-bundle (8, E x [0, 1])Un N
can also be reduced to O(2). From the orthogonal structure on this last bundle
we get a bundle map k : N; — & E x {0}. Now, k™Yo h : N, — ON; is
isotopic to an orthogonal bundle map. It then follows that the structure group
of M — 8, W can also be reduced to 0(2).

Now j : E — M identifies to a point in Sy each fiber over a point of
OW. This fiber is diffeomorphic to §*. Thus the diffeomorphism of E that
corresponds to the map (y,t) — (y,1 —t) on 6,E x [0, 1] induces a homeo-
morphism of M that interchanges S; and S,. This implies that (M, S;) and
(M, S;) are homeomorphic.

Let n = 6 and S; = S° Then M is an S%-bundle over S°. Its structure
group is reduced to O(2). Since every principal O(2)-bundle over §° is trivial,
this bundle is also trivial. Thus M must be diffeomorphic to S® x S2. The knots
S% > S C M and S§° - S, C M are then equivalent in the sense that there is
a homeomorphism of M that maps S; onto S, [5]. Indeed they are the sections
of §% x §2 — S® given by south pole and north pole of S2.

4. Immersions

In all previous cases of maps f : M — N immersions g : W — N are
involved. We may ask several questions about extensions. For example, let
Sy and S; be (n — 1)-manifolds and let immersions g1: S —R™and g, :
53 —R™ as well as disjoint embeddings 7, : §; — M™ and iy : S, —

Mm™*! be given. We may ask if there is a submersion with definite folds )
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M™1 —R™ such that So = 1,(S1) Ui2(S2) and g1 = foiy, g2 = foiz. The
answer is negative in general. If n = 6, S; = S, = S°® and 1,(S5)) satisfies the
conditions of the theorem in section 3 then M must be diffeomorphic to S® x S2.
On the other hand, there must be an immersion g : S® x [0,1] —IR® such
that g |ssx{oy= g1 and g |ssx{1}= g2. This is not always true. As an example,
let g; and g, be embeddings with images given by disjoint spheres with disjoint

interiors. Then such an extension g : S® x [0,1] —IR® does not exist.
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