A family of vector bundles on \mathbb{P}^{3} of homological dimension 2 and $\chi(\operatorname{End} E)=1$

Sérgio Mendes ${ }^{(D)}$, Rosa M. Miró-Roig(D), Helena Soares ${ }^{(D)}$

Abstract

For any odd integer $\gamma \leq-5$, we construct a family of rank 3 vector bundles $\left\{E_{\gamma}\right\}$ on \mathbb{P}^{3} with minimal linear resolution $0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2)^{\frac{3 \gamma^{2}+8 \gamma-3}{8}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\frac{3 \gamma^{2}+2 \gamma-17}{4}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\frac{3 \gamma^{2}-4 \gamma-7}{8}} \rightarrow E_{\gamma} \rightarrow 0$.

 and satisfying $\chi\left(\right.$ End $\left.E_{\gamma}\right)=1$.
1 Introduction

Notation 1.1. If E is a vector bundle on \mathbb{P}^{n} we denote

$$
\mathrm{h}^{q}(E)=\operatorname{dim} \mathrm{H}^{q}(E)=\operatorname{dim} \mathrm{H}^{q}\left(\mathbb{P}^{n}, E\right) .
$$

The Euler characteristic of E is defined by the integer

$$
\chi(E)=\sum_{i=0}^{n}(-1)^{i} \mathrm{~h}^{i}(E) .
$$

2000 AMS Subject Classification: 22D25, 22D10, 46L80.
Key Words and Phrases: General linear group, tempered dual, base change, Ktheory.

Sérgio Mendes was partially supported by FCT through CMA-UBI (project UID/MAT/00212/2019). Rosa M. Miró-Roig was partially supported by MTM2016-78623-P. Helena Soares was partially supported by CIMA - Centro de Investigação em Matemática e Aplicações, Universidade de Évora, project UID/MAT/04674/2019 (Fundação para a Ciência e Tecnologia)

Recall furthermore that we have an isomorphism End $E \cong E^{\vee} \otimes E$.
If E is a vector bundle on \mathbb{P}^{n}, with $n \geq 2$, of homological dimension 1 and defined by a minimal linear resolution

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{b} \rightarrow E \rightarrow 0 \tag{1}
\end{equation*}
$$

then $\chi($ End $E)=a^{2}+b^{2}-(n+1) a b$ is the Euler characteristic of End E. It is well-known (see e.g. [6], Lemma 2.2.3) that $\chi(\operatorname{End} E)=1$ if and only if $(a, b)=\left(u_{k}, u_{k+1}\right)$, with $k \geq 1$, where $\left\{u_{k}\right\}_{k \geq 0}$ is the sequence defined recursively by

$$
\left\{\begin{array}{l}
u_{0}=0 \tag{2}\\
u_{1}=1 \\
u_{k+1}=(n+1) u_{k}-u_{k-1}
\end{array}\right.
$$

Moreover, for each pair of the form $(a, b)=\left(u_{k}, u_{k+1}\right)$, where $\left\{u_{k}\right\}_{k \geq 0}$ is as above, the existence of a vector bundle E defined by a resolution of type (1) and thus satisfying $\chi($ End $E)=1$ is guaranteed, for all $n \geq 2$ ([6], Theorem 2.2.7). It is worth recalling that one of the reasons for studying vector bundles satisfying $\chi(\operatorname{End} E)=1$ is that they provide good candidates for exceptional bundles, important objects when studying stability.

If we look at the case of homological dimension 2 or, more precisely, to vector bundles E defined by a minimal linear resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{c} \rightarrow E \rightarrow 0,
$$

with $n \geq 3$, then the Euler characteristic of $\operatorname{End} E$ is now given by the ternary quadratic form

$$
\chi(\operatorname{End} E)=a^{2}+b^{2}+c^{2}-(n+1) a b-(n+1) b c+\binom{n+2}{2} a c .
$$

Finding a general formula of all integer and positive solutions of the equation $\chi($ End $E)=1$ is much harder, so we will restrict to the case when $n=3$ and for which this equation becomes

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}-4 a b-4 b c+10 a c=1 \tag{3}
\end{equation*}
$$

Besides, we would also like to know which solutions (a, b, c) of (3) give rise to a vector bundle E of homological dimension 2 and linear resolution

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{c} \rightarrow E \rightarrow 0 \tag{4}
\end{equation*}
$$

In [5], Proposition 4.3, the authors already proved the existence of a certain family of vector bundles defined this way and satisfying $\chi($ End $E)=$ 1. We can restate the referred proposition as follows.

Proposition 1.2. There exists a vector bundle E of homological dimension 2 and linear resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{c} \rightarrow E \rightarrow 0,
$$

with $(a, b, c)=\left(u_{s}, u_{s+1}, 4 u_{s+1}-10 u_{s}\right)$, for each $s \geq 1$, where $\left\{u_{s}\right\}_{s \geq 1}$ is the sequence (2).

In particular, $\chi(\operatorname{End} E)=1$.
In this note we construct a new family of vector bundles with the required properties corresponding to 3 -uples (a, b, c) different from the one provided by the above proposition, that is coming from triples of the form $(a, b, c)=\left(u_{s}, u_{s+1}, 4 u_{s+1}-10 u_{s}\right)$.

This construction is described in the next section and inspired the authors for a more general result in a work in progress in [4].

2 A family of rank 3 bundles on \mathbb{P}^{3} of homological dimension 2 and $\chi($ End $E)=1$

Let E be a vector bundle on \mathbb{P}^{3} of homological dimension 2 and linear resolution

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{c} \rightarrow E \rightarrow 0 \tag{5}
\end{equation*}
$$

satisfying $\chi(\operatorname{End} E)=1$, that is, such that a, b and c satisfy

$$
a^{2}+b^{2}+c^{2}-4 a b-4 b c+10 a c=1
$$

So a, b and c are integer positive solutions of the Diophantine equation

$$
\begin{equation*}
X^{2}+Y^{2}+Z^{2}-4 X Y-4 Y Z+10 X Z=1 \tag{6}
\end{equation*}
$$

We would like to find for which solutions (a, b, c) of (6) there is a vector bundle E defined by a linear resolution of the form (5) with Betti numbers a, b and $c($ so that E will satisfy $\chi(\operatorname{End} E)=1)$.

According to [4], any solution (a, b, c) of (6) is a triple of integers of the form

$$
\begin{align*}
& a=\frac{\alpha^{2}+2 \gamma^{2}-2 \beta^{2}-4 \delta^{2}+2 \alpha \beta+4 \gamma \delta}{8} \\
& b=\frac{\alpha^{2}+2 \gamma^{2}-6 \beta^{2}-12 \delta^{2}}{4} \tag{7}\\
& c=\frac{\alpha^{2}+2 \gamma^{2}-2 \beta^{2}-4 \delta^{2}-2 \alpha \beta-4 \gamma \delta}{8}
\end{align*}
$$

for some $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$, with α even and $\alpha \delta-\beta \gamma= \pm 1$. In order to these integers to be the Betti numbers of E they furthermore must satisfy

$$
\left\{\begin{array}{l}
a>0 \Leftrightarrow(\alpha+\beta)^{2}+2(\gamma+\delta)^{2}>3\left(\beta^{2}+2 \delta^{2}\right) \tag{8}\\
a \leq b \Leftrightarrow(\alpha-\beta)^{2}+2(\gamma-\delta)^{2} \geq 11\left(\beta^{2}+2 \delta^{2}\right)
\end{array}\right.
$$

Note also that under this parameterisation we have

$$
\begin{equation*}
\mathrm{rk} E=a-b+c=\beta^{2}+2 \delta^{2} \tag{9}
\end{equation*}
$$

Recall (Proposition 4.3 in [5]) that the existence of such a family of vector bundles, $\left\{E_{s}\right\}_{s \geq 1}$, is proved in the case when (a, b, c) is a triple of the form $\left(u_{s}, u_{s+1}, 4 u_{s+1}-10 u_{s}\right)$, for $s \geq 1$, where $\left\{u_{s}\right\}_{s \geq 1}$ is the sequence (2). When $s=1$ we get $(a, b, c)=(1,4,6)$ and E is the rank 3 vector bundle on \mathbb{P}^{3} with minimal linear resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{4} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{6} \rightarrow E \rightarrow 0
$$

In fact, this is the only rank 3 case among the set of triples of this form. Using (7)-(9) we can easily deduce that this triple $(1,4,6)$ corresponds to

4 solutions of type $(\alpha, \beta, \gamma, \delta):(-4,1,-3,1),(-4,1,3,-1),(4,-1,-3,1)$ and $(4,-1,3,-1)$.

We will next see that the triple $(1,4,6)$ does not exhaust all rank 3 possible solutions. We will construct a family $\left\{E_{\gamma}\right\}_{\{\gamma \in \mathbb{Z}: \gamma \text { odd, } \gamma \leq-5\}}$ of rank 3 vector bundles with minimal linear resolution of type (5) and such that $\chi($ End $E)=1$.

Suppose first that a vector bundle E of rank 3 exists defined by a linear resolution of type (5). Since E is globally generated with $\mathrm{h}^{0}(E)=c$ and $3=\operatorname{rk} E \leq c$, we can take 2 general global sections of $E, \sigma_{1}, \sigma_{2} \in \mathrm{H}^{0}(E)$, and consider the curve $C=\left(\sigma_{1} \wedge \sigma_{2}\right)_{0}$ defined as the degeneracy locus in \mathbb{P}^{3} where σ_{1} and σ_{2} are linearly dependent. We thus have a short exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{2} \rightarrow E \rightarrow \mathcal{I}_{C}\left(c_{1}(E)\right) \rightarrow 0,
$$

where $c_{1}(E)=b-2 a$ denotes the first Chern class of E. Taking cohomology of this sequence we get

$$
0 \rightarrow \mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}^{2}\right) \cong \mathbb{C}^{2} \rightarrow \mathrm{H}^{0}(E) \cong \mathbb{C}^{c} \rightarrow \mathrm{H}^{0}\left(\mathcal{I}_{C}\left(c_{1}(E)\right)\right) \rightarrow 0,
$$

and so $\mathrm{H}^{0}\left(\mathcal{I}_{C}\left(c_{1}(E)\right)\right) \neq 0$. Hence C is contained in a surface of degree $c_{1}(E)$ and therefore, $c_{1}(E)=b-2 a>0$. We have just proved the following.

Proposition 2.1. If E is a rank 3 vector bundle on \mathbb{P}^{3} of homological dimension 2 and minimal linear resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{c} \rightarrow E \rightarrow 0,
$$

then it has positive first Chern class, i.e. $b-2 a>0$.
Therefore, our restrictions (8) above can be improved:

$$
\begin{cases}a>0 & \Leftrightarrow(\alpha+\beta)^{2}+2(\gamma+\delta)^{2}>3\left(\beta^{2}+2 \delta^{2}\right) \tag{10}\\ b-2 a>0 & \Leftrightarrow-\alpha \beta-2 \gamma \delta>2\left(\beta^{2}+2 \delta^{2}\right)\end{cases}
$$

Furthermore, from the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{2} \rightarrow E \rightarrow \mathcal{I}_{C}(b-2 a) \rightarrow 0
$$

where $C=\left(\sigma_{1} \wedge \sigma_{2}\right)_{0}$, we get a diagram

So, in order to reach our goal we will first prove the existence of a curve C in \mathbb{P}^{3} with a resolution of type

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{c-2} \rightarrow \mathcal{I}_{C}(b-2 a) \rightarrow 0
$$

We will then show that this implies the existence of a vector bundle E defined by (5) and satisfying $\chi($ End $E)=1$.

Given any positive integer p, denote

$$
D_{p}=\frac{p(p+1)}{2}
$$

and

$$
d_{p}= \begin{cases}\frac{p(p+2)}{4}, & \text { if } p \text { is even } \\ \frac{(p+1)^{2}}{4}, & \text { if } p \text { is odd }\end{cases}
$$

Proposition 2.2. Given an odd integer $\gamma \leq-5$, let

$$
p=-\frac{3 \gamma+7}{2} \text { and } s=\frac{3 \gamma^{2}+8 \gamma-3}{8} .
$$

Then, there is a smooth connected curve $C_{\gamma} \subset \mathbb{P}^{3}$ of degree

$$
\operatorname{deg}\left(C_{\gamma}\right)=\binom{p+1}{2}-s
$$

arithmetic genus

$$
p_{a}=\frac{(2 p+3)(p-1)(p-2)}{6}-s(p-1),
$$

of maximal rank and with a minimal resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2-p)^{s} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1-p)^{2 s+p} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-p)^{s+p+1} \rightarrow \mathcal{I}_{C_{\gamma}} \rightarrow 0
$$

Proof. Let $d=\binom{p+1}{2}-s$ and let us first prove that $d_{p} \leq d \leq D_{p}$. In fact, on the one hand

$$
d=\binom{p+1}{2}-s=\frac{(p+1) p}{2}-s \leq \frac{(p+1) p}{2}=D_{p}
$$

On the other hand, if p is even, we have

$$
\begin{aligned}
& d_{p}=\frac{p(p+2)}{4} \leq\binom{ p+1}{2}-s=d \\
\Leftrightarrow & \frac{p(p+2)}{4} \leq \frac{(p+1) p}{2}-s \\
\Leftrightarrow & 4 s \leq p^{2} \Leftrightarrow \gamma \leq-5
\end{aligned}
$$

If p is odd, we similarly obtain

$$
d_{p}=\frac{(p+1)^{2}}{4} \leq\binom{ p+1}{2}-s \Leftrightarrow 4 s \leq p^{2}-1 \Leftrightarrow \gamma \leq-7,
$$

and observe that when $\gamma=-5$, we get $p=4$ even. From our hypotheses on γ and p we may conclude that it also holds $d_{p} \leq d$.

Therefore, by Proposition 2.2 in [1], there exists a smooth connected curve C_{γ} of degree $d=\binom{p+1}{2}-s$ such that

$$
\mathrm{H}^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{\gamma}}(p-1)\right)=\mathrm{H}^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{\gamma}}(p-1)\right)=\mathrm{H}^{2}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{\gamma}}(p-1)\right)=0
$$

In addition, by Remark 2.6 and Corollary 2.4 in [1], this curve has maximal rank and arithmetic genus

$$
p_{a}=(p-1) d+1-\binom{p+2}{3}=\frac{(2 p+3)(p-1)(p-2)}{6}-s(p-1) .
$$

Now, we may apply Corollary 5.1 in [2] to conclude that this curve C_{γ} has a p-linear resolution, that is, the ideal sheaf \mathcal{I}_{C} has a p-linear resolution, and that this resolution is of the following type:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2-p)^{s} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1-p)^{2 s+p} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-p)^{s+p+1} \rightarrow \mathcal{I}_{C_{\gamma}} \rightarrow 0
$$

From now on we will concentrate on those solutions (a, b, c) of the diophantine equation (6) such that $\beta=\delta=1$ and $\alpha=\gamma+1$, with α an even integer (or equivalently, γ an odd integer).

After applying the required substitutions in (7), we get

$$
a=\frac{3 \gamma^{2}+8 \gamma-3}{8}, \quad b=\frac{3 \gamma^{2}+2 \gamma-17}{4}, \quad c=\frac{3 \gamma^{2}-4 \gamma-7}{8} .
$$

Moreover, the inequalities (10) become

$$
\begin{cases}a>0 & \Leftrightarrow \frac{3 \gamma^{2}+8 \gamma-3}{8}>0 \\ b-2 a>0 & \Leftrightarrow \frac{-3 \gamma-7}{2}>0\end{cases}
$$

and we get that γ is an odd integer less than or equal to $-5(\gamma \leq-5)$.
Observing that $b-2 a=\frac{-3 \gamma-7}{2}$ and $a=\frac{3 \gamma^{2}+8 \gamma-3}{8}$ are the integers p and s of Proposition 2.2, we know that there is a curve C_{γ} whose ideal sheaf has a linear resolution of the form

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2-p)^{s} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1-p)^{2 s+p} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-p)^{s+p+1} \rightarrow \mathcal{I}_{C_{\gamma}} \rightarrow 0
$$

or equivalently, of the form

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{a} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{b} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{b-a+1} \rightarrow \mathcal{I}_{C_{\gamma}}(b-2 a) \rightarrow 0
$$

Now, Proposition 5.2 in [3] guarantees that we can take a non-trivial element

$$
\begin{aligned}
& e_{\gamma} \in \operatorname{Ext}^{1}\left(\mathcal{I}_{C_{\gamma}}(b-2 a), \mathcal{O}_{\mathbb{P}^{3}}\right) \cong \mathrm{H}^{2}\left(\mathbb{P}^{3}, \mathcal{I}_{C_{\gamma}}(b-2 a-4)\right) \\
& \cong \mathrm{H}^{1}\left(C, \mathcal{O}_{C_{\gamma}}(b-2 a-4)\right) \cong \mathrm{H}^{0}\left(C, \omega_{C_{\gamma}}(4+2 a-b)\right),
\end{aligned}
$$

and so we have a diagram

Applying the covariant functor $\operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c},-\right)$ to the bottom row we get the short exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c}, \mathcal{O}_{\mathbb{P}^{3}}^{c-b+a-1}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c}, E_{\gamma}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c}, \mathcal{I}_{C_{\gamma}}(b-2 a)\right) \rightarrow 0
$$

Taking the morphism $\phi \in \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c}, \mathcal{I}_{C_{\gamma}}(b-2 a)\right)$ we may conclude that there is a non-trivial morphism $\varphi \in \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{3}}^{c}, E_{\gamma}\right)$ that allows us to
complete the above diagram to the following commutative diagram

where the middle column is a resolution of E_{γ}. So, the following theorem is proved.

Theorem 2.3. Let $\gamma \leq-5$ be any odd integer. Then, there is a rank 3 vector bundle E_{γ} of homological dimension 2 defined by a linear resolution of type

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2)^{\frac{3 \gamma^{2}+8 \gamma-3}{8}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\frac{3 \gamma^{2}+2 \gamma-17}{4}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\frac{3 \gamma^{2}-4 \gamma-7}{8}} \rightarrow E_{\gamma} \rightarrow 0
$$

and such that $\chi\left(\right.$ End $\left.E_{\gamma}\right)=1$.

References

[1] E. Ballico, G. Bolondi, Ph. Ellia, R. M. Miró-Roig, Curves of maximum genus in range A and stick-figures, Trans. Amer. Math. Soc. 349 (1997), 4589-4608.
[2] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133.
[3] R. Hartshorne, R. M. Miró-Roig, On the intersection of ACM curves in \mathbb{P}^{3}, J. Pure Appl. Algebra 219 (2015), 3195-3213.
[4] S. Mendes, R. M. Miró-Roig and H. Soares, Existence of bundles E on \mathbb{P}^{3} of homological dimension 2 and $\chi($ End $E)=1$, preprint (2019).
[5] R. M. Miró-Roig, H. Soares, Exceptional bundles of homological dimension k, Forum Math. 29 (2017), 701-715.
[6] H. Soares, Steiner vector bundles on algebraic varieties. Ph.D. thesis, University of Barcelona 2008.

Sérgio Mendes
ISCTE
Av. das Forças Armadas, 1649-026, Lisbon, Portugal
Email: sergio.mendes@iscte.pt

Rosa Maria Miró-Roig Gran Via de les Corts Catalanes, Barcelona, Spain Email: miro@ub.edu

Helena Soares
ISCTE
Av. das Forças Armadas, 1649-026, Lisbon, Portugal
Email: helena.soares@iscte.pt

