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Abstract

In this note, we survey some recent developments in birational ge-

ometry concerning the boundedness of algebraic varieties. We delin-

eate a strategy to extend some of these results to the case of general-

ized pairs, first introduced by Birkar and Zhang, when the associated

log canonical divisor is ample, and the volume is fixed. In this con-

text, we show a version of deformation invariance of plurigenera for

generalized pairs. We conclude by discussing an application to the

boundedness of varieties of Kodaira dimension κ(X) = dim(X)− 1.
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1 Introduction

Throughout this paper, we work over an algebraically closed field of

characteristic 0, for instance, the complex number field, C.

One of the main goals in algebraic geometry is to realize a sufficiently

synthetic albeit complete classification of projective varieties, that is, sub-

sets of projective space defined by the vanishing of finitely many homoge-

neous polynomials. To this end, there are two possible distinct approaches:

either by identifying two distinct varieties if they are isomorphic or by in-

troducing the notion of birational equivalence. Two algebraic varieties

are birationally equivalent (or simply, birational) when they both contain

isomorphic dense open sets. When algebraic varieties are birational, many

numerical and geometrical quantities that capture their structure are pre-

served. Hence, birational equivalence is a sufficiently coarse equivalence

relation among geometrical objects. At the same time, it allows more

flexibility than just the classification by isomorphism type: we are free

to modify the variety under scrutiny as long as a dense open set is left

untouched; the new variety thus obtained is birational to the original one.

Indeed, this is the leitmotif of the whole birational classification: among

all varieties in a given birational class, we would like to find one whose ge-

ometric features are the best possible. Of course, part of the problem is to

make sense of what the expression “best possible” means in the previous

sentence.

A very important role in this task is played by the canonical bundle

of a normal variety. For a smooth variety, that is just defined as the

determinant of the cotangent bundle. In the singular case, normality

implies that the smooth locus has a complement of codimension at least

two within the variety; thus, we can extend the canonical bundle from the

smooth locus to the whole variety in a natural way – although it will no

longer be a line bundle, but rather a Weil divisorial sheaf.

Starting with Mori in the 1980s and then continuing with many other

important contributors of birational geometry up until this very day, it is
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very well understood that one way to construct a preferred representative

in the birational equivalence class of a projective variety can be achieved

by making the canonical divisor “as positive as possible”. In more precise

terms, this means that one would like to find a birational model of a given

projective variety on which the canonical divisor becomes numerically ef-

fective. That birational model is then called a minimal model. To be able

to construct minimal models, it is inevitable to consider singular varieties

within a birational equivalence class, as it is already clear in dimension

three – unlike the case of surfaces. Nonetheless, it is enough to consider a

well-behaved class of singularities, which has now been intensively studied,

cf. §2, 3.

One of the main open problems in birational geometry is whether min-

imal models do exist. Indeed, they are conjectured to exist if and only

if the varieties within a given birational equivalence class are not covered

by rational curves. Such varieties are said to be uniruled. A series of

conjectures, known as the Minimal Model Program, predicts that min-

imal model exists for non-uniruled varieties with mild singularities and

moreover provides a conjectural algorithmic construction for them. More

generally, the Minimal Model Program predicts that, up to some special

birational equivalences, each projective variety decomposes into iterated

fibrations with general fibers of 3 basic types:

• log Fano varieties: varieties with ample anti-canonical bundle;

• K-trivial varieties: varieties with torsion canonical bundle; and

• log canonical models: varieties with ample canonical bundle.

The classification scheme then proceeds with the study of the geometry of

these three special types of varieties. In particular, under the perspective

of the minimal model program, the classification process can be further

subdivided into two main goals:

1. the construction of moduli spaces for varieties in each of the three

key types just introduced; and
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2. the study of the structure of these moduli spaces.

In particular, the latter task should be thought in connection with the

study of fibrations whose general fibers fall into one of the three funda-

mental types above. In fact, given a fibration f : X → Y where the general

fiber is either one of the three basic types introduced above, assuming the

existence of a moduli spaceM parametrizing the isomorphism types of the

generic geometric fibers, then by the definition of a moduli functor there is

an induced rational map Y 99KM (or rather a rational map to the coarse

moduli space of M), associating to a sufficiently general point y ∈ Y the

class of isomorphism of the fibre Xy. Hence, knowing the structure of the

moduli space can help us understand the structure of the fibration f .

The process of constructing moduli spaces for a given class of algebraic

varieties has several steps. The first step is to show that the chosen class

of varieties is bounded, i.e., it can be parametrized by a finite number of

parameters. For instance, if we look at smooth projective curves, once

we fix the genus g ≥ 2, it has been known since Riemann that these vary

in a (3g − 3)-dimensional family. In this case, it is easy to see that the

bi-canonical linear system provides the desired embedding.

Once boundedness is settled, the next step is to find a functorial construc-

tion for a parameter space. As it is often easier to work with compact (or

projective) varieties, we would like our parameter space to be compact.

On the other hand, we would like that the extra points needed to ob-

tain a compact parameter space were related to our original classification

problem – that is, we would like to define a functor whose moduli space

is proper. The new points should represent the limit of well-behaved de-

generations of families of varieties in the chosen class. This whole circle

of ideas leads to the construction of a moduli functor and eventually of a

moduli space. Deligne and Mumford, [10], showed that a moduli space of

curves of genus g ≥ 2 exists and it can be naturally compactified by con-

sidering so-called stable curves, nodal curves with ample canonical class.

In this note, we survey some of the recent techniques and results that

have emerged in very recent years in relation to the study of bounded-
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ness for algebraic varieties. Moreover, we explain a possible attempt at

extending these results to the class of generalized pairs, cf. §3, that was

recently introduced by Birkar and Zhang [7]. A result of this type would,

for example, provide boundedness for the images of the Iitaka fibrations

of varieties of intermediate Kodaira dimension. As a propaedeutic step,

we show that the dimensions of the spaces of sections of positive multi-

ples of the log divisors associated with generalized pairs are constant in

families, see Theorem 4.1. This is a crucial step in the completion of the

plan that we detail for the boundedness of ample generalized pairs with

fixed volume.

The structure of the paper is as follows: in Section 2 we introduce

the formal definition of boundedness, and we illustrate some of the recent

progress on the problem, as well as some of the open challenges; in Section

3, we discuss the notion of generalized pair and explain how that plays

an important role in boundedness problems for minimal models; Section

4 is devoted to the proof of the invariance of plurigenera for big and nef

klt generalized pairs; finally, in Section 5, we show a boundedness result

of birational type for elliptic fibrations, and we discuss its relation to a

famous conjecture of Kawamata and Morrison.
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2 A tour of boundedness

Boundedness

When we consider a set {Xi}i∈I of varieties, the first step towards con-

structing a well-behaved parameter space is making sure that they can all

be embedded in the same projective space PN in a controlled way. The

theory of Hilbert schemes suggests that, if there are only finitely many pos-

sible Hilbert polynomials for the Xi with respect to such an embedding

into PN , then the Xi will naturally be the fibers of a family of varieties

parametrized by a scheme of finite type. The notion of boundedness is

simply a generalization of this idea.

Definition 2.1. A set of projective varieties {Xi}i∈I is said to be bounded

if there exists a projective morphism of algebraic varieties X → T , where

T is of finite type, such that for any X ∈ {Xi}i∈I there exists a closed

point t ∈ T for which the fiber Xt is isomorphic to X.

When a set of varieties is bounded, we should expect that, upon parti-

tioning them into finitely many subsets, they share many geometric fea-

tures. For example, if all of the Xi are smooth and of the same dimension,

then they only have finitely many possible distinct underlying topological

spaces, as implied by Ehresmann’s theorem, see [41, Theorem 9.3].

As we work with reduced and irreducible schemes, if we fix dimension

and degree of subvarieties of PN , the theory of Chow varieties guarantees

that they form a bounded family in the sense of Definition 2.1, see [29,

§1.3]. Thus, one general strategy to prove that a set of varieties {Xi}i∈I
of fixed dimension d is bounded is to find a very ample line bundle on

each Xi that embeds it with degree bounded from above in a projective

space of bounded dimension. This is a first hint to the fact that, when we

want to construct moduli spaces or more generally address boundedness

questions regarding algebraic varieties, we need to fix some invariants.

We have already discussed the case of curves in the introduction: there,

it suffices to fix the genus g of a smooth projective curve in order to
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construct a good moduli functor with proper moduli space Mg. The

genus g is a topological invariant of smooth projective curves, but it can

also be readily read off from the degree of the cotangent bundle OC(KC) of

a curve C: degOC(KC) = 2g(C)− 2. As the linear system |2KC | embeds

C in P(H0(C,OC(2KC))∨) ' P3g−4, we have reproven the boundedness

of smooth curves of fixed genus.

Volume

Recall that the volume of a Cartier divisor D on a projective variety Y

is defined as

vol(Y,D) := lim sup
m→∞

h0(Y,OY (mD))

mn/n!
,

where n = dim(Y ). If D is a Q-Cartier Q-divisor, we set vol(Y,D) :=
vol(Y,kD)

kn , where kD is Cartier. Hence, in the case of curves, as we have

vol(C,KC) = 2g(C)−2, we can think ofMg as being obtained by putting

a constraint on the volume of the canonical divisor. Unlike the topo-

logical genus of a Riemann surface, the perspective given by the volume

is suitable for a generalization. In particular, starting from a birational

viewpoint, we may consider smooth n-dimensional projective varieties of

general type, that is, varieties with the property that the volume of the

canonical bundle is positive. An equivalent characterization is given by

requiring that the Iitaka fibration, cf. [33, Theorem 2.1.33], is a bira-

tional map. The expectation is that general type varieties provide the

generalization in the birational world of varieties with ample canonical

bundle. We will explain below how this intuition is actually well-rooted

in results from the Minimal Model Program. Much in the same vein, we

could do something similar for smooth n-dimensional Fano or K-trivial

varieties and their birational equivalence classes. For the purpose of this

note, though, we will only focus on the general type case.

Unlike the case of curves, higher dimensional varieties have interesting

birational geometry. Already by blowing up smooth points on surfaces,

we realize that fixing the dimension n and the volume v for the canonical
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divisor is not enough to obtain a quasi-projective parameter space. In-

deed, while the isomorphism type of a curve is the same as the birational

equivalence type, in dimension at least 2, any birational equivalence class

contains infinitely many non-isomorphic varieties. For varieties of general

type, this is reflected in the fact that the canonical bundle provides just

a birational polarization: the condition that the volume of the canonical

divisor is positive is much weaker than requiring it to be ample. On the

other hand, we cannot hope to find a smooth birational model X ′ of a

smooth general type variety X with KX′ ample; this is already evident

for surfaces of general type, where we encounter ADE singularities when

attempting to construct the canonical model, cf. [31, Chapter 4].

Rather than regarding a rich birational geometry and the presence of

singularities as a problem, we can try to take advantage of the flexibility

that these provide. In particular, we can introduce weaker notions of

boundedness that work for any variety in a given birational equivalence

class.

Definition 2.2. A set of projective varieties {Xi}i∈I is said to be bira-

tionally bounded if there exists a projective morphism of algebraic varieties

X → T , where T is of finite type, such that for any X ∈ {Xi}i∈I there

exists a closed point t ∈ T for which the fiber Xt is birationally equivalent

to X.

We have already discussed how, in order to construct moduli spaces,

we often have to fix some numerical invariants within a given class of

projective varieties. For smooth varieties of general type, the two most

natural invariants to fix are the dimension n together with the volume of

the canonical bundle v. Once these invariants are specified, we can ask

whether the varieties satisfying these constraints are birationally bounded.

It turns out that fixing the dimension n and the volume v = vol(X,KX) is

enough to achieve birational boundedness of smooth projective varieties

of general type, see [19, Corollary 1.2]. Roughly speaking, fixing the

volume guarantees that a fixed multiple |mKX | defines a birational map
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to a variety embedded into a fixed projective space PN . Furthermore, the

bound on vol(X,KX) also gives a bound on the degree of the image of

this birational map.

Once birational boundedness is achieved, it is natural to wonder whether

there is a natural representative in each birational class of varieties of gen-

eral type for which the canonical bundle is ample. More precisely, can we

choose one specific such representative within each birational class of va-

rieties of general type and achieve boundedness for these models? If we

do not want to leave the realm of smooth varieties, we have already seen

that this question has a positive answer just up to dimension 2. On the

other hand, if we are willing to admit varieties with mild singularities,

the Minimal Model Program provides us with a positive answer in any

dimension. More precisely, if X is smooth with vol(X,KX) > 0, there

exists a birational contraction X 99K X ′ such that X ′ has canonical sin-

gularities, KX′ is ample and vol(X,KX) = vol(X ′,KX′). The variety

X ′ is called the canonical model. It is unique and is characterized as

X ′ = Proj(
⊕

m≥0H
0(X,mKX)), cf. [5].

Log pairs

If we adopt the perspective of the Minimal Model Program, we can

inquire boundedness in broader generality. In the context of the classifi-

cation, it is often more convenient to work with a slightly more general

type of objects, namely, log pairs (or simply pairs for short). A pair (X,∆)

consists of a normal variety X and an effective R-divisor ∆ with coeffi-

cients in (0, 1] on X such that KX + ∆ is R-Cartier. Such pairs appear

quite naturally when generalizing the adjunction formula to singular vari-

eties: when X is a mildly singular hypersurface in a mildly singular variety

Y , then the classical adjunction formula (KY +X)|X = KX often fails to

hold. One then needs a correction term in the form of an effective divisor,

that is, the adjunction formula looks like (KY +X)|X = KX +∆, for some

∆ ≥ 0 on X. Given a log resolution f : X ′ → X of the log pair (X,∆),
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we write

KX′ + ∆′ = f∗(KX + ∆),

where ∆′ is the unique divisor for which f∗(KX′ + ∆′) = KX + ∆. Thus,

∆′ is the sum of the strict transform f−1
∗ ∆ of ∆ on X ′ and a divisor

completely supported on the exceptional locus of f . Denoting by µD(∆′)

the multiplicity of ∆′ along a prime divisor D on X ′, for a non-negative

real number ε, the log pair (X,∆) is called

(a) ε-Kawamata log terminal (ε-klt, in short) if µD(∆′) < 1 − ε for all

D ⊂ X ′;

(b) ε-log canonical (ε-lc, in short) if µD(∆′) ≤ 1− ε for all D ⊂ X ′;

(c) terminal if µD(∆′) < 0 for all f -exceptional D ⊂ X ′ and all possible

choices of f ;

(d) canonical if µD(∆′) ≤ 0 for all f -exceptional D ⊂ X ′ and all possible

choices of f .

The case 0-lc (respectively 0-klt) case coincides with canonical (resp.

terminal) singularities, and we omit it from the notation. We can ex-

tend the discussion of the previous subsection to the case of pairs. More

precisely, we can consider log canonical pairs (X,∆) of log general type,

that is, vol(X,KX + ∆) > 0. We may try to fix certain numerical in-

variants to determine whether such a class of pairs is bounded. Again,

a natural choice of invariants to fix is dim(X) and the log canonical vol-

ume vol(X,KX + ∆). Nonetheless, we also need to put some technical

(yet natural) constraints on the possible coefficients of ∆. Once these are

fixed, we can ask whether these pairs are birationally bounded. Let us

notice that, when we talk about the boundedness of pairs, we require that

the supports of the boundaries deform in the bounding family, cf. [22, 2.1

Notations and Conventions].



124 S. Filipazzi, R. Svaldi

Boundedness for varieties of general type

Our main reason to introduce singular varieties and pairs is that sin-

gularities are unavoidable when running the Minimal Model Program in

order to realize (log) canonical models. If our initial input is a smooth

variety (respectively, a klt pair, a log canonical pair), the canonical model

(resp. log canonical model) is a canonical variety (resp., a klt pair, a log

canonical pair). On the other hand, already in the case of algebraic curves,

non-normal degenerations are needed to compactifyMg in a modular way

and obtain Mg. In higher dimension, the correct generalization of this

notion is given by so-called semi-log canonical pairs. Roughly speaking,

semi-log canonical pairs are the generalization in higher dimension of sta-

ble pointed curves, and it is natural to address boundedness of these, see

[28].

In this generality, Hacon, McKernan and Xu have proved the following

boundedness result.

Theorem 2.3. [22, Theorem 1.2.1] Fix n ∈ N, d > 0 and a DCC set

I ⊂ [0, 1] ∩Q. Then, the set Fslc(n, I, d) of pair (X,∆) such that

1. (X,∆) is a semi-log canonical pair,

2. dim(X) = n,

3. KX + ∆ is ample,

4. vol(X,KX + ∆) = d, and

5. coeff(∆) ⊂ I,

is bounded.

Let us highlight some of the main ideas in the proof of Theorem 2.3:

one can reduce from the case of semi-log canonical pairs to that of log

canonical pairs, thanks to Kollár’s gluing theory, cf. [30, Chapter 5], and

to another deep result of Hacon, McKernan, and Xu, who proved a struc-

ture theorem for the possible volumes vol(X,KX + ∆) [21, Theorem 1.3]:
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indeed, they show that such set satisfies the Descending Chain Condition

(in short, DCC), i.e., any descending sequence with values in the set is

eventually constant. This last result crucially relies on the coefficients of

the boundary ∆ satisfying in turn the DCC. Once we can reduce to the

lc case, as vol(X,KX∆) = v is fixed, we obtain a birationally bounded

family (X ,B)→ T , in which the lc pairs (X,∆) satisfying the conditions

of the theorem fit, up to birational isomorphism. In order to conclude,

one would like to run a suitable Minimal Model Program X 99K X ′ over

T to obtain a family of log canonical models, i.e., exactly those pairs for

which we wish to show boundedness. Hacon, McKernan, and Xu showed

that this indeed holds. One of the key ingredients in their strategy is

the deformation invariance of the plurigenera h0(Xt,m(KXt +Bt)), which

guarantees that the aforementioned Minimal Model Program X 99K X ′

preserves the pluricanonical ring fiber by fiber.

3 The canonical bundle formula and generalized

pairs

Varieties of intermediate Kodaira dimension

The Minimal Model Program predicts that every variety can be bira-

tionally decomposed as iterated fibrations of three fundamental types of

varieties: varieties of general type, K-trivial varieties and Fano-type vari-

eties. A similar phenomenon is predicted in the case of pairs. Therefore, in

order to address boundedness questions about more complicated classes of

varieties, it is necessary to settle the boundedness of the three key building

blocks.

The work of Hacon, McKernan, and Xu establishes boundedness results

for varieties of general type, while that of Birkar does the same in the

Fano-type case [3, 4]. Some recent results were also obtained in the case

of K-trivial varieties, cf. [11, 8, 6]. In between varieties of general type

and K-trivial ones, we have varieties of intermediate Kodaira dimension.
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More precisely, we have varieties X for which h0(X,mKX) admits an

asymptotic estimate as C1m ≤ h0(X,mKX) ≤ C2m
dim(X)−1 for m large

and divisible.

Under the perspective of the Minimal Model Program, we can regard

varieties of intermediate Kodaira dimension as fibrations of K-trivial va-

rieties over bases of general type. This decomposition goes as follows.

Let X be one of these varieties, and assume it has klt singularities. For

simplicity, assume that KX is semi-ample. This is a natural assumption

in birational geometry, as it is conjectured that every klt variety Y of

non-negative Kodaira dimension admits a birational contraction Y 99K Y ′

such that KY ′ is semi-ample [20, Conjecture 2.8, Conjecture 5.7]. Then,

as |lKX | is basepoint-free for some l � 0, we have a naturally induced

morphism f : X → Z, the so called Iitaka fibration, to a normal projective

variety Z. By construction, we have Z = Proj(
⊕

m≥0H
0(X,OX(mKX)))

and KX ∼Q f∗LZ , where LZ is an ample Q-Cartier divisor on Z. By

repeated adjunction, we have KXz = KX |Xz , where Xz is a general fiber

of f . In particular, we have that KXz ∼Q 0. Thus, the general fibers of

f are K-trivial varieties. On the other hand, it is a priori unclear how to

regard Z as a variety of general type, since KZ may not be big in gen-

eral. The canonical bundle formula, as discussed below in Remark 3.2,

provides the right perspective on this phenomenon. Indeed, we can (al-

most) canonically find an effective divisor ∆Z such that (Z,∆Z) is klt and

KZ + ∆Z ∼Q LZ . Since LZ is ample, then (Z,∆Z) is a pair of general

type.

The canonical bundle formula

Let (X,B) be a projective klt pair, and let f : X → Z be a morphism

with connected fibers. Assume there is a Q-Cartier divisor LZ on Z such

that KX + B ∼Q f∗LZ . As in the case of the Iitaka fibration discussed

above, the general fiber (Xz, Bz) of f is a K-trivial pair. A special instance

of this setup is the case of a minimal elliptic surface g : S → C, where the

general fiber is an elliptic curve and KS ∼ g∗LC for some Cartier divisor
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LC on the curve C. In this case, Kodaira showed that one can write

LC ∼Q KC+BC+MC , where BC is a divisor measuring the singular fibers

of g, and MC is measuring the variation of the smooth fibers [27]. More

precisely, BC can be explicitly computed from the multiplicities and dual

graphs of the singular fibers, and MC = 1
12j
∗OP1(1). Here, j : C → P1 is

the function that detects the j invariant of the smooth fibers [24, Section

IV.4]. Therefore, one would like to extend the work of Kodaira to the

more general setup of a klt pair f : (X,B) → Z with KX + B ∼Q f∗LZ .

In particular, we are interested in writing LZ ∼Q KZ + BZ +MZ , where

BZ detects the singular fibers of f and MZ detects the variation of the

general fibers.

Given a log canonical pair (Y,Γ) and a Q-Cartier divisor D ≥ 0 on Y ,

we can measure “how much of D” we can add to Γ while still preserving

the log canonical property. More precisely, we define the log canonical

threshold of (Y,Γ) with respect to D as

lct(Y,Γ;D) = sup{t ≥ 0|(Y,Γ + tD) is log canonical}.

Since for some c > 0 we have cD ≥ Supp(D), it follows that (Y,Γ+c′D) is

not log canonical for any c′ > c. In particular, lct(Y,Γ;D) is a well defined

non-negative real number. It turns out that, in the setup of a minimal

elliptic surface g : S → C, we have µP (BC) = 1 − lct(S, 0; g∗P ) for every

closed point P ∈ C. In particular, under this perspective, Kodaira’s

algorithm to compute BC can be generalized to higher dimension.

Let f : (X,B) → Z be a fibration as we considered above. Now, we

are ready to define a divisor BZ that generalizes the properties of the

divisor BC computed by Kodaira. For every prime divisor P ⊂ Z, we

set the coefficient of P in BZ as µP (BZ) = 1 − lctηP (X,B; f∗P ). Here

lctηP (X,B; f∗P ) denotes the log canonical threshold of (X,B) with re-

spect to f∗P over the generic point of P . The reason for this localization

is twofold. First, P may not be Q-Cartier, but it is at ηP as Z is normal.

Second, in this way we try to detect singularities that come from (X,B),

disregarding the ones coming from P . Since (X,B) is klt, BZ is a well
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defined Weil divisor. By construction, it detects the singularities of the

fibration over points of codimension 1 on the base. Then, we can define

MZ := LZ − (KZ +BZ). Thus, we have KX +B ∼Q f
∗(KZ +BZ +MZ).

Example 3.1. Let X = P1 × P2 and let B be the disjoint union of two

sections of f : X → P2. By construction, f : (X,B) → P2 is an lc-trivial

fibration (see the definition below). Let D ⊂ P2 be a planar cuspidal cubic.

Then, we have lct(P2, 0;D) = 5
6 . One can show that this implies that

lct(X,B; f∗D) = 5
6 . This log canonical threshold is less than 1 because

f∗D is a P1-bundle over a cuspidal curve. On the other hand, f is smooth

and so are its restrictions on the two sections. Indeed, by inversion of

adjunction we compute lctηD(X,B; f∗D) = 1.

Let α : Z ′ → Z and β : X ′ → X be projective birational morphisms.

Further, assume that the rational map g : X ′ 99K Z ′ is a morphism. Let

(X ′, B′) be defined by KX′ +B′ := β∗(KX +B). In general, the divisor B′

is not effective, but KX′ +B′ shares many properties with the pair (X,B).

We say that (X ′, B′) is a sub-pair. Since it is the pull-back of a klt pair,

it is sub-klt. In particular, the log canonical threshold of (X ′, B′) with

respect to an effective Q-Cartier divisor is still well defined. Thus, we can

define a divisor BZ′ on Z ′ as follows. For every prime divisor P ′ ⊂ Z ′, we

have µP ′(BZ′) = 1 − lctηP ′ (X
′, B′, g∗P ′), where ηP ′ denotes the generic

point of P ′. Then, we set MZ′ := LZ′ − (KZ′ +BZ′). By construction, we

have BZ = α∗BZ′ and MZ = α∗MZ′ . In particular, b-Q-divisors BZ and

MZ are defined. We refer to [9] for the notion of b-divisor. We say that

BZ is the boundary b-divisor, while MZ is the moduli b-divisor. While

the b-divisor BZ is defined to detect geometric properties of the fibration

f : (X,B)→ Z, it is unclear whether MZ has any interesting properties.

An lc-trivial fibration f : (X,B) → Z is a projective morphism with

connected fibers between normal varieties such that

(i) (X,B) is a sub-pair with coefficients in Q that is sub-log canonical

over the generic point of Z;

(ii) rk f∗OX(dA∗(X,B)e) = 1; and
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(iii) there exists a Q-Cartier divisor LZ on Z such that KX+B ∼Q f
∗LZ .

We refer to [16] for the definitions involved in the notion of lc-trivial

fibration. For the purposes of this note, it suffices to notice that the above

conditions (i) and (ii) are satisfied if (X,B) is a klt projective pair. In the

case that a fibration with log Calabi–Yau fibers is an lc-trivial fibration,

the canonical bundle formula describes how MZ detects the variation of

the fibers of the morphism f . This is why MZ is called moduli b-divisor.

The following formulation of the canonical bundle formula is [16, Theorem

3.6].

Canonical bundle formula. Let f : (X,B)→ Z be an lc-trivial fibration

and let π : Z → S be a projective morphism. Let BZ and MZ be the

b-divisors induced on Z. Then, the b-divisor KZ + BZ is b-Q-Cartier.

Furthermore, the b-divisor MZ is b-nef over S.

Remark 3.2. Since the statement of the canonical bundle formula in-

volves the language of b-divisors, we rephrase its meaning in the case

of a morphism between projective varieties. In particular, we assume

S = Spec(C). Under these assumptions, the content of the theorem is

equivalent to the following. There exists a birational morphism α : Z ′ → Z

such that the divisorMZ′ is nef. Furthermore, for any birational morphism

γ : Z ′′ → Z factoring through Z ′ as σ = α ◦ ρ, we have MZ′′ = ρ∗MZ′

and KZ′′ + BZ′′ = ρ∗(KZ′ + BZ′). In particular, the birational model

g : (X ′, B′) → Z ′ of the fibration f : (X,B) → Z encodes all the infor-

mation about all possible birational models of it. Furthermore, the fact

that MZ′ is nef should be thought as a weak analog of the fact that

MC = 1
12j
∗OP1(1) in the case of an elliptic surface. Indeed, thanks to

work of Ambro and a subsequent generalization of Fujino and Gongyo [2,

16], something more is known about MZ′ . More precisely, under some

technical assumptions, MZ′ is the pull-back of a nef and big divisor on a

variety T . Furthermore, dim(T ) gives a Hodge-theoretic measure of the

variation of the general fibers of f . Given these positivity properties of

MZ′ , one can find 0 ≤ DZ ∼Q MZ such that (Z,∆Z := BZ + DZ) has
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mild singularities. In particular, if (X,B) is klt, then so is (Z,∆Z).

Generalized pairs

The canonical bundle formula is a very powerful tool in the study of

lc-trivial fibrations. For this reason, Birkar and Zhang defined an abstract

object that encodes the properties of the outcome of the canonical bundle

formula [7].

Definition 3.3. A generalized sub-pair (Z ′ → Z,BZ ,MZ′) is the datum

of

• a normal variety Z;

• a birational morphism α : Z ′ → Z, where Z ′ is normal;

• a Q-Weil divisor BZ on Z; and

• a Q-Cartier divisor MZ′ on Z ′ that is nef

such that KZ + BZ + MZ is Q-Cartier, where MZ := π∗MZ′ . If BZ ≥ 0,

we say (Z ′ → Z,BZ ,MZ′) is a generalized pair.

In the case of an Iitaka fibration f : X → Z, Z can be regarded as

a generalized pair (Z ′ → Z,BZ ,MZ′) with KZ + BZ + MZ ample and

f∗(KZ+BZ+MZ) ∼Q KX′ . Therefore, to discuss boundedness properties

of varieties of intermediate Kodaira dimension, it is important to first

address the boundedness of generalized pairs of general type.

Work of Birkar and Zhang shows that, together with dim(Z) and

coeff(BZ), one should fix the Cartier index of MZ′ in order to have con-

trol of the linear series |m(KZ +BZ +MZ)|. Thus, fixing n, r ∈ N, v > 0

and a DCC set I ⊂ [0, 1] ∩ Q, it is interesting to investigate bounded-

ness properties of generalized pairs (Z ′ → Z,BZ ,MZ′) with dim(Z) = n,

vol(KZ +BZ +MZ) = v, coeff(BZ) ⊂ I and rMZ′ Cartier. In this direc-

tion, [7, Theorem 1.3] implies that these generalized pairs are birationally

bounded as pairs. More precisely, the set consisting of (Z,Supp(BZ)) is



Invariance of Plurigenera and boundedness for Generalized Pairs 131

birationally bounded. Hence, it is natural to ask whether one can obtain

honest boundedness if we further assume that KZ +BZ +MZ is ample.

Surprisingly, this seems to be a hard question, as several technical dif-

ficulties come in the picture. Since we assume that BZ has DCC coeffi-

cients, there is δ > 0 such that δ · Supp(BZ) ≤ BZ ≤ Supp(BZ). Thus,

as in the work of Hacon, McKernan and Xu, one can use intersection the-

oretic methods to bound Supp(BZ). On the other hand, MZ is just a

pseudo-effective divisor, and in general, it is unclear how to bound it. A

possible approach is the following. If we have 0 ≤ HZ ∼Q KZ +BZ +MZ

with coeff(HZ) bounded away from 0, one can bound HZ . Then, MZ is

bounded up to Q-linear equivalence as HZ − (KZ + BZ). An approach

of this flavor is carried out in [13] in the case dim(Z) = 2, but it seems

harder in general.

The second and subtler problem is the following. Even assuming that

we can choose a representative of MZ in its Q-linear equivalence in order to

guarantee that (Z,BZ + Supp(MZ)) is birationally bounded, we still have

no control of MZ′ . We illustrate this issue with the following example.

Assume that we have a set of generalized pairs {(Z ′i → Zi, BZi ,MZ′
i
)}i∈I

and a projective morphism of quasi-projective varieties (Z,D) → T such

that the following holds: for every (Z ′i → Zi, BZi ,MZ′
i
) there exist a closed

point t(i) ∈ T and a birational rational map fi : Zi 99K Zt(i) such that

Supp(fi,∗BZi) ∪ Supp(fi,∗MZi) ∪ Ex(f−1
i ) ⊂ Dt(i). In this situation, we

may hope to find divisors B and M supported on D such that fi,∗BZi =

Bt(i) and fi,∗MZi = Mt(i) for all i ∈ I. Even if this is the case, we

are still far away from being able to run the last part of the strategy

in [22], namely running a relative Minimal Model Program over T and

applying deformation invariance of plurigenera. In order to apply a similar

argument, we would need a condition close to the following: there exist a

birational morphism π : Z ′ → Z and a divisor M′ that is nef over T such

that M = π∗M′ and M′t(i) is crepant to MZ′
i

for all i ∈ I. This latter

setup seems very hard to achieve in general, as given a generalized pair

(Z ′ → Z,BZ ,MZ′) it is hard to characterize how to optimally choose Z ′
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and how many blow-ups over Z are required for such optimal choice. In

this direction, there are partial results just in dimension 2 [13].

4 Deformation invariance of plurigenera for gen-

eralized pairs

In this section, we focus on one of the steps that could possibly lead

to boundedness for generalized pairs. In birational geometry, one of the

main invariants of a pair (X,B) is its pluricanonical ring R(X,KX+B) :=⊕
m≥0H

0(X,m(KX + B)). Since in general B is a fractional divisor,

we define H0(X,m(KX + B)) := H0(X,OX(mKX + bmBc)), so that

R(X,KX + B) has the structure of a graded ring. By work of Birkar,

Cascini, Hacon and McKernan, we know that R(X,KX + B) is finitely

generated if (X,B) is a projective klt pair [5, Corollary 1.1.2]. In particu-

lar, this guarantees that, if KX +B is big, Proj(R(X,KX +B)) recovers

the canonical model of X.

Therefore, when we have a family of pairs (X ,B) → T , it is natural to

ask how the plurigenera h0(Xt,m(KXt + Bt)) behave as t ∈ T varies. A

deep theorem, originally due to Siu [39], states that the plurigenera are

deformation invariant under mild assumptions. For the reader’s conve-

nience, we include a version due to Hacon, McKernan, and Xu that deals

with the case of pairs [23, Theorem 4.2].

Deformation invariance of plurigenera. Let X → T be a flat pro-

jective morphism of quasi-projective varieties. Let (X ,∆) be a pair such

that the fibers (Xt,∆t) are Q-factorial terminal for all t ∈ T . Assume

that every component P of ∆ dominates T and that the fibers of the Stein

factorization of P → T are irreducible. Let m > 1 be any integer such

that D := m(KX + ∆) is integral.

If either KX + ∆ or ∆ is big over T , then h0(Xt,OXt(Dt)) is independent

of t ∈ T .

Deformation invariance of plurigenera is a very important tool in prov-
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ing the boundedness of pairs of general type. Let {(Xi,∆i)}i∈I be a set

of pairs with KXi + ∆i ample with fixed volume v for all i ∈ I. As-

sume that this set is log birationally bounded, and let (X ,B) → T be

a birationally bounding family. Let (Xi,Bi) denote the fiber correspond-

ing to (Xi,∆i). In order to obtain a bounding family for {(Xi,∆i)}i∈I
from (X ,B) → T , we need to have R(Xi,KXi + ∆i) = R(Xi,KXi + Bi)
for all i. If that is the case, the relative canonical model of (X ,B) → T

will provide the needed family. It is easy to show that we can guarantee

R(Xi0 ,KXi0
+∆i0) = R(Xi0 ,KXi0 +Bi0) for a distinguished i0 ∈ I. By de-

formation invariance of plurigenera, one can show that the needed equality

is satisfied for all i ∈ I. This strategy is worked out in [22, Proposition

7.3].

In the hope that a similar strategy as above could be carried out in the

setup of generalized pairs, we prove a version of deformation invariance

of plurigenera for generalized pairs. We follow the statement and proof of

[23, Theorem 4.2].

Theorem 4.1. Let X → T be a flat projective morphism of quasi-projective

varieties. Let (X ,∆) be a pair such that the fibers (Xt,∆t) are Q-factorial

terminal for all t ∈ T . Assume that every component P of ∆ dominates

T and that the fibers of the Stein factorization of P → T are irreducible.

LetM be a Q-Cartier divisor that is nef over T . Let m > 1 be any integer

such that D := m(KX + ∆ +M) is integral.

If either KX + ∆ +M or ∆ +M is big over T , then h0(Xt,OXt(Dt)) is

independent of t ∈ T .

Proof. By the proof of [23, Theorem 4.2], we may assume that T is a

smooth affine curve and that X is Q-factorial. Furthermore, it is enough

to show |D0| = |D|X0 for a special point 0 ∈ T . By [7, Lemma 4.4.(2)],

the divisor Nσ(X0,KX0 + ∆0 +M0) is a Q-divisor. Therefore,

Θ0 := ∆0 −∆0 ∧Nσ(X0,KX0 + ∆0 +M0)

is a Q-divisor. Here ∧ denotes the minimum between two divisor, taken

prime component by prime component, while we refer to [5, Definition-
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Lemma 3.3.1] for the definition of Nσ. By assumption, there exists 0 ≤
Θ ≤ ∆ whose restriction to X0 is Θ0. Define

µ :=
m

m− 1
.

Then, the divisor KX + µ(Θ +M) is big. Therefore, we can find effective

Q-divisors A and B such that A is ample, X0 is not a component of B,

and KX + µ(∆ +M) ∼Q A+B. Up to shrinking T , we may assume that

every irreducible component of B dominates T .

Now, we are going to perturbe the coefficients of ∆ in order to apply

Kawamata–Viehweg vanishing. Let 0 < δ < 1
2 be a rational number, and

define divisors

Ξ := (m− 1− δ)(∆−Θ), Φ := (1− δµ+ δ)∆.

Then, we can write

D − Ξ = m(KX + ∆ +M)− (m− 1− δ)(∆−Θ)

= (m− 1− δ)(KX + Θ +M) + (1 + δ)(KX + ∆ +M)

= (m− 1− δ)(KX + Θ +M) +KX + ∆ +M+

δ(KX + µ(∆ +M))− δ(µ− 1)(∆ +M)

∼Q (m− 1− δ)(KX + Θ +M) +KX + ∆ +M+

δA+ δB − δ(µ− 1)(∆ +M)

= KX + Φ + (1− δµ+ δ)M+ δA+ δB + (m− 1− δ)(KX + Θ +M)

∼Q KX + Φ +H+ δB + (m− 1− δ)(KX + Θ +H′),

(1)

where

H ∼Q (1− δµ+ δ)M+
δ

2
A, H′ ∼QM+

δ

2(m− 1− δ)
A.

SinceM is nef, then H and H′ are ample. Therefore, we may assume that

their supports are irreducible and general depending on δ. Thus, if δ is

small enough, (Xt,∆t +Ht +H′t + δBt) is terminal for every t ∈ T .

Since H′0 is ample, no component of Θ0 +H′0 belongs to the stable base
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locus of KX0 + Θ0 +H′0. Hence, by [23, Proposition 4.1], there exists a log

terminal model f : X 99K Y for (X ,Θ +H′) over T that induces a weak

log canonical model f0 : X0 99K Y0 of (X0,Θ0 +H′0).

Let p : W → X and q : W → Y resolve f . We may also assume that p is a

log resolution for (X ,∆ +M+H+H′ + B). Define

G := (m− 1− δ)f∗(KX + Θ +H′).

Thus, G is nef and big and we have

(m− 1− δ)p∗(KX + Θ +H′) = q∗G+ F,

where F is effective and q-exceptional.

Let W0 be the strict transform of X0. Since (X0,Φ0 + δB0 +H0) is klt, by

inversion of adjunction [31, Theorem 5.50], (X ,X0 + Φ + δB +H) is plt.

Therefore, we can write

KW +W0 = p∗(KX + X0 + Φ + δB +H) + E,

where dEe ≥ 0 is p-exceptional. Now, set

L := dp∗(D − Ξ) + E − F e.

Since we may assume X0 ∼Q 0, we can write

KW +W0 ∼Q p
∗(KX + Φ + δB +H) + E.

By (1), we have

p∗(D − Ξ) ∼Q q
∗G+ F + p∗(KX + Φ + δB +H).

Thus, we have

KW + q∗G ∼Q p
∗(D − Ξ) + E − F −W0.

This implies that

L−W0 ∼Q KW + C + q∗G,
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where C is the fractional part of −p∗(D−Ξ)−E+F . Since C is supported

on divisors involved in the log resolution, and its coefficients are less than

1, (W, C) is klt. Therefore, Kawamata–Vieheweg vanishing implies

H1(W,OW(L−W0)) = 0.

Let N := p∗(KX + Θ +M)− q∗f∗(KX + Θ +M). Since

Q := (KX + Θ +H′)− (KX + Θ +M) ∼Q
δ

2(m− 1− δ)
A

is ample, the negativity lemma implies p∗Q ≤ q∗f∗Q [31, Lemma 3.39].

Therefore, we have

mN = (1 + δ)N + (m− 1− δ)N ≥ F.

Since Ξ ≤ m(∆−Θ), it follows D−Ξ ≥ m(KX + Θ +M). Hence, we can

write

R := L− bmq∗f∗(KX + Θ +M)c

= dL−mq∗f∗(KX + Θ +M)e

≥ dmN + E − F e

≥ dEe.

Let q0 : W0 → X0 be the restriction of q, and denote by L0 and R0 the

restrictions of L and R to W0 respectively. Then, we have

|D0| = |m(KX0 + Θ0 +M0)| by definition of Θ0

⊂ |mf0,∗(KX0 + Θ0 +M0)| as f0 is a birational contraction

= |mq∗0f0,∗(KX0 + Θ0 +M0)|

⊂ |L0| as R0 ≥ 0

= |L|W0 as H1(W,OW(L−W0)) = 0

⊂ |D|X0 as dEe is p-exceptional.

As the reversed inclusion |D|X0 ⊂ |D0| always holds, we conclude that we

have the equality |D|X0 = |D0|.
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Remark 4.2. The above result can be generalized to the case whenM is

nef over some points {ti}i≥1 ⊂ T : it would follow that h0(Xi,OXi(Dti)) is

independent of i. The proof is a slight modification of the above one: we

have to compare t1 and t2 pairwise. Hence, we can base change to a smooth

curve containing both of them. Then, we perform the constructions as

above in order to satisfy the required properties over t1 and t2. Then, by

openness, we can shrink the base so that the properties in the proof of

Theorem 4.1 are satisfied. This setup is more technical, yet very useful:

nefness is neither open nor closed in families.

5 An example of boundedness for fibrations

In this section, we show an example of how boundedness statements

can be proven inductively, in the case of fibrations. Here, we shall focus

on the case of a variety X endowed with an elliptic fibration f : X → Y ,

i.e., a morphism whose general fiber is a smooth elliptic curve. Moreover,

we shall assume that the variety X is a minimal model with Kodaira

dimension κ(X) = dim(X)− 1, in the sense that KX is nef and

h0(X,mKX) ∼ Cmdim(X)−1 + o(mdim(X)−1) (2)

for m large and divisible. This implies that X is the outcome of a run

of the Minimal Model Program for a projective variety X ′ with mild sin-

gularities – see the statement of Theorem 5.1 for the precise assumptions

on singularities; furthermore, f : X → Y is the Iitaka fibration of X, [33,

§2.1.C]. Then KX ∼Q f∗L for some big and nef Q-Cartier Q-divisor

L on Y . By the (n − 1)-volume of KX , we shall mean vol(Y, L); this is

independent of the choice of the divisor L in its Q-linear equivalence class.

While it is well known that the fibers of f vary in a bounded family,

in order to understand properties of the base Y , a natural choice is to

use the canonical bundle formula, see, for example, [1, 2]. A priori, this

gives a structure of generalized pair (Y ′ → Y,B,M ′) on the base, and we

do not have boundedness statements for generalized pairs in dimension
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greater than 2. Fortunately, this problem can be circumvented as follows.

Since we are considering fibrations of relative dimension 1, a particular

case of a conjecture due to Prokhorov and Shokurov implies that we can

turn M into an effective divisor ∆ and have control of its coefficients [38,

Conjecture 7.13, Theorem 8.1]. Therefore, the base is endowed with a

structure of a pair (Y,Γ), and we control the coefficients of Γ. Then,

when the fibration corresponds to the Iitaka fibration, the pair (Y,Γ) is

of general type. Thus, at least at the birational level, to understand the

structure of X, we can first address the boundedness of the pair (Y,Γ).

This “divide and rule” approach, together with some geometric assump-

tions on the fibration f : X → Y , leads to a particular form of weak

boundedness. We say that a set of varieties {Xi}i∈I is bounded in codi-

mension 1 if there is a projective morphism X → T of schemes of finite

type such that every Xi is isomorphic in codimension 1 to Xt(i) for some

closed point t(i) ∈ T . Furthermore, if Xt(i) is normal and projective with

KXt(i) Q-Cartier for all i ∈ I, we say that {Xi}i∈I is bounded modulo flops.

Notice that these notions are stronger than the usual birational bounded-

ness, as the failure of honest boundedness happens in codimension 2.

Theorem 5.1. Fix a positive integer n, and a positive real number v.

Then the set D(n, v) of varieties X such that

1. X is a terminal projective variety of dimension n,

2. X is minimal of Kodaira dimension n− 1,

3. the (n− 1)-volume of KX is v, and

4. the Iitaka fibration f : X → Y of X admits a rational section,

is bounded modulo flops.

Proof. By assumption, we have κ(KX) = n− 1, and, by [35, Remark 1.2],

we have ν(KX) = κ(KX). Thus, KX is nef and abundant. By [18, The-

orem 4.3], X admits a good minimal model, so that, by [32, Proposition

2.4], KX is semi-ample. Therefore, the Iitaka fibration f : X 99K Y is a
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morphism, and Y is a normal (n − 1)-fold. Furthermore, by [11, Lemma

5.1], the rational section of f is defined over a big open set of Y . We now

divide the proof into several steps.

Step 0: In this step we show that, if X ∈ D(n, v), then Y belongs to a

bounded family only depending on D(n, v).

As Y is the projective variety associated to the ring of sections of the

canonical bundle of X, by [17], Y is endowed with a natural structure of

generalized klt generalized pair (Y ′ → Y,B,M ′) and vol(Y,KY +B+M) =

v. As the generic fiber of f : X → Y is an elliptic curve, by [17], the

coefficients of B are in a fixed DCC set Λ ⊂ [0, 1) ∩ Q independent

of X ∈ D(n, v). Similarly, the Cartier index of M ′ is independent of

X ∈ D(n, v). Furthermore, there exists an integer k depending just on n

such that |kM ′| is a free linear series, cf. [38, Theorem 8.1]. Therefore,

we can choose a general element 0 ≤ H ′ ∼Q M ′ such that kA′ is a prime

divisor and (Y,B + A) is klt, where A is the push-forward of A′ onto Y .

Thus, (Y,B +A) is a klt pair of dimension n− 1, coeff(B +A) ⊂ Λ∪ { 1
k}

and vol(Y,KY + B + A) = v. By Theorem 2.3, (Y,B + A) belongs to a

bounded family of pairs depending just on n, v.

Step 1: In this step we reduce to the case when X and Y are Q-factorial

and f has a rational section which is well defined over a big open set of Y

.

Since (Y,B+A) is klt, Y admits a small Q-factorialization (Y ′′, B′′+A′′)→
(Y,B + A). By [36], also Y ′′ belongs to a bounded family which only de-

pends on n and v. Let π : X ′′ → X be a smooth resolution of indetermi-

nacies for the map X 99K Y ′′. As X → Y is a fibration in curves, no ex-

ceptional divisor of X ′′ → X dominates Y ′′. Let E denote the reduced π-

exceptional divisor. Since X is terminal, we have KX′′ + 1
2E = π∗KX +F ,

where F ≥ 0 is supported on all of the π-exceptional divisors. We have

KX′′ + 1
2E ∼Q,Y ′′ F . Now, we can run a (KX′′ + 1

2E)-MMP with scaling

relative to Y ′′. As the image of F on Y ′′ has codimension at least 2, F

is degenerate in the sense of [32, Definition 2.8]. Thus, [32, Lemma 2.9]

implies that this MMP terminates with a model X ′′′ → Y ′′ on which the
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sitrct transform F ′′′ of F is 0. Thus, we have that X ′′′ is Q-factorial and

KX′′′ ∼Q,Y ′′ 0. Furthermore, as we contracted all the π-exceptional divi-

sors, X ′′′ 99K X is small.

Since X ′′′ 99K X is an isomorphism in codimension 1, it suffices to show

that X ′′′ is bounded. By construction, we have that X ′′′ → Y ′′ admits a

rational section. Over the big open set of Y ′′ where Y ′′ → Y is an iso-

morphism, X and X ′′′ differ by flops over Y . Thus, the rational section of

X ′′′ → Y ′′ is a section over a big open set of Y ′′. Hence, up to relabelling

and assuming that f has a section just over a big open of Y , we may

assume that X = X ′′′ and Y = Y ′′.

Step 2: In this step we find a birational model of X where the rational

section satisfies certain positivity assumptions.

Now, denote by Ŷ the closure of the rational section of f : X → Y . Then,

Ŷ is relatively big over Y . Also, for 0 < γ � 1, (X, γŶ ) is klt. Thus,

by [5], any (KX + γŶ )-MMP over Y with scaling of an ample divisor

terminates. Let (X̃, γỸ ) be the resulting model. Denote by f̃ : X̃ → Y

the resulting morphism. Notice that KX + γŶ ∼Q,Y γŶ . Thus, this

MMP is independent of γ, and Ỹ is relatively big and semi-ample over Y .

Furthermore, since Ŷ is irreducible and dominates Y , every step of the

above MMP has to be a (KX + γŶ )-flip. Thus, X̃ is isomorphic to X in

codimension 1 and it suffices to prove that X̃ is bounded. Moreover, as

KX ∼Q,Y 0, the terminality of X implies that of X̃. Thus, X and X̃ differ

by a sequence of KX -flops.

Step 3: In this step we show that (X̃, Ỹ ) is plt pair. This implies that Ỹ

is a normal Q-Gorenstein variety and that the pair (Ỹ , 0) is klt.

Normality of Ỹ and kltness of (Ỹ , 0) will follow from the pltness of (X̃, Ỹ )

by [31, Proposition 5.51] and inversion of adjunction, see [25]. To show

that (X̃, Ỹ ) is plt, it suffices to show that (X̃, Ỹ ) is log canonical and that

Ỹ is its only log canonical center. Let φ : Ỹ ν → Ỹ be the normalization

of Ỹ , and let Diff(0) be the different defined by

KỸ ν + Diff(0) := φ∗((KX̃ + Ỹ )|Ỹ ).
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By construction, KỸ ν +Diff(0) is nef and big over Y . By [11, Lemma 5.1],

Diff(0) is exceptional over Y . Thus, we have (f̃ ◦φ)∗(KỸ ν +Diff(0)) = KY .

Since Y is Q-factorial, the negativity lemma [31, Lemma 3.39] implies that

KỸ ν + Diff(0) = (f̃ ◦ φ)∗KY −D, (3)

where D ≥ 0 is (f̃ ◦ φ)-excetpional. As (Y,B + A) is klt, then so is

(Y, 0). Therefore, it follows from (3) that (Ỹ ν ,Diff(0)) is klt. Inversion

of adjunction implies that Ỹ is the only log canonical center of (X̃, Ỹ ).

In particular, (X̃, Ỹ ) is plt and the other conclusions follow as indicated

above.

Step 4: In this step we show that there exists an effective divisor G̃ on

X̃ such that the pair (X̃, 1
2 Ỹ + 1

2G̃) is 1
2 -klt, and KX̃ + 1

2 Ỹ + 1
2G̃ is big.

Let H be a very ample polarization on Y whose existence is guaranteed by

the boundedness of the pairs (Y,B + A), cf. §2. Moreover, by definition

of boundedness, there exists a positive real number C = C(n, v) such that

vol(Y,H) ≤ C. Let G̃ be a general member of |(2n + 2)f̃∗H|. Then,

(X̃, Ỹ + G̃) is log canonical. On the other hand, X̃ is terminal, and the

discrepancies of valuations are linear functions of the boundary divisor of

a pair. Hence, it follows that (X̃, 1
2 Ỹ + 1

2G̃) is 1
2 -klt. Since KX̃ is the

pull-back of a big and nef divisor on Y , Ỹ is effective and relatively big

over Y , it follows that KX̃ + 1
2 Ỹ + 1

2G̃ is big. Since we have

KX̃ +
1

2
Ỹ +

1

2
G̃ =

1

2
KX̃ +

1

2
(KX̃ + Ỹ + G̃),

and KX̃ is nef, it suffices to show that KX̃+Ỹ +G̃ is nef to conclude that so

is KX̃+ 1
2 Ỹ + 1

2G̃. Nefness of KX̃+Ỹ +G̃ follows by the boundedness of the

negative extremal rays [15, Theorem 1.19]. Indeed, let R be a (KX̃ + Ỹ )-

negative extremal ray. There exists a rational curve C spanning R such

that −2n ≤ (KX̃ + Ỹ ) · C < 0. Since KX̃ + Ỹ is nef relatively to Y , then

f̃(C) is a curve. In particular, we have G ·C ≥ (2n+ 2)H · f̃(C) ≥ 2n+ 2.

So, it follows that KX̃+ Ỹ +G̃ is non-negative on every (KX̃+ Ỹ )-negative

extremal ray. Thus, KX̃ + Ỹ + G̃ is nef. In particular, we have that

KX̃ + 1
2 Ỹ + 1

2G̃ is nef and big.
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Step 5: In this step we show that there exist positive constants C1 and

C2, only depending on n and v, such that C1 ≤ (KX̃ + 1
2 Ỹ + 1

2G̃)n ≤ C2.

The existence of C1 follows from [21, Theorem 1.3]. Thus, we are left

to show the existence of C2. Now, by the differentiability of the volume

function [34], we have

d

dt

∣∣∣∣
t=s

vol(KX̃ + tỸ + G̃) = volX̃|Ỹ (KX̃ + sỸ + G̃),

where volX̃|Ỹ denotes the restricted volume function [12]. Furthermore,

KX̃ + sỸ = s(KX̃ + Ỹ ) + (1− s)KX̃

= s(KX̃ + Ỹ ) + (1− s)(f̃)∗(KY +B +A).

Thus,

volX̃|Ỹ (KX̃ + sỸ + G̃)

≤ vol((KX̃ + sỸ + G̃)|Ỹ ))

= vol(s(KỸ + Diff(0)) + (g̃)∗((1− s)(KY +B +A) + (2n+ 2)H)

= vol(KY + (1− s)(KY +B +A) + (2n+ 2)H) ≤ C2,

where we set g̃ : Ỹ → Y , and C2 only depends on n, v. Then, we conclude

that

vol(KX̃ + Ỹ + G̃) =

∫ 1

0

d

dt

∣∣∣∣
t=s

vol(KX̃ + tỸ + G̃)ds ≤ C2.

Since,

vol

(
KX̃ +

1

2
Ỹ +

1

2
G̃

)
≤ vol(KX̃ + Ỹ + G̃),

the claim follows.

Step 6: In this step we conclude the proof.

As showed in the previous steps, (X̃, 1
2 Ỹ + 1

2G̃) is 1
2 -klt and its coefficients

belong to the set {1
2}. Thus, by [14, Theorem 1.3], vol

(
KX̃ + 1

2 Ỹ + 1
2G̃
)

belongs to a discrete set only depending on n and v. By Step 5, this

volume is also bounded from above and below. Thus, we conclude that
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vol
(
KX̃ + 1

2 Ỹ + 1
2G̃
)

attains only finitely many values, only depending

on n and v. Then, by [36, Theorem 6], the set of pairs (X̃, 1
2 Ỹ + 1

2G̃) is

log bounded. In particular, the varieties X̃ are bounded. This concludes

the proof.

Kawamata–Morrison conjecture and boundedness

The statement of Theorem 5.1 provides evidence that the “divide and

rule” approach can lead to boundedness statements for Calabi–Yau fi-

brations. Given a fibration f : X → Y as in the statement of Theorem

5.1, and letting g : X ′ → Y ′ be the model constructed in the proof that

belongs to a bounded family, then Y ′ is a small Q-factorialization of Y .

For simplicity, we assume that Y = Y ′ and X is Q-factorial. Thus, both

X and X ′ are two minimal models for f : X → Y . Let α : X 99K X ′

be the induced rational map. Since α is an isomorphism in codimen-

sion 1, the divisors on X and X ′ are naturally identified. In particular,

we get an isomorphism α∗ : N1(X/Y ) → N1(X ′/Y ) between the vec-

tor spaces of R-Cartier divisors modulo numerical equivalence over Y .

Under this morphism, we get identifications α∗Eff(X/Y ) = Eff(X ′/Y )

and α∗Mov(X/Y ) = Mov(X ′/Y ) between the closures of the relative

cones of effective and movable divisors respectively [26]. On the other

hand, α∗Nef(X/Y ) is not in general mapped to Nef(X ′/Y ), unless α

is an isomorphism. More precisely, we have that either α∗Nef(X/Y ) =

Nef(X ′/Y ), or α∗Int(Nef(X/Y )) ∩ Int(Nef(X ′/Y )) = ∅, where Int in-

dicates the interior of a set; the first case occurs if and only if α is an

isomorphism [26, Lemma 1.5]. Then, Mov(X/Y ) can be decomposed into

chambers, each one corresponding to Nef(X ′/Y ) for some model X ′ iso-

morphic to X in codimension 1. Therefore, to study all the possible min-

imal models of f : X → Y we should analyze the cones Mov(X/Y ) and

Nef(X/Y ). It could happen that a minimal model X ′ is isomorphic to X,

while the rational map over Y, α : X 99K X ′ is not an isomorphism, cf.

[26, Example 3.8.(2)]. Thus, we may have more chambers corresponding

to the same isomorphism class of varieties.
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In the setup of Theorem 5.1, a first step towards proving the bounded-

ness of the initial input f : X → Y would be to show that there are just

finitely many relative minimal models g : X ′ → Y . This is exactly the

content of the Kawamata–Morrison cone conjecture.

Cone conjecture (Kawamata–Morrison). [40, Conjecture 2.1] Let f : X →
Y be a projective morphism with connected fibers between normal vari-

eties. Let (X,∆) be a klt pair such that KX + ∆ ≡ 0/Y . Also, define

Nefe(X/Y ) := Nef(X/Y ) ∩ Eff(X/Y ) and Move(X/Y ) := Mov(X/Y ) ∩
Eff(X/Y ). Then, the following holds.

1 The number of Aut(X/Y,∆)-equivalence classes of faces of the cone

Nefe(X/Y ) corresponding to birational contractions or fiber space

structures is finite. Moreover, there exists a rational polyhedral cone

Π which is a fundamental domain for the action of Aut(X/Y,∆) on

Nefe(X/Y ) in the sense that

a Nefe(X/Y ) =
⋃
g∈Aut(X/Y,∆) g∗Π; and

b IntΠ ∩ g∗IntΠ = unless g∗ = 1.

2 The number of PsAut(X/Y,∆)-equivalence classes of chambers

Nefe(X ′/Y ) in Move(X/Y ) corresponding to marked small Q-factorial

modifications X ′ → Y of X → Y is finite. Equivalently, the number

of isomorphism classes over Y of small Q-factorial modifications of

X over Y (ignoring the birational identification with X) is finite.

Moreover, there exists a rational polyhedral cone Π′ which is a fun-

damental domain for the action of PsAut(X/Y,∆) on Move(X/Y ).

This is a very deep conjecture connecting the birational geometry of a

log Calabi–Yau fibration to the structure of the (birational) automorphism

group. The intuition behind such connection is rooted in mirror symmetry

and physics, see, for example, [37], but it is still unclear how exactly to

determine the existence of automorphism starting from the geometry of

the cone of divisors. Conjecture 5 is known to hold just in very few cases:

Totaro proved it in dimension 2, [40], Kawamata proved the relative case
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for threefolds without boundary, [26], and there are a few other cases

known in dimension > 2.

Assuming the Kawamata–Morrison cone conjecture, one could hope to

explore the following approach in order to improve the statement of The-

orem 5.1 to actual boundedness. First, one would need to show that the

number of models of f connected by relative flops is bounded in a family

and provides a constructible function on the base. Once this is settled,

in order to achieve boundedness, one would need to argue that one can

extend flops from a general fiber to an open set over the base. If this were

the case, by finitely many flops of the birationally bounding family one

would recover a bounding family for the initial moduli problem, as shown

in [36] for the log general type case.
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[34] R. Lazarsfeld and M. Mustaţă. “Convex bodies associated to linear
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