

Descent theory of simple sheaves on C_1 -fields

Ananyo Dan[®], Inder Kaur[®]

Abstract

Let K be a C_1 -field of any characteristic and X a projective variety over K. In this article we prove that for a finite Galois extension L of K, a simple sheaf with covering datum on $X \times_K L$ descends to a simple sheaf on X. As a consequence, we show that there is a 1-1 correspondence between the set of geometrically stable sheaves on X with fixed Hibert polynomial P and the set of K-rational points of the corresponding moduli space.

1 Introduction

Let $f: Y \to X$ be a morphism of schemes and $\operatorname{pr}_i: Y \times_X Y \to Y$ the natural projection morphisms. For any quasi-coherent sheaf \mathcal{F} on Y,

The first author is currently supported by ERCEA Consolidator Grant 615655-NMST and also by the Basque Government through the BERC 2014 - 2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013 - 0323. The second author is funded by a CAPES-PNPD fellowship.

²⁰⁰⁰ AMS Subject Classification: Primary 12G05, 16K50, 14D20, 14J60, Secondary 14L24, 14D22.

Key Words and Phrases: Geometrically stable sheaves, Galois descent, Galois cohomology, Brauer group, C_1 -fields.

a covering datum of \mathcal{F} is an isomorphism $\phi : \operatorname{pr}_1^* \mathcal{F} \to \operatorname{pr}_2^* \mathcal{F}$. If f is faithfully flat and quasi-compact then the functor from the category of quasi-coherent sheaves on X to the category of quasi-coherent sheaves on Y with covering datum, induced by pull-back by f, is fully faithful (see $[1, \S 6.1, \operatorname{Proposition} 1]$). Let us consider the simple case when X is a projective variety over a field K, L a finite Galois extension of K and $Y := X \times_K \operatorname{Spec}(L)$ is the base change of X by the field extension L of K. For a coherent sheaf \mathcal{E}_L on Y, descent theory gives a criterion for when there exists a coherent sheaf \mathcal{E} on X such that $f^*\mathcal{E} \cong \mathcal{E}_L$. The descent datum associated to \mathcal{E}_L consists of a covering datum satisfying a cocycle condition. In general, it is not possible to associate to \mathcal{E}_L a descent datum, for example, if \mathcal{E}_L is the structure sheaf of an L-point on Y that does not come from a K-point of X, then there does not exist a descent datum associated to \mathcal{E}_L .

Recall that a field is called C_1 (pseudo-algebraically closed) if any degree d polynomial in n variables with coefficients in the field and n > d has a non-trivial solution. These fields have been studied by Tsen [19], Lang [13], Chevalley [2], Greenberg [6], Grabber-Harris-Starr [5] and many others (see [9, §2.1] for a short introduction to C_1 fields). In this article, we consider the case when X is a projective variety over a C_1 -field K, L is a finite Galois extension of K and $Y := X \times_K \operatorname{Spec}(L)$. We call a simple (resp. geometrically stable) sheaf \mathcal{E}_L on Y, K-simple (resp. K-geometrically stable) if one can associate a covering datum to \mathcal{E}_L (see Definition 2.7).

We prove that:

Theorem 1.1. The natural functor from the category \mathfrak{S}_X of simple sheaves on X to the category $\mathfrak{S}\mathfrak{K}_Y$ of K-simple sheaves on Y, defined by pull-back of sheaves via f, is an equivalence of categories.

Clearly, any coherent sheaf \mathcal{E}_L with covering datum on Y descends to X if the covering datum satisfies the cocycle condition. However, we show that the cocycle condition is indeed satisfied if \mathcal{E}_L is K-simple and

 $H^2(K, \mathbb{G}_m)$ vanishes (see proof of Proposition 2.8). Since K is a C_1 -field, the cohomology group $H^2(K, \mathbb{G}_m)$ is trivial (see [4, Proposition 6.2.3]). We then give an application of Theorem 1.1. Fix P the Hilbert polynomial of a coherent sheaf on X with rank coprime to degree. Denote by $M_X(P)$ the moduli scheme of geometrically stable sheaves on X with Hilbert polynomial P. Recall, a point $x \in X$ is called a K-rational point if the corresponding residue field is contained in K. We show:

Theorem 1.2. There is a 1-1 correspondence between the set of K-rational points of $M_X(P)$ and the set of geometrically stable sheaves on X with Hilbert polynomial P.

We note that a similar result to Theorem 1.2 for stacks has been proven by Kraschen and Lieblich in [12, Proposition 1.1.5]. However their proof uses the theory of gerbes. In contrast our proof uses only basic algebraic geometry.

In $\S 4$ we give possible applications of the above theorems to the existence of rational points (C_1 -conjecture due to Lang, Manin and Kollár) and index of varieties.

Acknowledgements. A part of this work was done when she was visiting ICTP. She warmly thanks ICTP, the Simons Associateship and Prof. Carolina Araujo for making this possible.

2 Galois action on simple sheaves

We begin by recalling the basic definitions and results we need.

Definition 2.1. Let $f: S' \to S$ be a morphism of schemes. Set $S'':= S' \times_S S', S''':= S' \times_S S' \times_S S',$ pr_i : $S'' \to S'$ and pr_{ij} : $S''' \to S''$ the natural projections onto the factors with indices i and j, for i < j, $i, j \in \{1, 2, 3\}$. A descent datum on a quasi-coherent sheaf \mathcal{F} on S' is a covering datum $\phi: \operatorname{pr}_1^* \mathcal{F} \xrightarrow{\sim} \operatorname{pr}_2^* \mathcal{F}$ on \mathcal{F} which satisfies the cocycle condition $\operatorname{pr}_{13}^* \phi = \operatorname{pr}_{23}^* \phi \circ \operatorname{pr}_{12}^* \phi$ i.e., $\operatorname{pr}_{13}^* \phi$ coincides with the composition:

$$\operatorname{pr}_{13}^*\operatorname{pr}_1^*\mathcal{F} \cong \operatorname{pr}_{12}^*\operatorname{pr}_1^*\mathcal{F} \xrightarrow{\operatorname{pr}_{12}^*\phi} \operatorname{pr}_{12}^*\operatorname{pr}_2^* \cong \operatorname{pr}_{23}^*\operatorname{pr}_1^*\mathcal{F} \xrightarrow{\operatorname{pr}_{23}^*\phi} \operatorname{pr}_{23}^*\operatorname{pr}_2^*\mathcal{F} \cong \operatorname{pr}_{13}^*\operatorname{pr}_2^*\mathcal{F},$$

where the three isomorphisms follow from $\operatorname{pr}_1 \circ \operatorname{pr}_{13} = \operatorname{pr}_1 \circ \operatorname{pr}_{12}$, $\operatorname{pr}_1 \circ \operatorname{pr}_{23} = \operatorname{pr}_2 \circ \operatorname{pr}_{12}$ and $\operatorname{pr}_2 \circ \operatorname{pr}_{23} = \operatorname{pr}_2 \circ \operatorname{pr}_{13}$, respectively.

Proposition 2.2 ([1, §6.1, Proposition 1]). Notations as in Definition 2.1. Let $f: S' \to S$ be a faithfully flat and quasi-compact morphism of schemes and \mathcal{F}, \mathcal{G} be quasi-coherent S-modules and set $q:=f \circ \operatorname{pr}_1 = f \circ \operatorname{pr}_2$. Then, identifying $q^*\mathcal{F}$ (resp. $q^*\mathcal{G}$) canonically with $\operatorname{pr}_i^*(f^*\mathcal{F})$ (resp. $\operatorname{pr}_i^*(f^*\mathcal{G})$) for i=1,2, the sequence

$$\operatorname{Hom}_{S}(\mathcal{F},\mathcal{G}) \xrightarrow{f^{*}} \operatorname{Hom}_{S'}(f^{*}\mathcal{F}, f^{*}\mathcal{G}) \xrightarrow{\operatorname{pr}_{2}^{*}} \operatorname{Hom}_{S''}(q^{*}\mathcal{F}, q^{*}\mathcal{G})$$

is exact. In other words, the functor $\mathcal{F} \mapsto f^*\mathcal{F}$ from quasi-coherent S-modules to quasi-coherent S'-modules with covering datum is fully faithful.

We now recall the definition of semi-stable sheaves and simple sheaves.

Definition 2.3. Let \mathcal{E} be a coherent sheaf with support of dimension d. The Hilbert polynomial $P(\mathcal{E})(t)$ of \mathcal{E} can be expressed as (see [7, Lemma 1.2.1])

$$P(\mathcal{E})(t) := \chi(\mathcal{E} \otimes \mathcal{O}_{X_k}(t)) = \sum_{i=0}^d \alpha_i(\mathcal{E}) \frac{t^i}{i!} \text{ for } t >> 0.$$

The reduced Hilbert polynomial is defined as $P_{\text{red}}(\mathcal{E})(t) := \frac{P(\mathcal{E})(t)}{\alpha_d(\mathcal{E})}$. The sheaf \mathcal{E} is called Gieseker~(semi)stable if for any proper subsheaf $\mathcal{F} \subset \mathcal{E},~P_{\text{red}}(\mathcal{F})(t)(\leq) < P_{\text{red}}(\mathcal{E})(t)$ for all t large enough. In other words, \mathcal{E} is (semi)stable if properly included subsheaves have (strictly) smaller reduced Hilbert polynomials.

Definition 2.4. A sheaf \mathcal{E} defined on a projective variety defined over a field k is called simple if $\operatorname{End}(E) \simeq k$.

Lemma 2.5 ([8, Corollary 1.2.8]). If \mathcal{E} is a stable sheaf on a projective variety defined over an algebraically closed field, say k, then $\operatorname{End}(E) \simeq k$.

Notation 2.6. Let K be a C_1 field of any characteristic, X a projective variety over K. Let $K \subset L$ be an algebraic field extension of K (not necessarily finite). There exist natural morphisms

$$\operatorname{pr}_{1,L}:L\to L\otimes_K L,\,\operatorname{pr}_{2,L}:L\to L\otimes_K L$$

where

$$\operatorname{pr}_{1,L}(a) = a \otimes 1$$
 and $\operatorname{pr}_{2,L}(a) = 1 \otimes a$.

This induces morphisms

$$\operatorname{pr}_{i,L}: X_{L\otimes_K L} \to X_L \text{ for } i = 1, 2.$$

Denote by $G_L := \operatorname{Gal}(L/K)$ the Galois group. For any $\sigma \in G_L$, we denote by

$$\sigma: X_L \to X_L$$

the induced natural morphism. Moreover, for $\sigma, \tau \in G_L$, we have $\sigma\tau : L \xrightarrow{\tau} L \xrightarrow{\sigma} L$. As taking spectrum is contravariant, this induces $(\sigma\tau) : X_L \xrightarrow{\sigma} X_L \xrightarrow{\tau} X_L$. Thus, for any coherent sheaf \mathcal{E} on X_L , the pull-back $(\sigma\tau)^*\mathcal{E} = (\sigma^* \circ \tau^*)\mathcal{E}$. In the case $L = \overline{K}$, the algebraic closure, denote by $\operatorname{pr}_i := \operatorname{pr}_{i,\overline{K}}$ and $G := G_{\overline{K}}$.

Definition 2.7. Recall, a sheaf \mathcal{E} on X_L is called geometrically stable if for any field extension L' of L, the sheaf $\mathcal{E} \otimes_L L'$ is stable over $X_L \times_L \operatorname{Spec}(L')$. We call a simple (resp. geometrically stable) sheaf \mathcal{E} on X_L , K-simple (resp. K-geometrically stable) if there exists an isomorphism $\psi : \operatorname{pr}_{1,L}^* \mathcal{E} \to \operatorname{pr}_{2,L}^* \mathcal{E}$. In other words, a K-simple (resp. K-geometrically stable) sheaf is a simple (resp. geometrically stable) sheaf on X_L such that one can associate to it a covering datum.

We now study the action of the Galois group G_L on a simple sheaf \mathcal{E} on X_L . We observe that in the case L is a finite Galois extension of K, \mathcal{E} descends to X if and only if it is K-simple (Theorem 2.9).

Proposition 2.8. Let \mathcal{E} be a K-simple sheaf on X_L . Then, there exists a collection $(\lambda_{\sigma})_{\sigma \in G_L}$ of isomorphisms $\lambda_{\sigma} : \mathcal{E} \to \sigma^* \mathcal{E}$ satisfying the cocycle condition:

$$(\sigma^* \lambda_{\tau}) \circ \lambda_{\sigma} = \lambda_{\sigma\tau}$$
 for any pair $\sigma, \tau \in G_L$.

Proof. Fix $\sigma \in G_L$. Consider the homomorphism $L \otimes_K L \to L$ defined by $a \otimes b$ maps to $a\sigma(b)$. This induces a natural morphism

$$p_{\sigma}: X_L \to X_{L\otimes_K L}.$$

Observe that the morphism p_{σ} has the property that its composition with $\operatorname{pr}_{1,L}$

$$X_L \xrightarrow{p_\sigma} X_{L \otimes_K L} \xrightarrow{\operatorname{pr}_{1,L}} X_L$$

is simply the identity map and with $pr_{2,L}$,

$$X_L \xrightarrow{p_\sigma} X_{L \otimes_K L} \xrightarrow{\operatorname{pr}_{2,L}} X_L$$

is the morphism $\sigma: X_L \to X_L$. Then, $\operatorname{pr}_{1,L}^* \mathcal{E} \cong \operatorname{pr}_{2,L}^* \mathcal{E}$ implies that

$$\mathcal{E} \cong p_{\sigma}^* \operatorname{pr}_{1,L}^* \mathcal{E} \cong p_{\sigma}^* \operatorname{pr}_{2,L}^* \mathcal{E} \cong \sigma^* \mathcal{E}.$$

Therefore, for any $\sigma \in G_L$, there exists an isomorphism $\lambda'_{\sigma} : \mathcal{E} \to \sigma^* \mathcal{E}$. Let $\tau \in G_L$. Since \mathcal{E} is simple,

$$\operatorname{End}(\sigma^*\tau^*\mathcal{E}) \cong \sigma^*\tau^*\operatorname{End}(\mathcal{E}) \cong L.$$

Hence, there exists $a_{\sigma,\tau} \in L^{\times} = \operatorname{Aut}(\sigma^*\tau^*\mathcal{E})$ such that the following diagram is commutative:

This directly implies the following equalities: Given $g_1, g_2, g_3 \in G_L$, we have

$$a_{g_1,(g_2g_3)} \circ \lambda'_{g_1(g_2g_3)} = (g_1^* \lambda'_{g_2g_3}) \circ \lambda'_{g_1}$$
 (2.1)

$$g_1^* a_{g_2g_3} \circ g_1^* \lambda_{q_2q_3}' = (g_1^* g_2^* \lambda_{q_3}') \circ g_1^* \lambda_{q_2}'$$
 (2.2)

$$a_{g_1,g_2} \circ \lambda'_{g_1g_2} = (g_1^* \lambda'_{g_2}) \circ \lambda'_{g_1}$$
 (2.3)

$$((g_1g_2)^*\lambda'_{g_3}) \circ \lambda'_{g_1g_2} = a_{(g_1g_2),g_3} \circ \lambda'_{(g_1g_2)g_3}$$
 (2.4)

(2.5)

Applying $g_1^* a_{g_2,g_3} \circ -$ to both sides of (2.1), we get,

$$g_1^* a_{g_2,g_3} \circ a_{g_1,(g_2g_3)} \circ \lambda'_{g_1(g_2g_3)} = g_1^* a_{g_2,g_3} \circ (g_1^* \lambda'_{g_2g_3}) \circ \lambda'_{g_1}$$

$$= (g_1^* g_2^* \lambda'_{g_3}) \circ g_1^* \lambda'_{g_2} \circ \lambda'_{g_1} \quad \text{by (2.2)}$$

$$= (g_1^* g_2^* \lambda'_{g_3}) \circ a_{g_1,g_2} \circ \lambda'_{g_1g_2} \quad \text{by (2.3)}$$

$$= a_{g_1,g_2} \circ a_{(g_1g_2),g_3} \circ \lambda'_{g_1g_2g_3} \quad \text{by (2.4)}$$

where the last equality follows from the fact that multiplication by a scalar a_{g_1,g_2} commutes with $(g_1^*g_2^*\lambda'_{g_3})$. Since $\lambda'_{g_1g_2g_3}$ is an isomorphism, we have the 2-cocycle condition:

$$g_1^* a_{g_2,g_3} \circ a_{g_1,(g_2g_3)} = a_{g_1,g_2} \circ a_{(g_1g_2),g_3}.$$

Since K is a C_1 field, $H^2(K, \mathbb{G}_m) = 0$ (see [16, p. 161, Proposition 10]). This means that for any sequence $(a_{\sigma,\tau})_{\sigma,\tau\in G_L}$ satisfying the 2-cocycle condition there exists a continuous morphism $\phi: G_L \to L^{\times}$ such that

$$a_{\sigma,\tau} = \sigma \phi(\tau) \phi(\sigma \tau)^{-1} \phi(\sigma).$$

Consider now the isomorphism given by

$$\lambda_{\sigma} := \phi(\sigma)^{-1} \lambda_{\sigma}' : \mathcal{E} \xrightarrow{\lambda_{\sigma}'} \sigma^* \mathcal{E} \xrightarrow{\phi(\sigma)^{-1}} \sigma^* \mathcal{E}, \text{ for all } \sigma \in G_L.$$

Since $\phi(\sigma)$ is scalar, it commutes with $\lambda'_{\sigma\tau}$ i.e., we have the following

commutative diagram:

Using (2.3) and substituting for $a_{\sigma,\tau}$, we conclude that $\sigma^* \lambda'_{\tau} \circ \lambda'_{\sigma}$ equals

$$a_{\sigma,\tau} \circ \lambda'_{\sigma\tau} = \sigma\phi(\tau)\phi(\sigma\tau)^{-1}\phi(\sigma)\lambda'_{\sigma\tau} = \sigma\phi(\tau)\phi(\sigma\tau)^{-1}\lambda'_{\sigma\tau}\phi(\sigma).$$

Therefore,

$$(\sigma^*\lambda_\tau) = (\sigma\phi(\tau))^{-1}\sigma^*\lambda_\tau' = (\phi(\sigma\tau)^{-1}\lambda_{\sigma\tau}') \circ (\phi(\sigma)^{-1}\lambda_\sigma')^{-1} = \lambda_{\sigma\tau} \circ \lambda_\sigma^{-1}.$$

Hence, $(\sigma^* \lambda_{\tau}) \circ \lambda_{\sigma} = \lambda_{\sigma\tau}$. This proves the proposition.

Theorem 2.9. Let L be a finite Galois extension of K and $f: X_L \to X$ the natural morphism. The natural functor from the category \mathfrak{S}_X of simple sheaves on X to the category \mathfrak{S}_{X_L} of K-simple sheaves on X_L , defined by pull-back of sheaves via f, is an equivalence of categories.

Proof. It suffices to show that any simple sheaf \mathcal{E}_L on X_L is K-simple if and only if there exists a simple sheaf \mathcal{E} on X such that $f^*\mathcal{E} \cong \mathcal{E}_L$. By Proposition 2.2, for any simple sheaf \mathcal{E} on X, we have $f^*\mathcal{E}$ is K-simple on X_L . We now prove the converse. Let \mathcal{E}_L be K-simple on X_L . Proposition 2.8 implies that there exists a collection $(\lambda_{\sigma})_{\sigma \in G_L}$ of isomorphisms $\lambda_{\sigma}: \mathcal{E}_L \to \sigma^*\mathcal{E}_L$ such that $(\sigma^*\lambda_{\tau}) \circ \lambda_{\sigma} = \lambda_{\sigma\tau}$ for any pair $\sigma, \tau \in G_L$. By Galois descent, this implies that there exists a coherent sheaf \mathcal{E} on X such that $\mathcal{E}_L \cong f^*\mathcal{E}$. Since f is flat,

$$f^*(\operatorname{End}(\mathcal{E})) \cong \operatorname{End}(\mathcal{E}_L) \cong L.$$

As $\operatorname{End}(\mathcal{E})$ is a K-vector space, this directly implies that $\operatorname{End}(\mathcal{E}) \cong K$ i.e., \mathcal{E} is simple. This proves the theorem.

3 Moduli of *K*-geometrically stable sheaves

Keep Notations 2.6. In this section we use Theorem 2.9 to prove that the set of K-rational points of the moduli space of geometrically stable sheaves on X is in 1-1 correspondence with the set of geometrically stable sheaves on X.

Recall, the definition of the moduli functor of semi-stable sheaves over a projective variety X.

Definition 3.1. Fix P the Hilbert polynomial of a coherent sheaf on X with rank coprime to degree. Denote by $\mathcal{M}_X(P)$ the moduli functor:

$$\mathcal{M}_X(P): \{\operatorname{Sch}/K\}^{\circ} \to \operatorname{Sets}$$

such that for a K-scheme T,

$$\mathcal{M}_X(P)(T) := \left\{ \begin{array}{l} \text{isomorphism classes of pure sheaves } \mathcal{F} \text{ on } X \times T \text{ flat} \\ \text{over } T \text{ and for every geometric point } t \in T, \ \mathcal{F}|_{X_t} \\ \text{is a stable sheaf with Hilbert polynomial } P \text{ on } X_t \end{array} \right\} / \sim$$

where $\mathcal{F} \sim \mathcal{G}$ if there exists an invertible sheaf \mathcal{L} on T such that $\mathcal{F} \cong \mathcal{G} \otimes p_T^* \mathcal{L}$, where $p_T : X_T \to T$ is the natural projection map.

Theorem 3.2 ([14, Theorem 4.1]). Let R be a universally Japanese ring and $f: X \to S$ a projective morphism of R-schemes of finite type with geometrically connected fibres, and let $\mathcal{O}_X(1)$ be an f-ample line bundle. Then, for a fixed polynomial P, there exists a projective S-scheme $M_{X/S}(P)$ of finite type over S which uniformly corepresents the functor

$$\mathcal{M}_{X/S}(P): \{\operatorname{Sch}/S\}^{\circ} \to \operatorname{Sets}$$

such that for a S-scheme T,

$$\mathcal{M}_{X/S}(P)(T) := \left\{ \begin{array}{l} S \text{ equivalence classes of } \text{ pure sheaves } \mathcal{F} \text{ on } X \times_S T \text{ flat} \\ \text{ over } T \text{ such that for every geometric point } t \in T, \ \mathcal{F}|_{X_t} \\ \text{ is a semi-stable sheaf with Hilbert polynomial } P \text{ on } X_t \end{array} \right\} / \sim$$

where $\mathcal{F} \sim \mathcal{G}$ if there exists an invertible sheaf \mathcal{L} on T such that $\mathcal{F} \cong \mathcal{G} \otimes p_T^* \mathcal{L}$, where $p_T : X \times_S T \to T$ is the natural projection map.

Moreover, there is an open subscheme $M_{X/S}^s(P)$ of $M_{X/S}(P)$ which universally corepresents the subfunctor of families of geometrically stable sheaves.

Remark 3.3. Note that a C_1 -field K is a universally Japanese ring. If the rank and degree of coherent sheaves with Hilbert polynomial P, are coprime, then stability and semi-stability coincide (see [8, Lemmas 1.2.13 and 1.2.14]). Then by Theorem 3.2, there exists a projective K-scheme of finite type $M_X(P)$, universally corepresenting the functor $\mathcal{M}_X(P)$.

We now review briefly the construction of the moduli scheme $M_X(P)$. By [14, Theorem 4.2], there exists an integer e such that any semi-stable sheaf on X with Hilbert polynomial P is e-regular (in the sense of Castelnuovo-Mumford regularity). Fix such an integer e. Denote by $\mathcal{H} := \mathcal{O}_X(-e)^{\oplus P(e)}$ and by $\operatorname{Quot}_{\mathcal{H}/X/P}$ the Quot scheme parametrizing all quotients of the form $\mathcal{H} \twoheadrightarrow \mathcal{Q}_0$, where \mathcal{Q}_0 has Hilbert polynomial P(see [15, §4.4] for more details).

Let \mathcal{R} be the subset of $\operatorname{Quot}_{\mathcal{H}/X/P}$ consisting of all points which parametrize quotients of the form $\mathcal{H} \twoheadrightarrow \mathcal{Q}_0$ such that \mathcal{Q}_0 is semi-stable and $H^0(\mathcal{Q}_0(e))$ is (non-canonically) isomorphic to $k^{\oplus P(e)}$. Now, semi-stability is an open condition (see [8, Proposition 2.3.1]). Therefore, \mathcal{R} is an open subscheme in $\operatorname{Quot}_{\mathcal{H}/X/P}$. The group $\operatorname{GL}(P(e)) = \operatorname{Aut}(\mathcal{H})$ acts on $\operatorname{Quot}_{\mathcal{H}/X/P}$ from the right by the composition $[\rho] \circ g = [\rho \circ g]$, where $[\rho: \mathcal{H} \to \mathcal{F}] \in \operatorname{Quot}_{\mathcal{H}/X/P}$ and $g \in \operatorname{GL}(P(e))$. By [14, Theorem 4.3], \mathcal{R} is the set of semi-stable points of $\operatorname{Quot}_{\mathcal{H}/X/P}$ under this group action. The moduli scheme $M_X(P)$ of semi-stable sheaves on X with Hilbert polynomial P is the geometric quotient of \mathcal{R} under this action (see [14, pp. 582, after Theorem 4.3]). Denote by

$$\pi: \mathcal{R} \to M_X(P) \tag{3.1}$$

the corresponding quotient morphism. The quotient exists due to Seshadri's result [17, Theorem 4].

Theorem 3.4. There is a 1-1 correspondence between the set of K-rational points of $M_X(P)$ and the set of isomorphism classes of geometrically stable sheaves on X with Hilbert polynomial P.

Proof. Let $x: \operatorname{Spec}(K) \to M_X(P)$ be a K-rational point of $M_X(P)$. Denote by \mathcal{R}_K the base change of the morphism π in (3.1) by the morphism x. Let $y \in \mathcal{R}_K$ be a closed point. Then y is a L-rational point on \mathcal{R}_K for some finite extension L of K. Without loss of generality assume that L is a finite Galois extension of K. Since the Quot functor is representable, the point y corresponds to a quotient $\phi_y: \mathcal{H}_L \twoheadrightarrow \mathcal{E}_L$ on $X_L:=X\times_K$ Spec(L), where $\mathcal{H}_L \cong \mathcal{H} \otimes_K L$ and \mathcal{E}_L is geometrically stable with Hilbert polynomial P on X_L . For any $\sigma \in \operatorname{Gal}(L/K)$ and the induced morphism $f_\sigma: X_L \xrightarrow{\operatorname{id}_X \times \sigma} X_L$, denote by $f_\sigma^* \phi_y$ the quotient morphism,

$$\mathcal{H}_L \cong f_{\sigma}^* \mathcal{H}_L \twoheadrightarrow f_{\sigma}^* \mathcal{E}_L.$$

By the universal property of Quot scheme, $f_{\sigma}^*\phi_y$ corresponds to the composed morphism:

$$\operatorname{Spec}(L) \xrightarrow{\sigma} \operatorname{Spec}(L) \xrightarrow{y} \mathcal{R}_K.$$

Since \mathcal{R}_K is a fiber to the morphism π , this implies $f_{\sigma}^*\mathcal{E}_L \cong \mathcal{E}_L$. As a result we obtain a set $(\lambda_{\sigma})_{\sigma \in \operatorname{Gal}(L/K)}$ of isomorphisms $\lambda_{\sigma} : \mathcal{E}_L \to \sigma^*\mathcal{E}_L$.

Consider now the morphism

$$\Phi: L \otimes_K L \to \coprod_{\sigma \in \operatorname{Gal}(L/K)} L, \text{ defined by } a \otimes b \mapsto (a\sigma(b))_{\sigma \in \operatorname{Gal}(L/K)}.$$

It is easy to check that Φ is an isomorphism. Consider now the induced morphisms,

$$\Phi_i: \coprod_{\sigma \in \operatorname{Gal}(L/K)} X_L \xrightarrow{\Phi} X_{L \otimes_K L} \xrightarrow{\operatorname{pr}_{i,L}} X_L \ \text{ for } i=1,2.$$

Observe that

$$\Phi_1 = \coprod \operatorname{id} \operatorname{and} \Phi_2 = \coprod_{\sigma \in \operatorname{Gal}(L/K)} f_{\sigma},$$

where $f_{\sigma}: X_L \xrightarrow{\operatorname{id}_X \times \sigma} X_L$. The set of isomorphims $(\lambda_{\sigma})_{\sigma \in \operatorname{Gal}(L/K)}$ then induce an isomorphism $\psi: \Phi_1^* \mathcal{E}_L \xrightarrow{\sim} \Phi_2^* \mathcal{E}_L$. Since Φ is an isomorphism, ψ induces an isomorphism $\operatorname{pr}_{1,L}^* \mathcal{E}_L \xrightarrow{\sim} \operatorname{pr}_{2,L}^* \mathcal{E}_L$ i.e., \mathcal{E}_L is K-geometrically stable.

Since \mathcal{E}_L is geometrically stable, $\mathcal{E}_{\overline{K}} := \mathcal{E}_L \otimes_L \overline{K}$ is stable. By Lemma 2.5, $\mathcal{E}_{\overline{K}}$ is simple. Since $\operatorname{End}(\mathcal{E}_L)$ is an L-vector space and

$$\operatorname{End}(\mathcal{E}_L) \otimes_L \overline{K} \cong \operatorname{End}(\mathcal{E}_{\overline{K}}) \cong \overline{K}$$

we conclude that $\operatorname{End}(\mathcal{E}_L) \cong L$ i.e., \mathcal{E}_L is simple. In particular, \mathcal{E}_L is K-simple. Using Theorem 2.9, there exists a simple sheaf \mathcal{E} on X such that $\mathcal{E} \otimes_K L \cong \mathcal{E}_L$. By [8, Theorem 1.3.7], it follows that \mathcal{E} is geometrically stable.

Conversely, by Theorem 3.2, any geometrically stable sheaf on X with Hilbert polynomial P corresponds to a K-rational point on $M_X(P)$. It is easy to check that the geometrically stable sheaf \mathcal{E} corresponds to the K-rational point x of $M_X(P)$. This gives us a 1-1 correspondence between the K-rational points of $M_X(P)$ and the set of geometrically stable sheaves on X with Hilbert polynomial P. This proves the theorem. \square

4 Applications of descent theory

In this section, we mention the application of descent theory studied before. Recall, the definition of a C_1 field given in the introduction.

Example 4.1. We state without proof some examples of C_1 fields:

- 1. An algebraically closed field is trivially C_1 .
- 2. Finite fields are C_1 (see [2]).
- 3. The function field of an irreducible curve defined over an algebraically closed field is C_1 (see [19]).
- 4. Let R be a Henselian discrete valuation ring of characteristic 0 with residue field denoted k, of characteristic p and fraction field denoted K. If k is algebraically closed, then K is C_1 (see [13, Theorem 14]).

Definition 4.2. A variety Y over an algebraically closed field \overline{K} is separably rationally connected if there exists a morphism $f: \mathbf{P}^1 \to Y$ such that $f^*(T_Y)$ is ample.

Remark 4.3. Note that over an algebraically closed field \overline{K} of characteristic 0, rationally connected is equivalent to separably rationally connected (see [11, Proposition IV.3.3.1]).

The C_1 conjecture (Lang-Manin-Kollár): A smooth, proper, separably rationally connected variety over a C_1 field always has a rational point.

The conjecture has already been proven for various C_1 fields (see [9, Chapter 2] for a complete list).

Remark 4.4. The conjecture remains open in the case when the C_1 field is the fraction field of a maximal unramified discrete valuation ring with algebraically closed residue field of mixed characteristic.

Recently, the conjecture was shown to hold trivially for certain rationally connected varieties over such fields (see [10]). Let $M_{X_K,\mathcal{L}_K}^s(r,d)$ be the moduli space of geometrically stable locally free sheaves of rank r and determinant \mathcal{L}_K . Denote by $M_{X_{\overline{K}},\mathcal{L}_{\overline{K}}}^s(r,d)$ the moduli space of geometrically stable locally free sheaves of rank r and determinant $\mathcal{L}_{\overline{K}}:=\mathcal{L}_K\otimes_K\overline{K}$ over the curve $X_{\overline{K}}:=X_K\times_K\operatorname{Spec}(\overline{K})$. By [18], $M_{X_K,\mathcal{L}_K}^s(r,d)$ is a unirational variety and therefore rationally connected. Since the moduli space $M_{X_K,\mathcal{L}_K}^s(r,d)$ is the base change $M_{X_K,\mathcal{L}_K}^s(r,d)\times_K\operatorname{Spec}(\overline{K})$, this implies $M_{X_K,\mathcal{L}_K}^s(r,d)$ is rationally connected. Suppose that K is the fraction field of a Henselian discrete valuation ring with algebraically closed residue field. Then, $M_{X_K,\mathcal{L}_K}^s(r,d)$ has a K-rational point. This is shown using descent theory of stable sheaves on smooth, projective curves ([10, Theorem 1.2]). It is natural to ask how the descent theory of simple sheaves over C_1 fields can be used to prove the existence of rational points, in the higher dimension case. We cite some recent results in this direction.

Definition 4.5. Recall, the *index* of X, denoted $\operatorname{ind}(X)$, is the gcd of the set of degrees of zero dimensional cycles on X.

Remark 4.6. Clearly, the notion of index generalizes the idea of having a rational point. Applying Theorem 2.9 to the case of invertible sheaves on varieties, one can obtain a sufficient criterion for any projective variety defined over a C_1 field to have index 1.

Definition 4.7. Denote by G the absolute Galois group $\operatorname{Gal}(\overline{K}/K)$. An invertible sheaf $\mathcal{L}_{\overline{K}}$ on $X_{\overline{K}} := X \times_K \operatorname{Spec}(\overline{K})$ is called G-invariant if for any $\sigma \in G$ and the corresponding morphism $\sigma : X_{\overline{K}} \to X_{\overline{K}}$, we have $\sigma^*\mathcal{L}_{\overline{K}} \cong \mathcal{L}_{\overline{K}}$. Denote by $\Lambda \subset \operatorname{Pic}(X_{\overline{K}})$ the subgroup of $\operatorname{Pic}(X_{\overline{K}})$ consisting of all G-invariant invertible sheaves on $X_{\overline{K}}$. Denote by $e := \gcd\{\chi(\mathcal{L}_{\overline{K}}) | \mathcal{L}_{\overline{K}} \in \Lambda\}$. We call e the linear index of X, denoted $\lim_{x \to \infty} \operatorname{Ind}(X)$.

Theorem 4.8. Suppose that $H^1(\mathcal{O}_X) = 0$, $\operatorname{Pic}(X_{\overline{K}})$ is of rank r, generated by $\mathcal{L}_1, ..., \mathcal{L}_{r-1}$ and $\mathcal{L}_r := H_{\overline{K}} = H \otimes_K \overline{K}$ satisfying the following conditions:

- 1. the ideal $(\deg(\mathcal{L}_1), \deg(\mathcal{L}_2), ..., \deg(\mathcal{L}_r))$ in \mathbb{Z} generated by $\deg(\mathcal{L}_i)$ for i = 1, ..., r coincides with the ideal (1),
- 2. for any $r \times r$ -matrix $A = (a_{i,j})$ with integral entries $a_{i,j}$, $a_{r,k} = 0$ for all k < r, $a_{r,r} = 1$, $A \neq \text{Id}$ and $A^t = \text{Id}$ for some t > 0, we have $\sum_j a_{ij} \deg(\mathcal{L}_j) \neq \deg(\mathcal{L}_i)$ for some i > 0.

Then, each \mathcal{L}_i is G-invariant,

$$\lim -\operatorname{ind}(X) = \gcd\{\chi(\mathcal{L}_i(n))|i=1,...,r \text{ and } n \in \mathbb{Z}\} = 1$$

and

$$ind(X) = 1$$
 if $char(k) = 0$

and

prime-to-p part of
$$ind(X)$$
 equals 1 if $char(k) = p > 0$.

By prime-to-p part of N we mean the largest divisor of N which is prime to p.

Proof. See [3] for the proof.

As a consequence of Theorem 4.8, we obtain numerous examples of smooth, projective varieties on C_1 -fields with index 1.

Example 4.9. Let X be a smooth, projective variety with $\deg(H_{\overline{K}}) > 2$, $H^1(\mathcal{O}_X) = 0$, $\operatorname{Pic}(X_{\overline{K}})$ is of rank 2 and there exists an invertible sheaf \mathcal{L}_0 of degree coprime to $\deg(H_{\overline{K}})$ (for example, a smooth surface X in \mathbb{P}^3_K of degree at least 3 with $\operatorname{rk}(\operatorname{Pic}(X_{\overline{K}})) = 2$ and $X_{\overline{K}}$ contains a curve of degree coprime to $\deg(X)$). Theorem 4.8 implies that every invertible sheaf on $X_{\overline{K}}$ is G-invariant and $\operatorname{ind}(X) = \operatorname{lin} - \operatorname{ind}(X) = 1$.

References

- [1] S. Bosch, W. Lütkebohmert, and M. Raynaud. *Néron models*, volume 21. Springer Science & Business Media, 2012.
- [2] C. Chevalley. Démonstration d'une hypothèse de M. Artin. Abh. Math. Semin. Univ. Hamb., 11:73-75, 1935.
- [3] A. Dan and I. Kaur. Examples of varieties with index one on C_1 -fields. Journal of Number Theory, 203:242–248, 2019.
- [4] P. Gille and T. Szamuely. Central simple algebras and Galois cohomology, volume 165. Cambridge University Press, 2017.
- [5] T. Graber, J. Harris, and J. Starr. Families of rationally connected varieties. *Journal of the American Mathematical Society*, pages 57– 67, 2003.
- [6] M. J. Greenberg. Lectures on forms in many variables, volume 31.W. A. Benjamin New York-Amsterdam, 1969.
- [7] B. Hassett and K. Lai. Cremona transformations and derived equivalences of K3 surfaces. Compositio Mathematica, 154(7):1508–1533, 2018.
- [8] D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Springer, 2010.

- [9] I. Kaur. The C_1 conjecture for the moduli space of stable vector bundles with fixed determinant on a smooth projective curve. Ph. d. thesis, Freie University Berlin, 2016.
- [10] I. Kaur. A pathological case of the C₁ conjecture in mixed characteristic. Mathematical Proceedings of the Cambridge Philosophical Society, 167(1):61–64, 2019.
- [11] J. Kollár. *Rational curves on algebraic varieties*, volume 32. Springer Science & Business Media, 2013.
- [12] D. Krashen and M. Lieblich. Index reduction for brauer classes via stable sheaves. *International Mathematics Research Notices*, 2008.
- [13] S. Lang. On quasi algebraic closure. *Annals of Mathematics*, pages 373–390, 1952.
- [14] A. Langer. Moduli spaces of sheaves in mixed characteristic. *Duke Mathematical Journal*, 124(3):571–586, 2004.
- [15] E. Sernesi. Deformations of Algebraic Schemes. Grundlehren der Mathematischen Wissenschaften-334. Springer-Verlag, 2006.
- [16] J. P. Serre. Local fields, volume 67. Springer Science & Business Media, 2013.
- [17] C. S. Seshadri. Geometric reductivity over arbitrary base. *Advances* in *Mathematics*, 26(3):225–274, 1977.
- [18] C. S. Seshadri. Fibrés vectoriels sur les courbes algébriques: conférences à l'ENS, Juin 1980. Number 95-96. Société Mathématique de France, 1982.
- [19] C. Tsen. Divisionsalgebren über Funktionenkörpern. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1933:335–339, 1933.

Ananyo Dan Basque Centre for Applied Mathematics Alameda de Mazarredo 14 48009 Bilbao, Spain

Email: adan@bcamath.org

Inder Kaur

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

R. Marquês de São Vicente, 225

Gávea, Rio de Janeiro - RJ, 22451-900, Brasil

Email: inder@mat.puc-rio.br