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The spectrum of torsion free sheaves on

P3 and applications

Charles Almeida

Abstract

We study the spectrum of rank 2 torsion free sheaves on P3

with aim of producing examples of distinct irreducible components

of the moduli space with the same spectrum answering a question

addressed in [15] for the case of torsion free sheaves. In order to

do so, we provide a full description of the spectrum of the sheaves

in the moduli space of semistable rank 2 torsion free sheaves on P3

with Chern classes (c1, c2, c3) equals to (−1, 2, 0) and (0, 3, 0).

1 Introduction

The question about the number of irreducible components of the moduli

space of stable rank 2 locally free sheaves did attract the attention of many

mathematicians during the late 80s and early 90s. During this period,

several results were obtained, for moduli spaces with small Chern classes

(see [2], [4], [7], [10], [13] for some examples).
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Usually, the approach to obtain such results is to characterize irreducible

components inside the moduli space, and then prove that the components

found are the only possible. The second task, that is, the exhaustion

of all irreducible components are often the most challenging part of the

problem. To deal with this problem Barth and Elencwajg in [3] introduced

the notion of spectrum of a locally free sheaf, that was generalized to

rank 2 reflexive sheaves by Hartshorne in [8], and later for torsion free

sheaves with arbitrary rank on Pn by Okonek and Spindler in [14]. The

spectrum assigns to each torsion free sheaf a finite number of integers

satisfying some properties (see Section 2 for details), and one of their

most important features is that they provide a tool to systematic exhaust

all possible families of sheaves in the moduli space.

In [15], Rao addressed the problem of finding two different irreducible

components of the moduli space of locally free sheaves with the same

spectrum, we will call this the Rao’s question, until the end of this note.

He presented two different families of locally free sheaves with the same

spectrum, but, as he pointed out, he did not prove that these families

are irreducible components of the moduli space, and at the best of our

knowledge this question remains open.

In this work, we will focus on Rao’s question for the case of torsion free

sheaves. We study the notion of spectrum of rank 2 torsion free sheaves

on P3, and then prove that there are distinct irreducible components of

the moduli space of semistable rank 2 torsion free sheaves on P3, whose

general sheaves have the same spectrum.

Next we outline the content of this work. In Section 2 we recall the

notion of spectrum for rank 2 torsion free sheaves and some of its prop-

erties obtained by Okonek and Spindler at [14], and we obtain a relation

between the spectrum of a rank 2 torsion free sheaf on P3 and the num-

ber s = h0(Ext2(E,OP3)). In Section 3, we study the relation between

the singularity type of a torsion free sheaf E (see Definition 10) and the

number s = h0(Ext2(E,OP3)).

Finally, in Section 4, we compute all the possible spectrum for sheaves in
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the moduli space of rank 2 Gieseker semistable torsion free sheaves on P3,

denoted by M(c1, c2, c3) with Chern classes (c1, c2, c3), for (c1, c2, c3) =

(−1, 2, 0) and for (c1, c2, c3) = (−1, 3, 0), and prove that the list of spec-

trum presented in Table 1 is exhaustive. With the help of these results we

give explicit examples of different irreducible components with the same

spectrum in these moduli spaces.

Acknowledgements. The author was supported by the FAPESP

grant number 2014/08306-4 and 2016/14376-0, and PNDP Post-doctoral

grant at IME-USP. I would like to thank Marcos Jardim for encouraging

me to write this note and for the several helpful discussions.

Notation and Conventions. In this work, K is an algebraically closed

field of characteristic zero; P3 := Proj(K[x, y, z, w]). We will not make any

distinction between vector bundles and locally free sheaves, and H i(F )

will denote the i-th sheaf cohomology group of a sheaf F on P3, and hi(F )

its dimension. Let M(c1, c2, c3) denote the Gieseker–Maruyama moduli

scheme of semistable rank 2 torsion free sheaves on P3 with the first,

second and third Chern classes equal to c1, c2 and c3, respectively. In

addition, we also define R(c1, c2, c3) to be the open subset ofM(c1, c2, c3)

consisting of stable reflexive sheaves, and B(c1, c2, c3) to be the open subset

ofM(c1, c2, c3) consisting of stable locally free sheaves. Whenever we deal

with rank r normalized sheaves, we will denote its first Chern class by e

instead of c1, to emphasize that e ∈ {−r + 1,−r + 2, · · · , 0}.

2 The spectrum of torsion free sheaves

In this section we will present the definition of spectrum given by

Okonek and Spindler in [14], and their main properties.

The following result, ensures the existence of spectrum for torsion free

sheaves.

Theorem 1. Let E be a rank r torsion free sheaf on P3, with generic

splitting type (a1, · · · , ar), with ai ∈ Z, and a1 ≤ a2 ≤ · · · ≤ ar, and s =
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h0(Ext2(E,OP3)). Then there exists a list of m integers (k1, k2, ..., km),

with k1 ≤ k2 ≤ . . . ≤ km such that

a) h1(E(l)) = s+

m∑
i=1

h0(OP1(ki + l + 1) if l ≤ −as − 1

b) h2(E(l)) =
m∑
i=1

h1(OP1(ki + l + 1) if l ≥ a1 − 3

Proof. See [14, Theorem 2.3].

Definition 2. Let E be a rank r torsion free sheaf on P3, with generic

splitting type (a1, · · · , ar), with ai ∈ Z, and a1 ≤ a2 ≤ · · · ≤ ar, and

s = h0(Ext2(E,OP3)). Then the list of m integers (k1, k2, ..., km), provided

by the previous theorem is called spectrum of the sheaf E.

Next, for a torsion free sheaf E the number s = h0(Ext2(E,OP3)) can

be related with the cohomology of the sheaf E.

Lemma 3. Let E be a rank r torsion free sheaf on P3, then for t << 0,

h0(Ext2(E,OP3)) = h1(E(t)).

Proof. See [14, Lemma 2.1].

The next result relates the Euler characteristic of the sheaf with its

spectrum.

Proposition 4. Let E be a rank 2 torsion free sheaf on P3, with generic

splitting type (a1, a2), spectrum (k1, . . . , km) and s = h0(Ext2(E,OP3)). If

a2 − a1 ≤ 2 then

m∑
i=1

ki = m(a2 − 1)− χ(E(−a2 − 1))− s.

Proof. See [14, Proposition 2.7 ii)].

At this point, it is still not clear how many elements a sheaf E on P3

can have in its spectrum. The next chain of results will prove that, for a

semistable sheaf, one has c2(E) = m where m is the number of elements

in the spectrum of E.
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Proposition 5. Let E be a torsion free sheaf on P3, with m elements in

its spectrum, and H ⊆ P3 a generic hyperplane. Then we have:

m = χ(EH(−a2 − 1)). (1)

Proof. See [14, Proposition 2.7]

We will use the above results to deduce some important properties of

semistable rank 2 torsion free sheaves on P3.

Proposition 6. Let E be a normalized stable rank 2 torsion free sheaf on

P3, and H ⊆ P3 a generic hyperplane. Then it follows that

m = χ(EH(−1)) = c2(E). (2)

Proof. Since E is a normalized stable rank 2 torsion free sheaf on P3,

we have that the splitting type of E is either (−1, 0), if c1(E) = −1

or (0, 0), if c1(E) = 0. By Proposition 5, it is enough to prove that

c2(E) = χ(EH(−1)).

Fix a generic hyperplane H ⊂ P3. Consider the sequence of restriction

0→ OP3(−1)→ OP3 → OH → 0. (3)

Tensoring this sequence by E(−1), one has that

0→ E(−2)→ E(−1)→ E|H(−1)→ 0, (4)

Note that Tor1(E(−1),OP3) = 0, since it is a torsion subsheaf of the

torsion free sheaf E(−2). Computing the Euler characteristic we have

that

χ(E|H(−1)) = χ(E(−1))− χ(E(−2)) = c2(E), (5)

which give us our result.

Combining Propositions 5 and 6, we have the following.
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Proposition 7. Let E be a normalized, semistable torsion free sheaf on

P3 with s = h0(Ext2(E,OP3)). Then Then we have the following.

a) If c1(E) = −1, then c3(E) = −2
∑
ki − c2(E)− 2s.

b) If c1(E) = 0, then c3(E) = −2
∑
ki − 2s.

Proof. Since c1(E) = −1, recall that by Hirzebruch-Riemann-Roch, the

Euler characteristic of E is χ(E(t)) =
1

6
(t+1)(t+2)(2t+3)− 1

2
(c2(E)(2t+

3) + c3(E)), using this, and the fact that m = c2(E) in Proposition 4 we

have that c3(E) = −2
∑
ki − c2(E)− 2s which proves item a).

The proof of item b) is analogous, just recall that the Euler characteristic

of E is χ(E(t)) =
1

3
(t+ 1)(t+ 2)(t+ 3)− (c2(E)(t+ 2) +

1

2
c3(E)).

The following piece of notation will be used to obtain a result that give

us numerical properties for the spectrum of a sheaf. For any torsion free

sheaf E, on P3 there exists an exact sequence of the form

0→ R→ F → E → 0, (6)

where F is a locally free sheaf, and R a reflexive sheaf. Applying the

functor Hom(−,OP3) in the sequence (6), one has that Ext2(E,OP3) '
Ext1(R,OP3). Hence the support of the sheaf Ext2(E,OP3) is zero dimen-

sional. Therefore, it is possible to find a hyperplane H ⊂ P3 such that

H∩Supp Ext2(E,OP3) = ∅, with this, we define sEH
= h0(Ext1(E,OP3)⊗

OH). The next proposition, together with Proposition 4 will be use-

ful when computing all possible spectrum for sheaves with fixed Chern

classes.

Proposition 8. Let E be a rank 2 torsion free sheaf on P3, with splitting

type (a1, a2) and spectrum (k1, · · · , km).

a) Let k > a2+1, if there is at least sEH
+1 elements ki in the spectrum,

such that ki ≥ k, then each k
′
, such that a2 + 1 ≤ k′ ≤ k appears in

the spectrum.
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b) If k ≤ a1 − 1 is in the spectrum, so every integer k
′
, such that

k ≤ k′ ≤ −1. Appears in the spectrum.

Furthermore, if E is reflexive then the following holds:

c) (k1, · · · , km) is symmetric around 0.

Proof. See [14, Prop 2.4] for the items a) and b), and [8, Proposition 7.2]

for the item c).

If we consider rank 2 semistable torsion free sheaves on P3, then their

Chern classes determine the splitting type, and by Proposition 6, it de-

termines the number of possible elements in the spectrum, and hence it

determines all possible sequences of integers that can be the spectrum of

some torsion free sheaf. In [9], the authors investigated this question and

proved that for c1 = 0 and c2 up to 19 any sequence of integers satisfying

the properties of Proposition 8, occurs as the spectrum of some locally free

sheaf on P3 (see [9, Theorem 2.1]). It is still not known if the same is true

for Chern classes greater than 19, and it would be interesting to determine

when a sequence of integers can be the spectrum for some sheaf. We end

this section with an upper bound for the number s = h0(Ext2(E,OP3))

when E is a torsion free sheaf with c3(E) = 0.

Proposition 9. Let E be a normalized semistable rank 2 torsion free

sheaf on P3 with Chern classes c1(E) = e, c2(E) = c2 and c3(E) = 0, with

e ∈ {−1, 0}. Additionally, let s = h0(Ext2(E,OP3)). Then the following

holds.

a) If e = 0, then s ≤ c22+c2
2 .

b) If e = −1, then s ≤ c22+3c2
2 .

Proof. We will prove a), the item b) is analogous. Let E be a normalized

semistable rank 2 torsion free sheaf on P3 with c3(E) = 0 such that s =

h0(Ext2(E,OP3)). By Proposition 7, we have that s = −
∑c2

i=1 ki, where

(k1, ..., kc2) is the spectrum of E. Given a sequence of integers (n1, ..., nc2)
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satisfying the properties of Proposition 8, the maximum value of−
∑c2

i=1 ni

is attained when (n1, ..., nc2) = (−c2,−c2 + 1, ...,−1), therefore

s ≤
c2∑
i=1

i =
c2

2 + c2

2
,

from which our result follows.

In Section 4 we will see that the above inequality is not sharp for sheaves

on P3, with Chern classes (−1, 2, 0).

3 Spectrum and singularity type of a torsion free

sheaf

In this section we will study the relation between the singularities of a

torsion free sheaf E and the number s = h0(Ext2(E,OP3)). First we will

recall the notion of singularity type of a torsion free sheaves introduced

by Jardim, Markushevich and Tikhomirov in [12, Introduction].

Definition 10. Let E be a torsion free sheaf on P3, and set QE := E∨∨/

E, which we assume to be nontrivial; then we have the following short

exact sequence:

0→ E → E∨∨ → QE → 0 (7)

and say that E has

1. 0-dimensional singularities if dimQE = 0;

2. 1-dimensional singularities if QE has pure dimension 1;

3. mixed singularities if dimQE = 1, but QE is not pure.

Given a normalized rank 2 semistable sheaf on P3, with 0-dimensional

singularities, we will prove next that the number s = h0(Ext2(E,OP3)) is

bounded by a formula depending only on the Chern classes of the sheaf.

This result will help us to characterize all possible spectrum for sheaves

with fixed Chern classes.
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Proposition 11. Let E be a normalized semistable rank 2 torsion free

sheaf on P3, with 0-dimensional singularities and Chern classes c1(E) = e,

c2(E) = c2 and c3(E) = 0, with e ∈ {−1, 0}. Additionally, let s =

h0(Ext2(E,OP3)). Then we have the following.

a) If e = 0, then s ≤ c2
2 − c2 + 2

2
;

b) If e = −1, then s ≤ c2
2

2
if c2 is even, and s ≤ c2

2 − 1

2
if c2 is odd.

Moreover, these bounds are sharp.

Proof. First we will prove a). Let E be as in the conditions of the theorem,

and e = 0. Assume by contradiction that s ≥ c2
2 − c2 + 2

2
+ 1. Since E is

a torsion free sheaf, the sheaf QE in the sequence (7) is an artinian sheaf

of length s. It follows that the total Chern polynomial of QE is ct(QE) =

1 + 2st3 hence c2(E∨∨) = c2(E), and c3(E∨∨) = 2s. This implies that

c3(E∨∨) = c2
2−c2 +3(∗). Since E∨∨ is reflexive, it follows from (∗) and [8,

Theorem 8.2 a)] that E∨∨ is properly semistable, which is a contradiction

according to [12, Lemma 3] that says that if E is a semistable rank 2

torsion free sheaf on P3, with 0-dimensional singularities, and c3(E) = 0,

then E∨∨ must be stable. Therefore we have that s ≤ c2
2 − c2 + 2

2
.

To prove the item b), let e = −1. Note that, E (hence E∨∨) is stable

since the first Chern class of E is odd. Assume by contradiction that s ≥
c2

2

2
+1, repeating the same argument as before, we get that c3(E∨∨) ≥ c2

2 +

2, but, by [8, Theorem 8.2 d)] it follows that E∨∨ is properly semistable,

which is a contradiction.

To see that the bounds are sharp, for the item a) consider F ∈ R(0, c2, c
2
2−

c2 + 2), and let S be the union of
c2

2 − c2 + 2

2
distinct points pi ∈ P3, such

that pi 6∈ SingF . Then there exists a surjective morphism ϕ : F → OS .

Since pi 6∈ SingF , consider an open cover
⋃
Ui of P3, such that each

Ui contains pi and none of the other points, neither the singularities of

F . Hence F trivializes to 2 · OUi on each Ui. Therefore, for each i, we
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have an epimorphism ϕi : 2 · OUi → Opi,Ui that glues to an epimorphism

ϕ : F → OS .

It is easy to check that E := kerϕ is a semistable rank 2 torsion

free sheaf in M(0, c2, 0) such that E∨∨ ' F , and QE ' OS , therefore,

s = h0(QE) = length QE =
c2

2 − c2 + 2

2
. The proof for the item b) is

analogous, just consider the sheaves F ∈ R(−1, c2, c
2
2), and S the union

of
c2

2

2
for c2 even (or

c2
2 − 1

2
for c2 odd) distinct points pi ∈ P3, such that

pi 6∈ SingF .

It is important to remark that there exists semistable rank 2 torsion free

sheaves on P3, for instance, consider p1, p2 ∈ P3, two distinct points. The

sheaf E = Ip1 ⊕Ip2 is a rank 2 torsion free sheaf on P3 such that c3(E) =

−4, where Ipi denotes the ideal sheaf of pi, for i = 1, 2. However, the

interest in the study of torsion free sheaves with the third Chern class being

non-negative, is that the moduli spaceM(c1, c2, c3) is the compactification

of R(c1, c2, c3), that is, some of the sheaves inM(c1, c2, c3) can be seen as

deformation of sheaves in R(c1, c2, c3). In particular, M(c1, c2, 0) is the

compactification of B(c1, c2, 0),

The next result characterizes when a sheaf E has pure 1-dimensional

singularities in terms of the number s = h0(Ext2(E,OP3)).

Theorem 12. Let E be rank 2 torsion free sheaf P3. Then, E has pure

1-dimension singularities if, and only if, s = h0(Ext2(E,OP3)) = 0.

Proof. Note that for t << 0, we have s = h1(E(t)) by Lemma 3. By

the long exact sequence of cohomology of the sequence (7), we see that

h1(E(t)) = h0(QE(t)).

Now, let ZE ⊂ QE be the maximal 0-dimensional subsheaf of QE , and

TE = QE/ZE . We have the following exact sequence:

0→ ZE → QE → TE → 0. (8)

Now, if s = 0, then using the long exact sequence in cohomology from

(8), we see that h0(ZE(t)) = 0 since h0(QE(t)) = s = 0 for t << 0.
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Since ZE has finite length it implies that ZE = 0, hence E has pure 1-

dimensional singularities. On the other hand, suppose that E has pure

1-dimensional singularities, then h0(QE(t)) = 0 for t << 0 since QE is

supported on a pure 1-dimensional scheme. Once h0(QE(t)) = h1(E(t))

for t << 0, and the former is equal to s, we have our result.

4 Applications to moduli spaces

In this section we will study the behaviour of the spectrum of torsion

free sheaves in the different irreducible components of their moduli spaces.

We will show that if we allow torsion free sheaves instead of locally free

sheaves, then there are examples of different irreducible components with

the same spectrum. We will recall some results from [1] that will be used

here.

Theorem 13. Given positive integers n,m such that exists an irreducible

component R∗(e, n,m) ⊂ R(e, n,m) with the expected dimension, 8n −
3 + 2e. For each r ≥ 2, and s such that 0 ≤ s ≤ 2r + 2 + e − m, or,

for r = 1, s = 0, and n = m = 1, there exists an irreducible component

X(e, n,m, r, s) of M(e, n+ 1,m+ 2 + e− 2r− 2s) of dimension 8n+ 4s+

2r + 2 + e. Such that the general sheaf E ∈ X(e, n,m, r, s) fits into an

exact sequence of the form

0→ E → E∨∨ → OS ⊕Ol(r)→ 0, (9)

where E∨∨ ∈ R∗(e, n,m), OS = ⊕s
1Opi where pi are closed points of P3

outside Sing E∨∨ and l is a line in P3 not intersecting the points pi nor

Sing F .

Proof. See [1, Theorem 10].

Theorem 14. For every nonsingular irreducible component R∗(e, n,m)

of R(e, n,m) of expected dimension 8n−3+2e, there exists an irreducible

component T(e, n,m, s) of dimension 8n− 3 + 2e+ 4s in M(e, n,m− 2s)

whose generic sheaf E satisfies E∨∨ ∈ R∗(e, n,m) and length(QE) = s.
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Proof. See [1, Theorem 9].

4.1 The moduli space M(−1, 2, 0)

In [1] there is a complete characterization of all possible irreducible

components ofM(−1, 2, 0). More precisely one has the following theorem.

Theorem 15. The moduli space of rank 2 stable sheaves on P3 with Chern

classes c1 = −1, c2 = 2, c3 = 0, M(−1, 2, 0), has exactly 4 irreducible

components, namely:

a) The closure of the family of stable rank 2 locally free sheaves that

are obtained by Serre’s construction, as extensions of ideal sheaves

of two irreducible conics, with dimension 11. This irreducible com-

ponent will be denoted by C(2);

b) The irreducible component X(−1, 1, 1, 1, 0) of dimension 11, described

by Theorem 13, whose generic element is a torsion free sheaf E such

that E∨∨ ∈ R(−1, 1, 1) and QE is supported on a line.

c) The irreducible component T(−1, 2, 2, 1) of dimension 15 described

in Theorem 14, whose generic sheaf is a torsion free sheaf E such

that E∨∨ ∈ R(−1, 2, 2) and QE is a length 1 sheaf.

d) The irreducible component T(−1, 2, 4, 2) of dimension 19 described

by the Theorem 14, whose generic sheaf is a torsion free sheaf E

such that E∨∨ ∈ R(−1, 2, 4) and QE is a length 2 sheaf, supported

at two distinct points.

Proof. See [1, Theorem 26].

Proposition 16. The general spectrum of each component ofM(−1, 2, 0)

is given by following table.

Moreover, all the possible spectra for a sheaf E ∈ M(−1, 2, 0) are in the

above table.
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Table 1: Irreducible Components of M(−1, 2, 0)

Component Dimension General Spectrum

C(2) 11 (-1,0)

X(−1, 1, 1, 1, 0) 11 (-1,0)

T(−1, 2, 2, 1) 15 (-1,-1)

T(−1, 2, 4, 2) 19 (-2,-1)

Proof. Let E be the generic sheaf in C(2). Then, E is obtained by the

extension of two disjoint irreducible conics Y , via Hartshorne Serre’s Cor-

respondence:

0→ OP3(−2)→ E → IY (1)→ 0,

where IY is the ideal sheaf of Y . Twisting the above sequence by OP3(t),

and using the long exact sequence of cohomology, we conclude that the

cohomology table of E is given by Table 2.

Table 2: dim Hi(E(k)) for the generic E ∈ C(2)

k\i 1 2

−1 1 0

−2 0 1

−3 0 3

−4 0 5

By Proposition 6, the spectrum of E has the form (k1, k2) for some integers

k1, k2. Using this fact, and the Table 2, in the Theorem 1, we conclude

that the spectrum of E is (−1, 0).

Let E be the generic sheaf in X(−1, 1, 1, 1, 0). By Theorem 13, E fits

into an exact sequence of the form:

0→ E → F → Ol(1)→ 0,

where l ⊂ P3 is a line and F ∈ R(−1, 1, 1). By [1, Remark 1], any such F

fits into an exact sequence of the form:
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0→ OP3(−2)→ 3.OP3(−1)→ F → 0.

Twisting the two above sequence by OP3(t), and using their long exact

sequence of cohomology, we conclude that the cohomology table of E is

given by Table 3.

Table 3: dim Hi(E(k)) for the generic E ∈ X(−1, 1, 1, 1, 0)

k\i 1 2

−1 1 0

−2 0 1

−3 0 3

−4 0 5

Therefore we conclude that the spectrum of E is (−1, 0).

Let E be the generic sheaf in T(−1, 2, 2, 1), by Theorem 14, E fits into

and exact sequence of the form

0→ E → F → Op → 0,

where F ∈ R(−1, 2, 2) and p ∈ P3, is a closed point such that p 6∈ Sing F .

Twisting the above sequence by OP3(t), and using its long exact sequence

of cohomology, with help of [5, Table 2.6.1], where the cohomology table

of F is computed we conclude that the cohomology table of E is given by

Table 4.

Table 4: dim Hi(E(k)) for the generic E ∈ T(−1, 2, 2, 1)

k\i 1 2

−1 1 0

−2 1 2

−3 1 4

−4 1 6

Therefore we conclude that the spectrum of E is (−1,−1).
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Let E be the generic sheaf in T(−1, 2, 4, 2), by Theorem 14, E fits into

and exact sequence of the form

0→ E → F → Op ⊕Op → 0,

where p, q ∈ P3, are different closed points such that p, q 6∈ Sing F and

F ∈ R(−1, 2, 4). By [8, Lemma 9.5], any such F fits into an exact sequence

of the form:

0→ OP3(−1)→ F → IY → 0,

where Y is a conic in P3. Twisting the two above sequence by OP3(t),

and using their long exact sequence of cohomology, we conclude that the

cohomology table of E is given by Table 5.

Table 5: dim Hi(E(k)) for the generic E ∈ T(−1, 2, 4, 2)

k\i 1 2

−1 2 1

−2 2 3

−3 2 5

−4 2 7

Therefore we conclude that the spectrum of E is (−2,−1).

By Theorem 15, the above considerations exhausts all irreducible com-

ponents of M(−1, 2, 0). Therefore now we shall show that the list of

spectrum appearing in Table 1 exhausts all possibilities. Indeed, Let

E ∈M(−1, 2, 0), by Proposition 6, the spectrum of E has the form (k1, k2)

for some integers k1, k2. Since E is semistable, the splitting type of E is

(−1, 0). Applying Proposition 8, we see that the only possibilities for k1

and k2 are (−1, 0), (−1,−1) and (−2,−1) what concludes our proof.

In particular, the general sheaves in C(2) and X(−1, 1, 1, 1, 0) have the

same spectrum (−1, 0), thus answering the question proposed by Rao in

[15] for the case of torsion free sheaves. It is important to highlight that,
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for locally free sheaves, it still not known if there are two irreducible

components of the moduli space in which the general sheaves have the

same spectrum. Moreover this result shows that the inequality given by

Proposition 9b) is not sharp.

4.2 The moduli space M(0, 3, 0)

The first known irreducible components of M(0, 3, 0) are those corre-

sponding to the locally free sheaves. Clearly B(0, 3, 0) ⊂ M(0, 3, 0), and

in [6] the authors proved that B(0, 3, 0) has exactly two irreducible compo-

nents, namely the Instanton component, whose generic sheaf corresponds

to those who can be obtained as the cohomology of a monad of the form:

0→ 3.OP3(−1)→ 8.OP3 → 3.OP3(1)→ 0, (10)

and the Ein component whose generic sheaf corresponds to those who can

be obtained as the cohomology of a monad of the form:

0→ OP3(−2)→ OP3(−1)⊕ 2.OP3 ⊕OP3(1)→ OP3(2)→ 0. (11)

In [12] the authors described the irreducible components of the moduli

space M(0, 3, 0). These components can be also obtained by the Theo-

rem 13. Indeed, is easy to check that T(0, 3, 2, 1),T(0, 3, 4, 2), T(0, 3, 6, 3)

and T(0, 3, 8, 4) are irreducible components of M(0, 3, 0), with dimension

25, 29, 33 and 37, respectively. Moreover, they found an irreducible com-

ponent, denoted by C whose generic sheaf E has singularities along a

smooth plane cubic C and satisfies the following exact sequence:

0→ E → 2.OP3 → L(2)→ 0, (12)

where L is a line bundle over C with Hilbert polynomial PL(k) = 3k such

that L 6' ωC , where ωC is the canonical sheaf of C.

Additionally, in [11], the authors obtained 3 irreducible components

whose general sheaves have mixed singularities. Those components can
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also be obtained by the Theorem 13, and described by X(0, 2, 2, 2, 0),

X(0, 2, 4, 3, 0) and X(0, 2, 4, 2, 1), irreducible components ofM(0, 3, 0) with

dimension 22, 24 and 26, respectively.

With the help of [5, Table 2.8.1], and [5, Table 2.12.2], we can com-

pute the general spectrum of the sheaves in the components X(0, 2, 2, 2, 0),

X(0, 2, 4, 3, 0) and X(0, 2, 4, 2, 1), and with the help of [5, Table 3.4.1], [5,

Table 3.5.1], [5, Table 3.7.1] and [5, Table 3.9.1] we can compute the gen-

eral spectrum of the sheaves in the components T(0, 3, 2, 1),T(0, 3, 4, 2),

T(0, 3, 6, 3) and T(0, 3, 8, 4). The general spectrum of the sheaves in the

Instanton and Ein components can be computed by the display of the

monads (10) and (11). Finally the general spectrum in the component C
can be computed from the cohomology of the sheaf L (that can be obtained

by the Hilbert polynomial of L and Riemann-Roch) in the sequence (12).

Summarizing the above discussion, we have the following proposition.

Proposition 17. The Table 6 describes the general spectrum for all the

known irreducible components of M(0, 3, 0).

Table 6: Spectra for the Known Irreducible Components of M(0, 3, 0)

Component Dimension General Spectrum

Instanton 21 (0,0,0)

Ein 21 (-1,0,1)

C 21 (0,0,0)

X(0, 2, 2, 2, 0) 22 (-1,0,1)

X(0, 2, 4, 3, 0) 24 (-1,-1,2)

X(0, 2, 4, 2, 1) 26 (-1,-1,1)

T(0, 3, 2, 1) 25 (-1,0,0)

T(0, 3, 4, 2) 29 (-1,-1,0)

T(0, 3, 6, 3) 33 (-2,-1,0)

T(0, 3, 8, 4) 37 (-2,-1,-1)

Consider now a sequence of integers (k1, k2, k3) satisfying Proposition

8 for m = 3 and (a1, a2) = (0, 0). One sees that the possibilities for
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k1, k2 and k3 are (0, 0, 0), (−1, 0, 1), (−1,−1, 2), (−1,−1, 1), (−1, 0, 0),

(−1,−1, 0), (−2,−1, 0), (−2,−1,−1), (−2,−2,−1) and (−3,−2,−1). Ex-

cept for (−2,−2,−1) and (−3,−2,−1), all the other possibilities appear

in Table 6. We have the following question.

Question 1. Are there sheaves in M(0, 3, 0) with spectrum (−2,−2,−1)

or (−3,−2,−1)?

We note that there exists examples of slope semistable sheaves with

these two spectrum. Indeed, consider a rank 2 semistable reflexive shef F

on P3, such that c1(F ) = 0, c2(F ) = 3 and c3(F ) = 12 (see [8, Example

8.2.1] to see how such sheaf can be constructed) and OS the structure

sheaf of 6 closed points in P3, lying outside the singularities of F . Let

ϕ : F → OS be an epimorphism constructed as in the proof of Proposition

11, then the sheaf E := kerϕ is slope semistable and has spectrum equals

to (−3,−2,−1).

Now, let Y be a plane quartic of genus 2. The sheaf F ′ obtained by

the extension 0 → OP3 → F ′(1) → IY (2) → 0 is semistable (see [8,

Proposition 4.2] with Chern classes c1(F ′) = 0, c2(F ′) = 3 and c3(F ′) =

10. OS′ the structure sheaf of 5 closed points in P3, lying outside the

singularities of F ′. Let ϕ′ : F ′ → OS′ be an epimorphism constructed

as in the proof of Proposition 11, then the sheaf E′ := kerϕ′ is slope

semistable and has spectrum equals to (−2,−2,−1).

The natural candidates to answer our question are the sheaves E and

E′ constructed above, however note that h0(Ext2(E,OP3) = 6 and that

h0(Ext2(E,OP3) = 5, hence by Propositions 11 and 9, E and E′ are not

semistable sheaves. Clearly the construction given by Theorems 13 and

14 do not provide such examples either. We believe that the answer to

this question could help to compute the exact number of irreducible com-

ponents for M(0, 3, 0).
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