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Abstract

The Steiner tree problem in graphs is NP-Hard, so the develop-

ment of algorithms that provide good polynomial-time solutions are

desired. In this paper, we present a heuristic algorithm based on

the concepts of an efficient exact enumerative algorithm proposed

by Dourado et al (2014). Despite the existence of several approx-

imation algorithms for this problem, we present a simple heuristic

method and show that it achieves competitive results on benchmark

instances from the literature, with an empirical average approxima-

tion ratio of no more than 1.01% and a maximum of 1.12%.

1 Introduction

Let G = V,E be a connected undirected weighted graph with |V (G)| =
n vertices and |E(G)| = m edges. A Steiner tree is a connected subgraph T

of G such that W ⊆ V (T ) and |E(T )| is minimum. The vertices belonging

to W are called terminal vertices and the remaining vertices of T , i.e. the
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vertices belonging to V (T ) \W , are called Steiner vertices. It is known

that the Steiner tree problem in graphs is NP-Hard [6], so proposals for

new heuristics helps the development of better approximation algorithms.

The Steiner tree problem in graphs has many practical applications in the

design of transport, electrical and computer networks [2, 5]. In Table 1, we

present the state-of-the-art of exact and approximative algorithms for the

Steiner tree problem, with their time complexity and the approximation

ratio.

Table 1: Main algorithms for the Steiner tree problem in graphs. l is the

number of leaves of an optimal Steiner tree and α is the number of optimal

Steiner trees enumerated.
Title Authors Year Time Complexity Approximation

Ratio

The Steiner problem in graphs Dreyfus e Wagner 1971 O(n3 + n22k−1 + n3k−1) 1

An approximate solution for

the steiner problem in graphs

Takahashi e Mat-

suyama

1980 O(kn2) 2

A fast algorithm for Steiner

trees

Kou, Markowsky

e Berman

1981 O(kn2) 2(1− 1/l)

A faster approximation algo-

rithm for the Steiner problem

in graphs

Wu, Widmayer e

Wong

1986 O(m log n) 2(1− 1/l)

An 11/6-approximation algo-

rithm for the network steiner

problem

Zelikovsky 1993 O(nm+ k4) 1.833

Improved Steiner Tree Ap-

proximation in Graphs

Robins e Ze-

likovsky

2000 O(kn2) 1.55

Faster algorithm for optimum

Steiner trees

Vygen 2011 O(nk2k+log2 k log2 n) 1

Steiner Tree Approximation

via Iterative Randomized

Rounding

Byrka, Grandoni,

Rothvoss e

SanitÃ

2013 Linear Programming 1.38

Algorithmic aspects of Steiner

convexity and enumeration of

Steiner trees

Dourado, Oliveira

e Protti

2014 O(n2(n+m) + nk−2 + nα) 1

A Robust and Scalable Algo-

rithm for the Steiner Problem

in Graphs

Pajor, Uchoa e

Werneck

2018 O(m(min{nk,m})) experimental

Based on the exact enumerative algorithm proposed by Dourado et

al. [3], cited in Table 1, we use some properties proved by then but re-

placing the more complex and costly part of their algorithm with a greedy
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strategy to select vertices as router candidates in the Steiner tree to be

generated. The remaining of this work is organized as follows: Section 2

presents the new heuristic algorithm, some theoretical properties and its

computational complexity proof; and, Section 3 is devoted to the conclud-

ing remarks and future works.

2 The proposed heuristic algorithm

Dourado et al. [3] propose an enumerative exact algorithm to obtain

all minimum Steiner trees of a given graph in exponential time. The

authors define a partition RT ∪LT of the Steiner vertices of T as follows:

RT = {v ∈ V (T )\W |degT (v) > 2} and LT = {v ∈ V (T )\W |degT (v) = 2}.
Vertices in RT and LT are called routers and linkers of T , respectively.

A chain of T is a path P = v1v2...vp in T such that v1, vp ∈W ∪RT and

vi ∈ LT , for i = 2, ..., p − 1. That is, P starts at a terminal or a router,

ends at a terminal or a router, and has only linkers as internal vertices.

The collection of all chains of T is denoted by C(T ). The Proposition 1

was taken from the original paper.

Proposition 1. Let G be a connected graph, W ⊆ V (G) and T a Steiner

W-tree of G. Then: (i) Every chain in C(T ) is a minimum path in G;

(ii) |C(T )| = |W |+ |RT | − 1; (iii) |RT | ≤ |W | − 2.

The authors also define the weighted complete graph GRW as follows:

V (GRW ) = W ∪ R, and the weight of an edge uv ∈ E(GRW ) is equal

to dG(u, v) and the weight of a spanning tree T of GRW as weight(T ) =∑
uv∈E(T ) dG(u, v). So we rewrite Definition 1 from the original paper to

Lemma 1.

Lemma 1. A tree T is a template for W if there exists a set R ⊆ V (G)

such that: (a) |R| ≤ |W | − 2; (b) T is a minimum spanning tree of GRW ;

(c) degT (v) > 2 for all v ∈ R.

In their proposed algorithm, all possible subsets of routers that can

be part of the optimal solution are explored. They consider all possible
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subsets of V (G) \W with cardinality at most k− 2, where k = |W | which
can be enumerated in time O(nk−2).

The heuristic proposed in this paper analyzes all non-terminal vertices

and test them as routers, one at a time, and chooses the one that gener-

ates the minimum cost template T . However, this procedure is executed

at most k − 2 times, as this is the maximum possible amount of routers

in an optimal Steiner tree [9]. Algorithm 1 shows a pseudo-code of the

proposed heuristic.
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Algorithm 1: Proposed heuristic algorithm for the Steiner tree

in graphs.

Data: Connected graph G, set W of terminals

Result: Steiner tree T

1 begin

2 dG ← all shortest paths distances between all vertices;

3 R← ∅;
4 GRW ← complete graph with W ∪R vertices and dG distances;

5 T ←MST (GRW );

6 best← cost(T );
7 changed← true;

8 while changed = true and count(R) < k − 2 do

9 changed← false;

10 for each vertex v of V (G) \ (W ∪R) do

11 GRW ← complete graph with W ∪R ∪ v vertices and

dG distances;

12 T ′ ←MST (GRW );

13 c← cost(T ′);

14 if c < best and degT (v) > 2 then

15 best← c;

16 T ← T ′;

17 changed← true;

18 v′ ← v;

19 end

20 end

21 if changed = true then

22 R← R ∪ v′;

23 end

24 end

25 T ← T with expanded shortest paths;

26 return T ;

27 end

——

As in the original algorithm [3], the main idea is to use a matrix dG

with the distances of all shortest paths between all vertices from G and

build templates T . By Lemma 1, we show that our algorithm can find the

optimal solution.
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In our heuristic algorithm, the MST procedure retrieves only one arbi-

trary minimum spanning tree from graph GRW , given that more distinct

trees would not improve the quality of the solution. Also, all non-terminal

vertices are always visited at each for loop iteration in an arbitrary order,

as the order in which they are visited does not affect the result. In its

last step, the algorithm expands all the contracted shortest paths from

the best MST (GRW ) to the Steiner tree solution. The computational

complexity of Algorithm 1 is given as follows, by Theorem 1.

Theorem 1. Let G be a connected graph and W ⊂ V (G) such that |W | =
k, for a fixed positive integer k. Algorithm 1 can generate an approximate

Steiner tree of G in O(n3 + nk3), or just O(n3) time complexity.

Proof 1 First, we compute the distance matrix dG in O(n3), applying the

Floyd-Warshall algorithm. Next, in the nested loop, we have the process

for determining the routers set R and, thus, construct the Steiner tree

from it. Thus, in the WHILE loop, Line 8, the set R starts empty and

with each interaction a router is included and so at the end, by Lemma 1,

there will be at most k− 2 routers, hence O(k) time complexity. Next, in

the FOR loop, Line 10, we have to visit all the vertices of the graph to

test without distinction (except for the terminal vertices and the vertices

already included in R), wherein the end it is known who is the best vertex

that should be added to the router set R. And within this innermost loop,

the most costly step is in Line 12, where for each GRW graph, an arbitrary

minimum spanning tree is extracted. Since the GRW graph is complete,

its number of edges is always k2, and therefore, regardless of the algorithm

used to extract such an MST, the complexity in this step is always O(k2).

Thus, we have O(nk3) for the entire nested loop, or just O(n) as k is a

constant. Finally, the Algorithm 1 has O(n3 + nk3), that is, O(n3) total

time complexity.

Note that if the distance matrix dG is given (in a preprocessing), our

proposed algorithm will have linear time complexity.
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2.1 Empirical analysis of results

Table 2 presents the results of computational experiments in test datasets

from a known benchmark [7]. The detailed description of the test bases

can be found on the benchmark website1. The algorithm was implemented

in C++ and the experiments were performed on an Ubuntu 18.04 server.

We compare the solution value (the sum of the Steiner tree edge weights

generated) found by the algorithm to their respective expected solution.

The proposed algorithm was able to get all the optimal solutions for

the sparse graphs with Euclidian weights. In the case of complete graphs,

both with random and Euclidian weights, the algorithm was able to get

the optimal solution in more than 85% of the time. Exceptionally in

the case of sparse graphs with random weights or incident weights, the

performance of the algorithm was not so good: in the first case, it was

able to get the optimal solution in a bit more than half the time; and in

the second case, only in a bit more than 30% of the time. The average

empirical approximation ratios found was very close to 1, which seems

to be a good indicator to determine the approximation ratio, which is in

progress.

Table 2: Quality of the solutions generated by our heuristic algorithm.
Sparse

with

random

weight

Complete

with

random

weight

Sparse

with eu-

clidian

weight

Complete

with eu-

clidian

weight

Sparse

with in-

cident

weight

TOTAL

Number of instances 60 27 14 14 395 514

Number of optimal

solutions found

31 23 14 12 130 212

Percentage of opti-

mal solutions found

51,67% 85,19% 100% 85,71% 32,91% 41,25%

Average of the ap-

proximation ratios

found

1,01 1,00 1,00 1,00 1,01 1,01

Worst approxima-

tion ratio found

1,09 1,04 1,00 1,00 1,12 1,12

1http://steinlib.zib.de

http://steinlib.zib.de
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3 Concluding remarks

The proposed heuristic algorithm presents good competitive results in

terms of solution quality obtained in polynomial time, precisely in O(n3)

time complexity, or even O(n) if the distance matrix is given with in-

put, while it is simpler and easier to understand than other algorithms

with approximation ratio certificate, and achieves competitive results on

benchmark instances, with an empirical average approximation ratio of

no more than 1.01% and a maximum of 1.12%. As future work, we intend

to determine the approximation ratio of our algorithm. Additionally, we

shall improve the criteria adopted to select vertices as routers.
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tratÃ©gia para selecionar vÃ©rtices como candidatos a roteadores
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ComputaÃSÃ£o, Porto Alegre, RS, Brasil, 2018. SBC.

[10] T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algo-

rithm for the steiner problem in graphs. Mathematical Programming

Computation, 10(1):69–118, Mar 2018.

[11] G. Robins and A. Zelikovsky. Improved steiner tree approximation

in graphs. In Proceedings of the Eleventh Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’00, pages 770–779, Philadel-

phia, PA, USA, 2000. Society for Industrial and Applied Mathemat-

ics.

[12] H. Takahashi and A. Matsuyama. An approximate solution for the

steiner problem in graphs. In Mathematica Japonica, pages 24:573–

577, 1980.

[13] J. Vygen. Faster algorithm for optimum steiner trees. Information

Processing Letters, 111(21):1075 – 1079, 2011.

[14] Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approxima-

tion algorithm for the steiner problem in graphs. Acta Informatica,

23(2):223–229, Apr. 1986.

[15] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network

steiner problem. Algorithmica, 9(5):463–470, May 1993.



274 J. G. Martinez, R. de Freitas, A. da Silva and F. Protti

João Guilherme Martinez

Instituto de Computação

Universidade Federal do Amazonas

Manaus - Brazil

joaogam@icomp.ufam.edu.br

Rosiane de Freitas

Instituto de Computação

Universidade Federal do Amazonas

Manaus - Brazil

rosiane@icomp.ufam.edu.br

Altigran da Silva

Instituto de Computação

Universidade Federal do Amazonas

Manaus - Brazil

alti@icomp.ufam.edu.br
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