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Abstract

Fullerene graphs are mathematical models for molecules com-

posed exclusively of carbon atoms, discovered experimentally in the

early 1980s. Formally, fullerene are 3-connected, cubic and planar

graphs with pentagonal and hexagonal faces. Andova and Skrekovski

(2012) conjectured a lower bound for the diameter of fullerene graphs.

The relevance of this conjecture consists in the fact that it was con-

ceived from perfectly spherical fullerene graphs, a property which

gives these graphs symmetry and, theoretically, high stability. We

know that the curvature of fullerene graphs is given by their pen-

tagonal faces, in this way, icosahedral fullerene graphs preserve the

same distance between their pentagonal faces, which is characterized

by two non-negative parameters i and j, defined as Gi,j . It is known

that the Andova-Skrekovski conjecture is valid for the cases when

0 = i < j, 0 < i = j and j ≥ 11i
2 . In order to contribute to the

study of this problem, we verify the conjecture for the case j = i+1.

Moreover, we present a lower bound for the diameter.
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1 Introduction

Simple substances are the ones formed by a unique chemical element.

Simple substances and distinct structural forms, composed by the same

chemical element, are called allotropes. As an example, we can cite oxy-

gen O2 and ozone O3. Another kind of allotropy occurs by the atoms

arrangement, as in the case of carbon atoms, that vary its geometric struc-

ture forming diamond and coal. In 1985, scientific community witnessed

the birth of a new carbon allotrope, a high symmetric molecule, stable

and composed exclusively by carbon atoms. They named it buckminster-

fullerene – C60 – homaging the architect Richard B. Fuller. The structure

of C60 is formed by 32 faces – 20 hexagonals and 12 pentagonals. In

the end of the 1980s, many other carbon atoms with the same spacial

structure of C60 were found, being named as fullerene molecules. Each

fullerene molecule can be graph modelled: the atoms corresponds to the

graph vertices and the chemical bonds to the edges. It is important to

note that occasional double bonds between carbon atoms of the fullerene

molecule origin only one edge.

To define a fullerene graph, we need some definitions. A graph G =

(V,E) is planar if it can be embedded in the plane, such that its edges

intersect only at their endpoints. The degree d(v) of a vertex v ∈ V (G)

is the number of edges incident to the vertex v. A graph G is cubic if

d(v) = 3 for all v ∈ V (G). A graph G is connected if there is a path

between each pair of its vertices. A graph is 3-connected if it remains

connected whenever fewer than 2 vertices are removed. If a graph G is

connected, the distance d(u, v) between two vertices u and v is the length

of the shortest path between them. The diameter diam(G) of a graph

G is the greatest distance between any two vertices of G. In this way,

we can define a fullerene graph as a planar, cubic, 3-connected graph

with only pentagonal and hexagonal faces. An important result derived

straightforward from the Euler relation, V + F = A + 2, where V is the

number of vertices, F is the number of faces and A is the number of edges
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of G, says that every fullerene graph has exactly 12 pentagonal faces.

In 2013, Andova and Skrekovski [1] determined the diameter of fullerene

graphs with complete icosahedral symmetry. This class, besides being

highly symmetric, is perfectly spherical. These properties lead them to

conjecture that the diameter of fullerene graphs with complete icosahedral

symmetry is a lower bound for all fullerene graphs.

Conjecture 1. (Andova-Skrekovski [1]) For every fullerene graph F

with n vertices, diam(F ) ≥
⌊√

5n
3

⌋
− 1.

Later, this conjecture was disproved by Nicodemos and Stehlik [3] for

an infinite family of nanodiscs.

In 1939, Goldberg [4] proposed the regular icosahedron planning in pla-

nar hexagonal lattices, which induced the definition of solids with icosa-

hedral symmetry. Another motivation of this planning is the definition

of fullerene graphs with icosahedral symmetry. This icosahedron planning

depends on two integers and non-negative parameters i and j. They are

the bi-dimensional componentes that generates all faces of the regular

icosahedron. We consider 0 ≤ i ≤ j. We denote by Gi,j the fullerene

graph with icosahedral symmetry generated by the vector G⃗ = (i, j). An-

dova and Skrekovski [1] detected the icosahedral symmetry of the fullerene

graphs from the position of its pentagonal faces. That is, the centers of

the 12 pentagonal faces of a fullerene graph, if connected, origin a reg-

ular icosahedron if, and only if, the graph is fullerene with icosahedral

symmetry.

In this work, we study the problem of determining the diameter of spher-

ical fullerene graphs with icosahedral symmetry Gi,j , i, j ∈ N, 0 ≤ i ≤ j

and we show properties about the diameter of Gi,j where j = i+ 1. The

main result of this paper is the proposal of a new lower bound for Gi,i+1,

contributing to the conjecture proposed by Andova and Skrekovski [1],

that asks if diam(Gi,j), for some i, j ∈ N, is a lower bound for diam(F ),

F any fullerene graph.
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2 Previous Works

In this section we show some known results referred to the study of

the diameter of fullerene graphs with icosahedral symmetry. Goldberg [4]

establishes the number of vertices and edges in a graph Gi,j . This result

is shown in following corollary.

Corollary 2. (Goldberg [4]) Let 0 ≤ i ≤ j be integers and Gi,j be

a fullerene graph with icosahedral symmetry. The number of vertices and

edges are given, respectively, by n = 20(i2+ij+j2) and m = 30(i2+ij+j2).

Graph G1,4 depicted in Figure 1 is an example of this result. By Corol-

lary 2, |V (G1,4)| = 20×(1+4+16) = 420 and |E(G1,4)| = 30×(1+4+16) =

630. Applying Euler relation, the number of faces of G1,4 is 212, being 200

hexagonal and 12 pentagonal faces. Figure 1 shows G1,4 as a construction

of its planning in a hexagonal lattice. The vertices of the triangles in the

planning of G1,4 (Fig. 1(a)) are the centers of its 12 pentagonal faces.

(a) Planning of G1,4 (b) G1,4

Figure 1: Fullerene graph with icosahedral symmetry G1,4.

The problem of proving or disproving Conjecture 1 has been studied

for more than 5 years. However, another important research is related

to precisely determining the diameter of fullerene graphs with icosahedral

symmetry Gi,j . In the following two results, Theorem 3 presents a lower
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and an upper bound for the diameter of every fullerene graphs, and Theo-

rem 4 gives the diameter of spherical graphs Gi,j for all cases where i = 0

and j > 0.

Theorem 3. (Andova-Skrekovski [1]) Let G be a fullerene graph with

n vertices. Then,

√
24n− 15− 3

6
≤ diam(G) ≤ n

5
+ 1

Theorem 4. (Andova-Skrekovski [1]) The diameter of a fullerene

graphs with icosahedral symmetry G0,j, with j > 0, is diam(G0,j) = 6j−1.

By Corollary 2, the number of vertices of G0,j is |V (G0,j)| = 20(i2+ij+

j2) = 20(02+0j+ j2) = 20j2. Thus Conjecture 1 is valid,
⌊√

5
3 × 20j2

⌋
=⌊√

100
3

⌋
j = 5j. Thus, diam(G0,j) = 6j − 1 > 5j − 1. It means that the

conjecture is true for G0,j for all j > 0. Andova and Skrekovski [1] also

studied the diameter for fullerene graphs Gj,j for j > 0. This result is

presented in Theorem 5.

Theorem 5. (Andova-Skrekovski [1]) The diameter of a fullerene

graphs with icosahedral symmetry Gj,j, with j > 0, is diam(Gj,j) = 10j−1.

Making the same analysis as before, we verify that the Conjecture 1

is valid for Gj,j . By Corollary 2, n = 20(j2 + j2 + j2) = 60j2. So,⌊√
5
3 × 60j2

⌋
=

⌊√
300
3

⌋
j = 10j. Thus diam(G0,j) = 10j − 1 and we

conclude that Conjecture 1 is still valid for Gj,j with j > 0. Nicodemos [2]

studied the diameter for another two classes of graphs Gi,j . Theorem 6

shows that Conjecture 1 is valid for Gi,j , j ≥ 11
2 i and Theorem 7 provides

a sharp value for diam(G1,j).

Theorem 6. (Nicodemos [2]) Let G = Gi,j be a fullerene graph with

icosahedral symmetry. If j ≥ 11i
2 , than diam(Gi,j) ≥

⌊√
5n
3

⌋
− 1.
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Theorem 7. (Nicodemos [2]) The diameter of a fullerene graphs with

icosahedral symmetry G1,j, with j ≥ 3, is diam(G1,j) = 6j + 1.

Suppose j = 3. By Corollary 2, n = 260. Thus,
⌊√

5n
3

⌋
−1 = 19, which

is the sharp value given by Theorem 7. By induction on j we get that

Conjecture 1 is valid for G1,j ∀j > 0.

3 Results

Now, we show the results obtained from studying the diameter and

the structure of Gi,i+1 fullerene graphs. Consider the planning of G1,4,

depicted in Figure 2. Define the antipodal pentagons as the pentagonal

faces with center in P1 and P12.

Figure 2: Planning of G1,4.

Lemma 8 establishes a lower bound for diam(Gi,i+1). The proof of this

lower bound follows by induction on i ≥ 0. Figure 3 shows an example of

Lemma 8 for G2,3.

Lemma 8. The distance between antipodal pentagons in a fullerene graph

with icosahedral symmetry Gi,i+1 is 10i+ 3.

Next result states a condition on spherical fullerene graphs Gi,j describ-

ing whether the center of the triangles defined by its pentagonal faces is

a hexagonal face or a vertex.
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Figure 3: A shortest path between two antipodal pentagons in G2,3 de-

picted in red with length 10× 2 + 3 = 23.

Property 9. Let G = Gi,j be a fullerene graph with icosahedral symmetry.

The center of a triangle in its planning is:

i) a vertex, if j − i ≡ 1 or j − i ≡ 2( mod 3);

ii) a hexagonal face, if j − i ≡ 0( mod 3).

For all graphs Gi,i+1, with j−i ≡ 1( mod 3), the center of each triangle

formed by its pentagonal faces is a vertex. We say that a vertex is pentag-

onal if it is in a pentagonal face. For instance, the vertex P1 in Figure 2

represents a pentagonal face, hence all vertices of the face represented by

P1 are pentagonal vertices. Lemma 10 determines the distance between

a pentagonal vertex and the central vertex of the triangle in which they

are positioned for G = Gi,i+1.

Lemma 10. Let G = Gi,j be a fullerene graph with icosahedral symmetry

such that j = i + 1. The distance between a pentagonal vertex and the

center vertex of the triangle they belong is d = 2i.

In order to verify the validity of Lemma 10, we note that there are i

hexagonal faces between the central vertex O and a pentagonal vertex p.

To move from a hexagonal face to another, one needs a path with length
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Figure 4: Triangle of G3,4. Since 4 − 3 ≡ 1( mod 3), the center O is a

vertex. The shortest paths between O and the pentagonal vertices are

depicted in blue.

2. Thus, a path between O and p has length 2i. Finally, Theorem 11

establishes a lower bound for the diameter of all fullerene graphs Gi,i+1.

Theorem 11. Let G = Gi,j be a fullerene graph with icosahedral symme-

try. If j = i+ 1, then diam(Gi,i+1) = 10i+ 4.

By Corollary 2, n = 60i2 + 60i + 20 > 60i2, i > 0. Using induction on

i > 0, we can show that diam(Gi,i+1) = 10i+4 ≥
⌊√

5×(60i2+60i+20)
3

⌋
−1.

Thus, Theorem 11 assures that Conjecture 1 is valid for Gi,i+1.
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