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Abstract

In this work we consider a variation of List coloring, called

(γ, µ)-coloring. We show a framework of reducibility between List

coloring, (γ, µ)-coloring and Precoloring extension, in or-

der to provide an parameterized complexity analysis of (γ, µ)-coloring.

We remark that (γ, µ)-coloring is FTP when parametrized by ver-

tex cover and the maximum size of a color list, but it is W[1]-hard

when parameterized by treewidth.

1 Introduction

Let G = (V,E) be a simple graph, where V is the set of vertices and

E is the set of edges. For a graph G = (V,E), an assignment c : V → N
is a coloring of G. Furthermore, this coloring is proper if c(u) ̸= c(v) for

all uv ∈ E, that is, a k-coloring of G is an assignment of colors to the

vertices of G such that no pair of adjacent vertices share the same color.

2000 AMS Subject Classification: 05C15, 05C85 and 68R10.

Key Words and Phrases: list coloring, (γ, µ)-coloring, parameterized complexity.

This study was supported by CNPq, FAPEAM and FAPERJ.

http://doi.org/10.21711/231766362020/rmc4626
https://orcid.org/0000-0002-5320-9209


Aspects of the complexity of (γ, µ)-coloring 249

The chromatic number χG of a graph is the minimum value of k for which

G is k-colorable.

There are several variants of the classical vertex coloring problem, in-

volving additional constraints, in both edges and vertices of the graph.

One of them is the List coloring, where each vertex v of the input

graph G is equipped with a list L(v) of allowed colors. If it is possible to

get a proper coloring of G such that each vertex v is colored with a color in

L(v), then G has a List coloring. The problem of determining whether

G has a list coloring was introduced by Paul Erdös et al. in 1979 [3], and

independently by Vizing in 1976 [6].

List coloring also has variations, such as Precoloring extension

(i.e., given a graph with some previously colored vertices, it aims to extend

such to proper coloring ofG). Another variation called (γ, µ)-coloring

was introduced by Bonomo et al. [1, 2] In such a problem we are given

a graph G and functions γ, µ : V (G) → N such that γ(v) ≤ µ(v) and we

say that G is (γ, µ)-colorable if there exists a coloring f of G such that

γ(v) ≤ f(v) ≤ µ(v) for every v ∈ V (G).

2 Reducibility in List Coloring problems

In this paper, we analyze the complexity of (γ, µ)-coloring. It is

easy to see that every instance of (γ, µ)-coloring is an instance of List

coloring, where L(v) = {γ(v), γ(v) + 1, . . . , µ(v)} for every v ∈ V (G).

Therefore, (γ, µ)-coloring on C is not harder than List coloring on C,
for any graph class C. We show from the perspective of analogous problems

that in fact the (γ, µ)-coloring and List coloring are similar in several

aspects.

Denote by Y (Π) the set of all instances I of Π yielding a yes-answer

for the question “I ∈ Y (Π)?”. The notion of analogous problems was

introduced by Fellows et al. [4].

Definition 2.1. Two decision problems Π and Π′ in NP are said to be

analogous if there exist linear-time reductions f, g such that:
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1. Π ∝f Π′ and Π′ ∝g Π;

2. every easily checkable certificate C for the yes-answer of the ques-

tion “I ∈ Y (Π) ?” implies an easily checkable certificate C′ for the

yes-answer of the question “f(I) ∈ Y (Π′) ?” such that size(C) =

size(C′), and C ′ is computable from C in linear time;

3. every easily checkable certificate C′ for the yes-answer of the ques-

tion “I ′ ∈ Y (Π′) ?” implies an easily checkable certificate C for the

yes-answer of the question “g(I ′) ∈ Y (Π) ?”, such that size(C′) =

size(C), and C is computable from C ′ in linear time. .

Definition 2.2. Let Π and Π′ be analogous decision problems. The pa-

rameterized problems Π(k1, . . . , kt) and Π′(k′1, . . . , k
′
t) are said to be p-

analogous if there exist linear-time reductions f, g and a one-to-one cor-

respondence ki ↔ k′i such that:

1. Π(k1, . . . , kt) ∝f Π′(k′1, . . . , k
′
t) and Π′(k′1, . . . , k

′
t) ∝g Π(k1, . . . , kt);

2. every easily checkable certificate C for the yes-answer of the question

“I ∈ Y (Π(k1, . . . , kt))?” implies an easily checkable certificate C′ for

the yes-answer of the question “f(I) ∈ Y (Π′(k′1, . . . , k
′
t))?” such that

k′i = φ′
i(ki) for some linear function φ′

i (1 ≤ i ≤ t);

3. every easily checkable certificate C′ for the yes-answer of the question

“I ′ ∈ Y (Π′(k′1, . . . , k
′
t))?” implies an easily checkable certificate C for

the yes-answer of the question “g(I ′) ∈ Y (Π(k1, . . . , kt))?” such that

ki = φi(k
′
i) for some linear function φi (1 ≤ i ≤ t).

Two straightforward consequences of the above definitions are: (a) if Π

and Π′ are analogous problems then Π is in P (is NP-hard) if and only

if Π′ is in P (is NP-hard); (b) if Π(k1, . . . , kℓ) and Π′(k′1, . . . , k
′
ℓ) are p-

analogous problems then Π(k1, . . . , kℓ) is in FTP (admits a polynomial

kernel/is W[1]-hard) if and only if Π′(k′1, . . . , k
′
ℓ) is in FTP (admits a

polynomial kernel/is W[1]-hard).

Now we present a general framework for reducibility from List color-

ing to (γ, µ)-coloring and Precoloring extension.
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Definition 2.3. Let G be a graph where each vertex v ∈ V (G) is endowed

with a list L(v) of available colors and c is the largest used color. We

construct a graph ψ(G) from G with γ(v) = 1 and µ(v) = c for each v in

ψ(G). Now, for each v of G in ψ(G) we add c−|L(v)| pendant vertices wi
incident to v such that each of these pendant vertices forbids a different

color i not in L(v) to v, i.e., for each ci ∈ ({1, . . . , c}\L(v)) there is a

distinct wi with γ(wi) = µ(wi) = ci.

Definition 2.4. Let C be a class of graphs. Then:

ψ(C) = {G | G = ψ(G′) for some G′ ∈ C }.

A class C of graphs is closed under operator ψ if ψ(C) ⊆ C.

Examples of graph classes closed under ψ are chordal graphs and bipar-

tite graphs.

Lemma 2.1. List coloring, (γ, µ)-coloring and Precoloring ex-

tension are analogous when restricted to classes closed under operator

ψ.

Proof. First, without loss of generality, we may assume that the size of the

list of each vertex is at most its degree plus one (otherwise the instance is

equivalent to an instance with such a vertex removed); all the colors are

present in at least two lists; the smallest color is equal to 1. Note that, in

such a case, the number of colors is upper bounded by m+ n.

Now, observe that Precoloring extension is a particular case of

(γ, µ)-coloring, which is also a particular case of List coloring. Thus,

by restriction, Precoloring extension ∝f1 (γ, µ)-coloring ∝f2 List

coloring as required. Now, let C be a graph class closed under oper-

ator ψ, and let (G,L) be an instance of List coloring where G ∈ C.
Note that ψ(G) is an instance of both (γ, µ)-coloring and Precolor-

ing extension, because ψ(G) contains only lists of size one and lists

of size c. By construction, G admits a List coloring if and only if

ψ(G) admits a (γ, µ)-coloring, thus one can see that List coloring
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∝ψ (γ, µ)-coloring as we require. Then List coloring and (γ, µ)-

coloring are analogous on C. Since ψ(G) contains only lists of size one

and lists of size c then List coloring, (γ, µ)-coloring, and precoloring

extension are analogous on C.

Definition 2.5. A tree decomposition of a graph G = (V,E) is a pair

(T, χ) where T = (V (T ), E(T )) is a tree with V (T ) = χ is a family (Xi)
r
i=1

of subsets of V , called bags or nodes such that

�

⋃r
i=1Xi = V ;

� ∀uv ∈ E; ∃i ∈ {1, 2, · · · , r}|{u, v} ⊂ Xi;

� ∀u ∈ V , the set Tu = {Xi ∈ V (T )|u ∈ Xi} induces a connected

subtree of T .

The width of the tree decomposition (T, χ) is max1≤i≤r |Xi| − 1. The

treewidth of G, denoted by tw(G), is the minimum width over all its tree

decompositions.

Lemma 2.2. List coloring, (γ, µ)-coloring and Precoloring ex-

tension on classes closed under operator ψ are p-analogous when param-

eterized by treewidth and feedback vertex set.

Proof. It follows from Lemma 2.1, the fact that the treewidth and the size

of a minimum feedback vertex set of ψ(G) and G have the same size.

Theorem 2.1. (γ, µ)-coloring and Precoloring extension param-

eterized by the feedback vertex set remains W [1]-hard even when restricted

to bipartite graphs.

Proof. It follows from Lemma 2.2 and the W [1]-hardness of List color-

ing on bipartite graphs parameterized by the feedback vertex set (see [5]).
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In [5], it was shown that List coloring parameterized by the vertex

cover number isW [1]-hard even when the input graph G is bipartite. Now,

we consider the vertex cover number and the maximum size of a list as

agregated parameters.

Theorem 2.2. List coloring is FPT when parameterized by the vertex

cover number and the maximum size of a list.

Proof. Let ℓ be the size of the largest list of the input, let k be the size of

the vertex cover number of the input graph G, and let S be a minimum

vertex cover of G (|S| = k). Assume I = V (G) \S (these vertices form an

independent set of G). We can exhaustively analyze all possible ways of

coloring the vertex cover S in O(ℓk) time. After that, for each possibility

one can use a greedy algorithm to check whether such a coloring of S can

be extended to a List coloring of G. This algorithm can be performed

in O(ℓk.n) time.

Corollary 2.1. List coloring parameterized by the vertex cover number

is FPT when |L(v)| = |L(w)| for each v, w ∈ V (G).

Proof. Let S be a minimum vertex cover of G and |S| = k. First, apply

the following reduction rule: For each v ∈ V (G), if |L(v)| > |N(v)| then
remove v. It is easy to see that the previous reduction rule is safe, because

if |L(v)| > |N(v)|, after coloring N(v) one can always choose a viable color

for v. Now, since |L(v)| = |L(w)| for each pair v, w ∈ V (G), we have the

following cases: case 1: |L(v)| > k, in this case every vertex of V (G) \ S
was removed by rule 1. After that, G[S] is an instance where its vertices

v has |L(v)| > |S| = k. Thus, by applying a greedy algorithm that first

visit vertices in S, and after visit the vertices in V (G) \ S, we obtain a

(γ, µ)-coloring for G in polynomial time; case 2: |L(v)| ≤ k, in this

case the size of the lists are bounded by k. Therefore we can apply the

FPT -algorithm present in the proof of Theorem 2.2.
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3 Concluding Remarks

In this work is presented a study of (γ, µ)-coloring in graphs under

the perspective of analogous problems and parameterized complexity. We

show that (γ, µ)-coloring is W [1]-hard parameterized by treewidth, but

it is FPT when parameterized by the vertex cover number and the max-

imum size of a color list.
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