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Abstract

In this paper, we explore graph coloring problems with distance

constraints on the edges, following a distance geometry point of view,

that is, as the positioning of the vertices on the real number line.

This leads to an embedding of the input graph in 1-dimension, where

the point on the line corresponds to the color to be assigned to a

vertex, according to the distance between adjacent vertices. We

demonstrate, for some classes of graphs, feasibility properties for

each distance coloring model shown, in both senses (when there

always exists at least one solution and when there cannot be any

solution).

1 Introduction

Let G = (V,E) be an undirected graph. In the classic vertex coloring

problem (VCP) in graphs, a mapping x : V → {1, 2, . . . , k} such that
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∀(i, j) ∈ E, x(i) ̸= x(j) must be found. The lowest possible value of k

for which x exists is called the chromatic number of G and is denoted by

χG [2]. Finding such number is one of the most important combinatorial

optimization problems and it is known to be NP-hard [7].

One of the main applications of such problems consists of assigning

channels to transmitters in a mobile wireless network, where channels

must be assigned to calls so interference is avoided and the spectrum

usage is minimized [1, 9]. An useful generalization of VCP for channel

assignment is Bandwidth Coloring Problem (BCP) [10, 12], where, for

each edge (i, j) ∈ E, there is a positive integer di,j such that ∀(i, j) ∈
E, |x(i) − x(j)| ≥ di,j . BCP is further generalized to T-coloring, where,

for each edge, the absolute difference between colors assigned to each

vertex must not be in a given forbidden set [8].

In this work, we are interested in two cases of T-coloring:

1. For each edge (i, j) ∈ E, we have Ti,j = Z≥0\{di,j}, where ∀(i, j) ∈
E, di,j ∈ N.

2. For each edge (i, j) ∈ E, we have Ti,j = {0, 1, . . . , di,j − 1}, where
∀(i, j) ∈ E, di,j ∈ N.

The two cases will be explored using a distance geometry approach, hence-

forth, they will be called distance coloring problems. The rest of the paper

is organized as follows. Section 2 defines such problems and shows some

of their properties. Section 3 gives constraint and integer programming

formulations for these problems. Section 4 then concludes our paper.

2 Distance coloring problems

One of the most studied distance geometry problems is the Discretizable

Distance Geometry Problem (DDGP), which is defined in R3 as follows.

Let G = (V,E) be a graph where V is ordered such that there exists

a subset V0 of V such that |V0| = 3, V0 induces a clique of G and for

each i ∈ V \V0, there is a subset {v1, v2, v3} of V such that v1 < i, v2 <
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i, v3 < i; {(v1, i), (v2, i), (v3, i)} ⊆ E and a strict triangular inequality

holds according to the order of vertices. An embedding of G in R3 is a

mapping x : V → R3 such that ||x(i)− x(j)|| = di,j for all (i, j) ∈ E. An

important consequence of this configuration is that the position of vertex

i (where i ≥ 4) in R3 can be calculated using positions of the previous

three vertices i − 1, i − 2 and i − 3 by intersecting three spheres, where

two points are obtained which must be checked for feasibility [11].

A similar reasoning can be used in coloring problems with distance

constraints, where the space considered is actually R1, the position of each

vertex corresponds to its color and the distances that must be respected

involve the absolute difference between two values x(i) and x(j). The

positioning of a vertex i in such space can be determined by using a

neighbor j that is already positioned. Thus, we have a 0-sphere, consisting

of a projection of a 1-sphere (a circle), that is, it is a line segment with

radius di,j , and feasible colorings consist involve intersections of these 0-

spheres [3].

Based on these problems, we can define the Minimum Equal Color-

ing Distance Geometry Problem (MinEQ-CDGP), where we are

given a graphG = (V,E), where, for each (i, j) ∈ E, there is a weight di,j ∈
N and we must find an embedding x : V → N such that |x(i)−x(j)| = di,j

for each (i, j) ∈ E whose span S, defined as S = maxi∈V x(i), that is, the

maximum used color, is the minimum possible. A variation of this prob-

lem occurs when all weights imposed on the edges are the same (that is, for

each (i, j) ∈ E, di,j = φ, where φ ∈ N), which we call MinEQ-CDGP

with Uniform Distances (MinEQ-CDGP-Unif). Some feasibility

properties can be stated for these problems, as defined by the following

two theorems (proofs will be omitted due to space constraints in this pa-

per).

Theorem 1. A graph G admits at least one feasible solution for MinEQ-

CDGP-Unif if and only if G is bipartite [3].

Theorem 2. If a graph G is a tree and, for each (i, j) ∈ E, there is a
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weight di,j ∈ N, then G admits at least one feasible solution for MinEQ-

CDGP [3].

Another distance coloring problem can be defined by changing the type

of adjacency constraint. In theMinimum Greater than or Equal Col-

oring Distance Geometry Problem (MinGEQ-CDGP), we have a

graph G = (V,E), where, for each (i, j) ∈ E, there is a weight di,j ∈ N and

we must find an embedding x : V → N such that |x(i)−x(j)| ≥ di,j for each

(i, j) ∈ E with minimum span. We can also define a variation when all

weights of the edges are the same, which is calledMinGEQ-CDGP with

Uniform Distances (MinGEQ-CDGP-Unif). These two problems

are equivalent to existing coloring problems: MinGEQ-CDGP is equiv-

alent to BCP, and MinGEQ-CDGP-Unif is to VCP (even if the weights

are not 1). We remark that these two problems always admit feasible

solutions, since the set of possible values for |x(i)− x(j)| that satisfy the

inequality constraint (≥) is infinite.

3 Constraint and integer programming models

In order to obtain solutions for the distance coloring problems, we can

employ mathematical programming approaches. The first formulation we

explore is based on constraint programming (CP). Let xi be an integer

variable consisting of the color assigned to vertex i. The CP model is

then:

Minimize max
i∈V

x(i) (1)

Subject to |x(i)− x(j)| ⊛ di,j (∀(i, j) ∈ E) (2)

x(i) ∈ N (∀i ∈ V ) (3)

Where⊛ is = for MinEQ-CDGP and≥ for MinGEQ-CDGP. This model

follows the definition of distance coloring problems, as shown in Section

2. In [6], empirical results BCP (that is, MinGEQ-CDGP) instances are

presented for this formulation.
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For MinGEQ-CDGP (or BCP), integer programming (IP) models have

also been developed. The standard formulation depends on a given upper

bound U for the span and uses two sets of variables: xik (for each i ∈ V

and 1 ≤ k ≤ U), which has value 1 if i uses color k and 0 otherwise;

and zmax, which indicates the span. The formulation is defined as follows

[6, 9]:

Minimize zmax (4)

Subject to

U∑
k=1

xik = 1 (∀i ∈ V ) (5)

xik + xjm ≤ 1 (∀(i, j) ∈ E; 1 ≤ k,m ≤ U | |k −m| < di,j)

(6)

zmax ≥ kxik (∀i ∈ V ; 1 ≤ k ≤ U) (7)

xik ∈ {0, 1} (∀i ∈ V ; 1 ≤ k ≤ U) (8)

Constraint set (5) ensures that all vertices must be colored. Constraint

set (6) require that distances between colors of adjacent vertices are re-

spected. Constraints (7) require that variable zmax be greater than or

equal to any color used, so it will be the maximum color used. Constraints

(8) are type and bound constraints for x variables.

Another IP model for MinGEQ-CDGP is based on orientations of the

input graph. Such formulation uses three sets of variables: xi, which are

integer and indicate the color assigned to vertex i; yij , which has value 1 if

xi < xj and 0 otherwise (inducing an orientation of G), and the same zmax

variable of the previous model. The orientation-based formulation is
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defined as follows [4].

Minimize zmax (9)

Subject to xi + di,j ≤ xj + s(1− yij) ∀(i, j) ∈ E, i < j (10)

xj + di,j ≤ xj + syij ∀(i, j) ∈ E, i < j (11)

zmax ≥ xi ∀i ∈ V (12)

xi ∈ N ∀i ∈ V (13)

yij ∈ {0, 1} ∀(i, j) ∈ E, i < j (14)

In the above formulation, (10) ensures that yij = 0 if xi < xj , for

(i, j) ∈ E, while (11) does the opposite when xi > xj . Both ensure that

|xi−xj | ≥ di,j . Constraints (12) impose zmax to take a value greater than

or equal to every used color, and in an optimal solution this bound will

be tight. Finally, constraints (13)-(14) define variable types and bounds.

The model is full-dimensional when s ≥ zoptmax + 2dmax, where zoptmax is the

optimal value of zmax and dmax = max(i,j)∈E dij [4].

For the model, two families of valid inequalities have been also identified.

Let δiK(j) := mink∈K∪{i}\{j} dj,k. In the first family, for a vertex i ∈ V , a

clique K ⊆ N(i) and j ∈ K, we define xi ≥
∑

j∈K δiK(j)yji, as the clique

inequality associated with the vertex i and the clique K. It induces a

facet of the orientation polyhedron if s ≥ zoptmax + 3dmax, di,j = δiK(j) for

every j ∈ K and for every t ∈ N(i)\K there exists j ∈ K with (j, t) ̸∈ E

and di,t ≤ di,j [4].

For the second family of inequalities, let δijK(k) = minℓ∈K∪{i,j}\{k} dk,ℓ;

γp = max{0, 2δijK(p)− di,j} and γk = max{0, δijK(k)− di,j} for k ∈ K\{p}.
Then, for an edge (i, j) ∈ E, a clique K ⊆ N(i) ∩ N(j) and a vertex

p ∈ K, we define xi+di,j+
∑

k∈K γk(yik−yjk) ≤ xj+(s+di,j−γ(K))yji

as the double clique inequality associated with (i, j), K and p. This

inequality is facet-inducing if s ≥ χ(G, d) + 4dmax; di,k = dj,k = δijK(k)

for every k ∈ K; dp,k = dp,j for every k ∈ K\{p}; di,j ≤ δijK(k) for every

k ∈ K\{p} and (t, p) ̸∈ E and di,t+dt,j ≤ di,j for every t ∈ [N(i)∩N(j)]\K
[4].
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A third formulation can be derived from the orientation-based model for

VCP, in which variables represent the difference between colors assigned

to different vertices of G. Let, for each i, j ∈ V , qij be a variable corre-

sponding to the difference between colors of i and j, that is, the distance

between them. Using the same y variables from the orientation model, we

have the following distance-based formulation for VCP [5]:

qik = qij + qjk ∀i, j, k ∈ V, i < j < k (15)

qij ≥ 1− |C|yij ∀(i, j) ∈ E, i < j (16)

qij ≤ −1 + |C|(1− yij) ∀(i, j) ∈ E, i < j (17)

qij ∈ {−|C|+ 1, . . . , |V | − 1} ∀i, j ∈ V, i < j (18)

yij ∈ {0, 1} ∀(i, j) ∈ E, i < j (19)

In the above model, constraints (15) correspond to the separation between

colors of different vertices. Constraint sets (16) and (17) induce to graph

orientations in a similar manner to the orientation model. The last two

sets state integrality and bounds for variables. If V = {1, . . . , |V |}, the
set (15) can be replaced for the two following sets of constraints, which

make the formulation asymptotically smaller [5]:

xi,i+1 + xi+1,i+2 = xi,i+2 ∀i ∈ V, i ≤ |V | − 2 (20)

xij + xi+1,j−1 = xi,j−1 + xi+1,j ∀i, j ∈ V, i ≤ |V | − 3, i+ 3 ≤ j (21)

Due to the similarity between the orientation-based and distance-based

models, we can use the valid inequalities of the first one in the latter one,

which will be facet-inducing under the same conditions for both [5].

4 Concluding remarks

In this work, we summarized results for graph coloring problems in-

volving distances. We explored two types of adjacency constraints, using

equality and inequality, and gave results concerning feasibility according

to the input graph. We also proposed constraint and integer programming
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formulations for these problems. For the orientation-based IP model, we

also provide two families of valid inequalities which are facet-inducing un-

der certain conditions.

Ongoing works include using the distance-based IP model in other col-

oring problems, such as BCP, and developing exact methods based on the

mathematical programming formulations to solve distance coloring prob-

lems.
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