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Abstract

This work presents preliminary results of an investigation about

the envy-free pricing problem and applications in the sports indus-

try. Based on the literature dealing with the subject, the problem

is defined and then an application of the unit-demand case to ticket

sales for football matches is modeled in terms of mixed-integer non-

linear programming. Graph theory aspects for the allocation and

pricing subproblems are discussed, showing the viability of these

mathematical and computational treatments in the study of revenue

management in the sports entertainment industry.

1 Introduction

The sudden changes that have been occurring in the market present

challenges to companies demanding new innovative and productive ideas

in order to maintain competitiveness and profitability.

A segment that is in the bulge of today’s market discussions is the sports

entertainment industry, which moves billions of dollars annually. In the

2000 AMS Subject Classification: 68-06, 68R10 and 91B32.

Key Words and Phrases: envy-free pricing, graph theory, revenue management.

http://doi.org/10.21711/231766362020/rmc4621
https://orcid.org/0000-0002-6680-4023


An application of the unit-demand envy-free pricing problem 205

process of obtaining an estimate of the volume of financial movement of

this segment, a number of factors are taken into account, such as the

sale of tickets, products, and sporting goods, transmission agreements,

sponsorships, among others. The results presented in this article focus on

the aspect of ticket sales, which is the most traditional source of income

in the sports industry.

Motivated by the achievement of the biggest sporting event of 2018,

the FIFA World Cup Russia, this work aims to present a mathematical

formulation in terms of mixed-integer nonlinear programming of the envy-

free pricing problem applied to ticket sales for football matches and show

some approaches in terms of graph theory for this problem.

To achieve this goal, Section 2 states the envy-free pricing problem

(EFPP). Following, Section 3 proposes a mixed-integer nonlinear pro-

gramming (MINLP) formulations applied to ticket sales for a football

match. Section 4 realizes an overview of strategies for solving the model

by classical graph theory problems. Finally, Section 5 makes some final

considerations about future work perspectives.

2 The envy-free pricing problem

Assume that there is a set I of m consumers and a set J of n different

items. Each item has cj copies, and a supply vector is given by c =

(c1, ..., cn) ∈ Zn
+. Each consumer has a positive valuation vi(S) for each

bundle S ⊆ J , of items, which measures how much receiving bundle S

would be “worth” to consumer i; them×2n matrix of valuations is denoted

by V . For convenience, it is assumed that vi(∅) = 0 for every consumer

i ∈ I.

Given a price vector p = (p1, ..., pn) ∈ IRn, the utility that consumer

i derives from bundle S is Ui(S) = vi(S) − pS , where pS =
∑
j∈S

pj ; it

measures the consumer’s “joy” at having bought the bundle S at the

given price. If consumer i’s utility for the bundle S is non-negative, it is

said that S is feasible for i.
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User i’s demand set Di contains all bundles that would make him max-

imally happy, i.e., all bundles that he would most like to buy. Formally,

Di = {S | Ui(S) = max
S′

Ui(S
′)}. Since not buying any bundle is always

an option with utility Ui(∅) = 0, it follows that Ui(S) ≥ 0 for all S ∈ Di.

Applying this terminology, we can define:

Definition 2.1. An allocation (S1, ..., Sm) of bundles to consumers is

feasible if each item j is in at most cj sets Si.

Definition 2.2. Given a pricing p = (p1, ..., pn), an allocation (S1, ..., Sm)

is envy-free if Si ∈ Di for all i, i.e., each consumer receives a bundle from

his demand set.

Definition 2.3. A pricing p is envy-free if it admits a feasible, envy-free

allocation.

Definition 2.4. (The EFPP) Given the input (m,n, V, c), compute an

envy-free pricing p and a corresponding envy-free allocation (S1, ..., Sm)

maximizing the seller profit
m∑
i=1

pSi.

In the unit-demand case, each consumer is interested in purchasing ex-

actly one item. Then vi(S) > 0 only when |S| = 1. Therefore, discarding

the empty set and the subsets S ⊆ J such that |S| > 1, the dimension of

the valuations matrix reduces from m× 2n to m× n, and the input vi(S)

denotes the value assigned by the consumer i to the item j.

Guruswami et al. [2] proved that the unit demand envy-free pricing

problem is APX-hard, even if each item exists in unlimited supply, and

each consumer has equal valuations (of either 1 or 2) for all the items he

has any interest in.

3 A MINLP formulation for ticket sales

Suppose the company responsible for selling tickets for a football match

wants to maximize its revenue, leaving consumers satisfied with the price
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to be paid. A mathematical formulation aiming at this end can take into

account the following assumptions: the tickets are typified and valued

according to the proximity and visibility of the seats in relation to the

field; market analyses that observe the purchasing behavior of potential

consumers provide an estimation of the valuations that consumers assign

to the various ticket types; consumers with similar purchasing behaviors

are grouped into segments; there is a maximum number of available units

for each ticket type, according to the maximum capacity of the stadium;

each consumer can buy only one ticket; consumers who want the same

ticket type pays the same price for it; the seller establishes a minimum

price for each ticket type.

A MINLP formulation that models this situation is given as follows:

max

m∑
i=1

n∑
j=1

Nixijpj (1)

s. t.
∑
j ̸=k

(vij − pj)xij ≥ vik
∑
j ̸=k

xij − pk ∀i ∈ I, ∀k ∈ J (2)

(vij − pj)xij ≥ 0 ∀i ∈ I, ∀j ∈ J (3)
n∑

j=1

xij ≤ 1 ∀i ∈ I (4)

m∑
i=1

Nixij ≤ cj ∀j ∈ J (5)

pj ≥ p
j

∀j ∈ J (6)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (7)

pj ≥ 0 ∀j ∈ J (8)

where I = {1, ...,m} is the set of consumers’ segments, J = {1, ..., n} is

the set of ticket types, xij is the decision variable such that xij = 1 if the

item j is allocated to consumers in segment i and xij = 0 otherwise, Ni is

the number of consumers in segment i, vij is the valuation that consumers

of segment i assign to type j tickets, cj is the maximum availability of
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type j tickets, pj is the price of typej tickets to be determined and p
j
is

the minimum price for type j tickets.

Note, then, that formulation (1) – (8) is a valid formulation for the

unit-demand envy-free pricing, where a solution (x,p) maximizes both

the seller revenue and the buyers’ (winners) utilities uij = vij − pj .

4 Graph theory perspectives

4.1 The allocation subproblem

If inequality in constraint (5) becomes an equality, consider the following

integer linear program:

max

m∑
i=1

n∑
j=1

Nivijxij (9)

s. t.

n∑
j=1

xij ≤ 1 ∀i ∈ I (10)

m∑
i=1

Nixij = cj ∀j ∈ J (11)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (12)

The First Social Welfare Theorem ensures that an allocation that max-

imizes the social welfare also maximizes the seller’s revenue with envy-

free prices, i.e., a solution for (9 ) – (12) is also a solution for (1) – (8).

Thus, finding an optimal allocation is equivalent to find a maximum weight

many-to-one matching with upper bounds [1] in the graph associated to

matrix V .

4.2 The pricing subproblem

Once the binary variables are found, then considering Cj = {i : xij =

1}, B = {j : Cj ̸= ∅} and Mj =
∑
i∈Cj

Ni, model (1) – (8) becomes:



An application of the unit-demand envy-free pricing problem 209

Figure 1: A maximum weight many-to-

one matching with upper bounds based

on model (9)–(12), where the bipartite

graph is G = (I ∪ J,E), the weights

are the consumers valuations, N =

(2, 3, 4, 3, 4) and c = (7, 6). Source:

Authors.

max

n∑
j=1

Mjpj (13)

s. t. vij − pj ≥ vik − pk ∀j ∈ B, ∀k ∈ J \ {j}, ∀i ∈ Cj (14)

vij − pj ≥ 0 ∀j ∈ B, ∀i ∈ Cj (15)

pj ≥ p
j

∀j ∈ J (16)

pj ≥ 0 ∀j ∈ J (17)

Assuming that vij ≥ p
j
∀i ∈ I, ∀j ∈ J , model (13) – (17) is simplified

to

max
n∑

j=1

Mjpj (18)

s. t. pj − pk ≤ min
i∈Cj

{vij − vik} ∀j ∈ B, ∀k ∈ J \ {j} (19)

pj ≤ min
i∈Cj

{vij} ∀j ∈ J (20)

pj ≥ 0 ∀j ∈ J (21)

The dual of this last formulation is

min
∑
j,k

αjkyjk +
∑
j,k

βjzj (22)
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s. t.
∑
j ̸=k

yjk −
∑
j ̸=k

ykj + zj = Mj ∀j ∈ B (23)

∑
j ̸=k

ykj = 0 ∀j /∈ B (24)

yjk, zJ ≥ 0 ∀j, k ∈ J (25)

where αjk = min
i∈Cj

{vij − vik} and βj = min
i∈Cj

{vij}.

Removing all ykj , j /∈ B and adding a single redundant constraint, the

model becomes

min
∑
j,k

αjkyjk +
∑
j,k

βjzj (26)

s. t.
∑
j ̸=k

yjk −
∑
j ̸=k

ykj + zj = Mj ∀j ∈ B (27)

−
∑
j

zj = −
∑
j

Mj (28)

yjk, zJ ≥ 0 ∀j, k ∈ B (29)

Figure 2: A graph representing formu-

lation (26) – (29). The arcs costs are

the objective function parameters. The

optimal price of type j ticket is the

shortest path length from node j to

node 0. Source: Shioda et al. [4].

which corresponds to a formulation of |B| shortest path problems in the

digraph of Figure 2.

5 Conclusions

This work exposed an application of the unit-demand envy-free pricing

problem to ticket sales of sporting events, proposing a model in terms of
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mixed-integer nonlinear programming that treats the consumers in seg-

ments and take into account the reserve prices of both the seller and the

consumers. This initial study shows that pricing problems form a fertile

field for investigations that seek to establish connections between game

theory, integer programming and graph theory, and the formulations pre-

sented provides support for the development of approximation algorithms,

as well as make it possible to extend the unit-demand case to other de-

mand cases that arise in real problems.
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