
Matemática Contemporânea, Vol. 46, 194–203

http://doi.org/10.21711/231766362020/rmc4620

©2019, Sociedade Brasileira de Matemática
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Abstract

The Meyniel’s conjecture has been one of the most interesting

topics of study regarding the cops and robber game on graphs. It

states that given any connected graph G with n vertices, c(G) ≤
C
√
n, for a constant C large enough, where c(G) is the cop-number,

the minimum number of cops to guarantee that the robber cannot

escape. We use the primeval and modular decompositions of the

(q, q − 4)-graphs and the P4-tidy graphs to find polynomial algo-

rithms to calculate the cop number c(G) of a graph in these classes.

Futhermore, we prove that the Meyniel’s conjecture is true for P4-

tidy and for (q, q − 4)-graphs with at least q vertices.

Let G be a finite graph. Two players, C and R, face each other on a

match in which the cops, controlled by C move between adjacent vertices

of G in order to capture the robber, controlled by R. The game has

perfect information; that is, each player can see the position of the pieces

controlled by his adversary.

On turn 0, player C chooses in which vertices he will place his cops.

After that, R, aware of the initial position of the cops, places his robber.

Players then, alternately, starting with C, move each of their pieces to an
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adjacent vertex of its current position or make it stay on the same vertex

for that turn. The game ends, with the victory of player C, if in a finite

number of turns one of the cops capture the robber(i.e. move to the same

vertex of the robber). If the robber can avoid capture indefinitely, then R
wins.

The Game of Cops and Robber, described above, was introduced by

Quilliot [13] and independently by Nowakowski and Winkler [11]. We say

that a graph G is k-cop-win if there is a strategy for C to always win,

using k cops, no matter the strategy adopted by R. The cop number of

a graph G, denoted by c(G), is the minimum k such that G is k-cop-win.

Aigner and Fromme proved that for any plannar graph G, c(G) ≤ 3 [1].

Hahn and MacGillivray presented an algorithm that decides if a graph

G is k-cop-win, for fixed integer k, in polynomial time [8]. However,

Kratochv́ıl et al. proved that, when k is not fixed, decide if c(G) ≤ k

is NP -hard [6]. Recently, Kinnersley proved that the problem is indeed

ExpTime-complete [9].

The most important open problem related to the game of cops and

robber is to limit, for any connected graph G = (V,E), the value of c(G)

by a function of |V |. Let n be a positive integer, c(n) is the minimum

k such that for any connected graph G with n vertices, c(G) ≤ k. In

1985, Meyniel conjectured that c(n) = O(
√
n). Lu and Peng proved that

c(n) = O

(
n

21−o(n)
√

log2 n

)
[10].

On this article we show polynomial algorithms to calculate the cop

number for P4-tidy graphs and (q, q − 4)-graphs. Futhermore, we prove

that the Meyniel’s conjecture is true for P4-tidy and for (q, q − 4)-graphs

with at least q vertices.

1 Graphs with few P4’s

A spider graph is a graph whose vertex set can be partitioned on sets

R, C, S where C = {c1, . . . , ck} is a clique and S = {s1, . . . , sk} is an

independent set with k > 1 such that: (i) Every vertex in R is adjacent to



196 N. Martins and R. Sampaio

every vertex in C and non-adjacent to every vertex in S; (ii) si is adjacent

to cj if and only if i = j (thin spider) or si is adjacent to cj if and only

if i ̸= j (thick spider). We refer to R, C and S, respectively, as the head,

body and legs of the spider. In the case where R = ∅ the spider is said

to be headless. Some examples of spider graphs are presented in [5]. A

graph is a quasi-spider if it can be obtained from a spider by replacing

at most one vertex in C ∪ S by a K2 or a K2 maintaining adjacencies.

A graph G is P4-tidy if for every induced P4 H in G, there is at most

one vertex outside H that induces at least two P4’s with the vertices of

H [7]. The P4-tidy graphs contains the P4-lite graphs, P4-extendible and

extended P4-sparse graphs.

Theorem 1 ([7]). A graph G is P4-tidy if and only if exactly one of

the following holds: (a) G is the disjoint union or the join of two P4-

tidy graphs; (b) G is a quasi-spider, with partition (R,C, S), such that R

induces a P4-tidy graph or is empty; (c) G is isomorphic to a C5, P5, P5

or K1.

Theorem 1 imply a tree decomposition of the P4-tidy graphs, where the

leaves are headless quasi-spiders, C5, P5, P5 or K1 and the internal nodes

are the results of operations(applied on the sons of the node) of disjoint

union(a), join(b), or an operation that adds all the edges between the

vertices of a subgraph to the body of a headless quasi-spider, creating a

complete quasi-spider(c). Such decomposition can be computed in linear

time O(m+ n) [7], where m is the number of edges and n is the number

of vertices of the input graph.

A graph G = (V,E) is said to be a (q, q−4)-graph if no subset of V with

at most q vertices induces more than q − 4 distinct P4’s. The (q, q − 4)-

graphs also have a nice tree decomposition similar to the one presented

above.

A graph G = (V,E) is p-connected if, for every bipartition (A,B) of V

there is an induced P4 with vertices from both A and B. A p-component of

a graph G is a maximal p-connected subgraph of G. A graph G = (V,E)
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is separable if there is a particular bipartition (H1, H2) of its vertex set

such that for every induced P4 wxyz, x, y ∈ H1 and w, z ∈ H2.

Theorem 2 ([3]). Let q ≥ 4 be fixed and G a (q, q − 4)-graph. Then one

of the following holds (a) G is the disjoint union of two (q, q − 4)-graphs;

(b) G is the join of two (q, q − 4)-graphs; (c) G is spider (R,C, S) such

that G[R] is a (q, q − 4)-graph; (d) G contains separable p-component H,

with |H| < q with separation (H1, H2), such that every vertex in G−H is

adjacent to every vertex in H1 and not adjacent to any vertex of H2; (e)

G has less than q vertices.

The decomposition sugested by Theorem 2 is the Primeval Decomposi-

tion and can be obtained in linear time O(m + n) [2]. Given graphs G

and H, G∪H denotes the disjoint union of G and H, and G∨H denotes

the join of G and H.

2 The cop number of graphs with few P4’s

The cop number of a disconnected graph is the sum of the cop number

of its connected components. Thus, we have the following straightforward

lemma.

Lemma 1. Let G = G1 ∪G2, then c(G) = c(G1) + c(G2).

Next we show the exact value for the cop number of the join of two

graphs.

Lemma 2. Let G = G1 ∨G2, then c(G) = min{2, c(G1), c(G2)}.

Proof. Clearly c(G) ≤ 2 since C can initially place a cop on a vertex of

G1 and another one on a vertex of G2 and then any vertex of G would be

adjacent to at least one cop. Therefore, no matter what vertex the player

R chooses as the initial position of the robber, he will be captured on the

first round.

Suppose c(G1) > 1 and c(G2) > 1. Assume w.l.g. that C chooses to

initially place his single cop in a vertex of G1. Since c(G1) > 1, R can
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use a winning strategy to initially place the robber on a vertex of G1 and

avoid capture as long as the cop remain in G1. Afterwards if C chooses to

move his cop to a vertex of G2, since all vertices of G1 are adjacent to all

vertices in G2 and c(G2) > 1, the robber can use a winning strategy to

move to a vertex of G2, as if the game had just started, and avoid capture

as long as the cop remains in G2. Therefore, if c(G) = 1 then c(G1) = 1

or c(G2) = 1.

Suppose w.l.g. that c(G1) = 1, then C can use a winning strategy in G1

to initially place his cop in a vertex of G1. By doing so, he forbids R from

placing the robber on any vertex of G2, otherwise it would be captured

on the next turn. Therefore, the game will be always restricted to G1.

Since c(G1) = 1, C has a winning strategy to capture the robber in a finite

number of moves. Consequently, c(G) = min{2, c(G1), c(G2)}.

Lemma 3. Let G be a spider with partition (R,C, S), then c(G) = 1.

Proof. If G is a thin spider, then C can place his cop initially in c1 ∈ C.

The only vertices of G that are not adjacent to c1 are the vertices si with

2 ≤ i ≤ |C|. We can assume w.l.g. that R chooses to initially place the

robber on s2. Then on the next turn C would move his cop to c2 and R
would keep his robber on s2, since the only vertex he could move is now

occupied by a cop.

If G is a thick spider, then C can use a similar strategy. He places one

cop on some vertex of the clique and afterwards moves the cop towards

the robber. Assuring capture on at most 2 moves.

In the next lemma, we assume from Lemma 3 that G is not a spider.

Lemma 4. Let G be a quasi-spider with partition (R,C, S). If G is a thin

quasi-spider, then:

c(G) =

2, if the duplicate vertices v, v′ ∈ C and induce a K2;

1, otherwise.

If G is a thick quasi-spider, then c(G) = 1.
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Proof. Assume that G is a thin quasi-spider such that the duplicate vertex

ci ∈ C and induces a K2 with his copy c′i. We show a strategy for the

robber to avoid capture indefinitely when playing against just one cop in

G. The strategy for the robber depends only on the position of the cop. If

the cop is in ci, R will place the robber in c′i and vice-versa. If the cop is

in si, R must place the robber on a vertex of C distinct from ci and c′i. If

the cop is in any other vertex of G, R must place the robber on si. Since

the player R can choose the initial position of the robber accordingly to

the strategy and keep the cop at a distance of at least 2 from the robber,

then c(G) > 1.

However, if there are two cops, the robber is captured in at most two

moves. It suffices to C place the cops initially on ci and c′i, hence if R
place the robber on si or any other vertex of C ∪ R \ {ci, c′i} he will be

captured on the next turn. Therefore, R must place the robber on some

vertex sj ∈ S \ {si}. If he does so, one of the cops can be moved to cj ,

since N [sj ] ⊆ N [cj ], the robber has no place to flee and will be captured

on the next move of the cops.

Suppose that G is a thin quasi-spider such that the duplicate vertex

belongs to S or induces a K2 with its copy. We can show that only one

cop can guarantee the capture of the robber with at most two moves.

Player C must choose to initially place the only cop on a vertex ci ∈ C.

Hence, if R initially places the robber on si (or possibly s′i) or in any

vertex from C ∪ R he will be captured on the next turn. Therefore, R
must place the robber on a vertex sj (possibly s′j) from S such that i ̸= j.

It suffices now for the cop to be moved to cj to assure the capture of the

robber on the next turn.

Since a thick spider with |C| = 2 is also a thin spider, we can assume

that a thick quasi-spider has at least 3 vertices on C, 4 if one of them is

duplicate. One cop is enough to capture a robber on this case. Initially C
places a cop on a non duplicate vertex of cj ∈ C. Observe that, by doing

so, the cop is adjacent to all vertices of the graph, except sj (and possibly

s′j). Consequently, R must place the robber on sj (or its copy). Now it
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suffices for C to move the cop to another non duplicate vertex of C (that

is possible because C has at least 3 vertices). On the robber next move

he can refrain from moving or move to a vertex of C, either way he will

end on a vertex adjacent to the vertex of the cop and will be captured on

the next turn.

With the results presented so far we obtain a linear algorithm to calcu-

late c(G) for any P4-tidy graph G.

Theorem 3. Given a P4-tidy graph G we can determine c(G) in time

O(n+m). Furthermore, c(G) ≤ 2.

Proof. Directly from Theorem 1 and Lemmas 1, 2, 3, 4.

Observe that, since c(G) ≤ 2, this implies that Meyniel’s conjecture is

true for P4-tidy graphs. A module on a graph G is a set of vertices M such

that for each vertex v ∈ V (G) \M , v is adjacent to all vertices in M or v

is not adjacent to any vertex in M . Jamison and Olariu investigated the

process of turning each module of a separable p-component H with sepa-

ration (H1, H2) in a single vertex, keeping the adjacencies. They proved

that the graph obtained in such process, which they called characteristic

p-component of H, is a split graph. The vertices of the clique represent

the modules in H1 and the vertices of the independent set represent the

modules in H2. Furthermore, the characteristic p-component of a graph

H can be obtained in polynomial time on the size of H [12].

Theorem 4. Let q be a fixed integer and G be a (q, q − 4)-graph there is

a polynomial algorithm to calculate c(G). Furthermore, for all connected

(q, q − 4)-graph G with at least q vertices, c(G) ≤ 2.

Proof. The union, join and spider operations are solved in Lemmas 1, 2

and 3. Suppose that G has a separable p-component H = (H1, H2) with

less than q vertices. We can use the characteristic p-component of H

to show that c(G) ≤ 2. C begins the game by placing two cops c1 and

c2 in vertices from distinct modules of H1. Those 2 cops are adjacent
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to all vertices in G′ = G \ H, all the vertices of H1, since the modules

form a clique in the characteristic p-component, and some vertex of H2.

Therefore, R has no other option but place the robber on some vertex of

H2 not adjacent to the vertices occupied by the cops.

On the next turn, C moves the cop c1 to a vertex of H1 adjacent to the

vertex occupied by the robber. Observe that, since the modules of H2 are

independent set on the characteristic p-component of H, then the robber

can only move to a vertex of H1 or a vertex of H2 from the same module

where he is. Either way the robber will be captured on the next turn.

This assure that c(G) ≤ 2. The algorithm from Hahn and MacGillivray

[8] gives us a polynomial solution to decide if c(G) = 1. For the case when

G has less than q vertices, we can also use the algorithm from Hahn and

MacGillivray [8] for j cops, with 1 ≤ j < q. Since q is a fixed value, such

procedure also takes polynomial time.

Corolary 1. The Meyniel’s Conjuecture holds for both P4-tidy graphs and

(q, q − 4)-graphs with at least q vertices.

Conclusion: In this paper, we present two new classes of graphs for

which Meyniel’s conjecture is true and polynomial algorithms to calculate

the cop number of a graph in these classes. Since any graph is a (q, q−4)-

graph for some q > 0, this could lead to another way to prove the Meyniel’s

conjecture. Unfortunately, the decomposition of (q, q − 4)-graphs do not

give us any information about the structural properties of these graphs

when they have less than q vertices. It is also worth noticing that these

results imply a polynomial algorithm to calculate, for any integer k, the

k-capture time [4] of P4-tidy graphs and (q, q − 4)-graphs.
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