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Abstract

The total chromatic number of a graph G, denoted by χT (G), is

the minimum number of colors needed to totally color G. A well-

known bound is χT (G) ⩾ ∆(G) + 1, where ∆(G) represents the

maximum degree of a vertex in G. The total coloring conjecture

(TCC) was proposed independently by Behzad and Vizing and states

that, for every simple graph G, χT (G) ⩽ ∆(G) + 2. This conjecture

remains open for chordal and powers of cycle graphs. If χT (G) =

∆(G) + 1, then G is said to be Type 1. If χT (G) = ∆(G) + 2,

then G is said to be Type 2. The power of the cycle graph Ck
n has

Cn as spanning subgraph and additional edges between vertices at

distance at most k in Cn. Campos and de Mello (A result on the

total colouring of powers of cycles, Discrete Appl. Math. (2007), 55,

585–597) proved the TCC Ck
n, when k = 3 or when n is even. In

the same work, Campos and de Mello proposed a conjecture: Ck
n is

Type 2 if n is odd and k > n/3− 1 and is Type 1 otherwise.

In the present work, we prove that the conjecture proposed by

Campos and de Mello holds for a graph Ck
n if k = 3 or k = 4,
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by giving a collage technique using the minimum number of colors

needed, which yields an optimal algorithm.

1 Introduction

The well known total coloring conjecture (TCC) was proposed indepen-

dently by Behzad and Vizing and states that for every simple graph G,

all its elements (vertices and edges) can be colored with no more than

∆(G) + 2 colors, with ∆(G) being the maximum degree of a vertex in

V (G), in such way that adjacent elements receive distinct colors. The

TCC holds for many important graph families, such as the r-partite com-

plete graphs [5], dually chordal graphs [6], and graphs with a high maxi-

mum degree [9]. However, the TCC remains open for chordal graphs and

for power of cycle graphs.

It is easy to see that no graph can be totally colored with less than

∆(G)+1 colors. If a graph G can be totally colored with ∆(G)+1 colors

it is called Type 1 . If it can not be colored with ∆(G) + 1 colors but can

be colored with ∆(G) + 2 colors it is said to be Type 2 . The minimum

number of colors needed to totally color all the elements of a graph G

is called total chromatic number. McDiarmid and Sánchez-Arroyo proved

in [8] that even for r-regular bipartite graphs, with fixed r, the problem

of finding the total chromatic number is NP-hard. Another interesting

dichotomy related with this problem is the fact that there are some classes

of graphs, like bipartite graphs, for which the TCC holds, but the problem

of finding the total chromatic number is NP-hard. EVven if we have a

polynomial-time algorithm to determine the total chromatic number of

the graphs of a class, this does not mean that the TCC is proven for this

class.

A k-th power of a graph G is a graph G′ where V (G) = V (G′) and

E(G) = E(G) ∪ {uv | u, v ∈ V (G′) and dist(u, v) ⩽ k}, with dist(u, v)

being the distance between u and v. A power of cycle graph, denoted

by Ck
n, is a graph where V (Ck

n) = {v0, v1, . . . , vn−1}, note that this is
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the order of a spanning cycle, and E(Ck
n) = E1 ∪· · · ∪ Ek, where Ei =

{vjv(j+i) | 0 ⩽ j ⩽ n − 1}. In this work, when we refer to a vertex

vi ∈ V (Ck
n) we will mean vi mod n. If k ⩾

⌊
n
2

⌋
, then Ck

n is isomorphic to

Kn, the complete graph with n vertices, whose total chromatic number is

established: Type 1 if n is odd and Type 2 if n is even [1]. The TCC was

proved for Ck
n when n is even [3]. If k = 1, then the graph Ck

n is isomorphic

to Cn, whose total chromatic is also known: Type 1 if n is multiple of 3

and Type 2 otherwise [9]. For a fixed value of k, the TCC was proved for

C3
n and C4

n, and for C2
n, the total chromatic number is established: C2

7 is

Type 2 if n ̸= 7 and C2
n is Type 1 otherwise. If n is multiple of 2k + 1

then Ck
n is Type 1 [2].

An important result about the total chromatic number problem is the

result of Chetwynd and Hilton [4] that shows a sufficient condition for a

graph not to be Type 1, in what is known as the conformable argument.

Campos [2] adapted this result for the power of cycle graphs, showing that

a non-complete graph Ck
n, with k ⩽ n/3−1 and n odd, is not conformable,

hence it is not a Type 1 graph.

We call a total coloring a function πCk
n
: E(Ck

n) ∪ V (Ck
n) → [t], where

[t] = {0, . . . , t}, and adjacent elements must receive distinct colors. A

color of a vertex vi will be denoted by πCk
n
(vi), similarly a color of an edge

vivj will be denoted by πCk
n
(vivj). We will denote by χT (G) the total

chromatic number of G.

2 Preliminaries

In this section we will define some terms that will be used in Section 3.

We call a semi-cut of edges of a graph Ck
n a set S′

c(vi) = {vjvl | i−k < j ⩽

i, i < l ⩽ i+k and l−j ⩽ k}. We call a semi-cut of vertices of a graph Ck
n

a set of k consecutive vertices. We give name to two special semi-cuts of

vertices: S−
c (vi) = {vj | i− k < j ⩽ i} and S+

c (vi) = {vj | i < j ⩽ i+ k}.
Figure 1 shows a graph C3

10 and the sets S′
c(v2), and S−

c (v2), S
+
c (v2). Each

set has a shade highlighted in one table. The tables show total colorings,



178 A. Zorzi, C. de Figueiredo and R. Machado

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 6 0 1 5 - - - 3 2 4

v1 0 1 4 2 6 - - - 5 3

v2 1 4 2 6 3 0 - - - 5

v3 5 2 6 4 1 3 0 - - -

v4 - 6 3 1 0 2 4 5 - -

v5 - - 0 3 2 6 5 4 1 -

v6 - - - 0 4 5 1 6 3 2

v7 3 - - - 5 4 6 2 0 1

v8 2 5 - - - 1 3 0 4 6

v9 4 3 5 - - - 2 1 6 0

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 6 0 1 5 - - - 3 2 4

v1 0 1 4 2 6 - - - 5 3

v2 1 4 2 6 3 0 - - - 5

v3 5 2 6 4 1 3 0 - - -

v4 - 6 3 1 0 2 4 5 - -

v5 - - 0 3 2 6 5 4 1 -

v6 - - - 0 4 5 1 6 3 2

v7 3 - - - 5 4 6 2 0 1

v8 2 5 - - - 1 3 0 4 6

v9 4 3 5 - - - 2 1 6 0

(b)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 6 0 1 5 - - - 3 2 4

v1 0 1 4 2 6 - - - 5 3

v2 1 4 2 6 3 0 - - - 5

v3 5 2 6 4 1 3 0 - - -

v4 - 6 3 1 0 2 4 5 - -

v5 - - 0 3 2 6 5 4 1 -

v6 - - - 0 4 5 1 6 3 2

v7 3 - - - 5 4 6 2 0 1

v8 2 5 - - - 1 3 0 4 6

v9 4 3 5 - - - 2 1 6 0

(c)

Figure 1: (a) The edges of the set S′
c(v2) are represented by the solid gray

edges. (b) The vertices of the set S−
c (v2) are the vertices v0, v1, v2. (c)

The vertices of the set S+
c (v2) are the vertices v3, v4, v5.

in such way that the color of an edge vivj is given in the cell i, j of the

matrix. The color of the vertex vi is represented by the cell i, i.

Definition 2.1 (Compatibility). We say that two colorings πCk
n1

and

πCk
n2

are compatible if there exists a vertex vi ∈ V (Ck
n1
) and a vertex

uj ∈ V (Ck
n2
) such that: (a) S−

c (vi) is compatible with S+
c (uj), meaning

πCk
n1
(vi−r) ̸= πCk

n2
(uj+s); (b) S+

c (vi) is compatible with S−
c (uj), mean-

ing πCk
n1
(vi+s) ̸= πCk

n2
(uj−r), for every r ∈ {0, . . . , k − 1} and every s ∈

{1, . . . , k−r}. (c) S′
c(vi) is compatible with S′

c(uj), meaning πCk
n1
(vi−rvi+s) =

πCk
n2
(uj−ruj+s), for every r ∈ {0, . . . , k − 1} and every s ∈ {1, . . . , k}. In

this case, we say that this total colorings are compatible through the pivot

vertices vi and uj .

3 Results

The next theorem allows us to form a total coloring of a power of cycle

graph by collating two total colorings of power of cycle graphs. Fur-

thermore, this new total coloring will be compatible with all other total
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colorings that are compatible with the two seed total colorings through

the same pivot vertex. We call seed total coloring a total coloring that

are used to generate another total coloring.

v0 v1 v2 v3 v4 v5 v6

v0 0 4 1 5 2 6 3

v1 4 1 5 2 6 3 0

v2 1 5 2 6 3 0 4

v3 5 2 6 3 0 4 1

v4 2 6 3 0 4 1 5

v5 6 3 0 4 1 5 2

v6 3 0 4 1 5 2 6

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0 0 3 4 5 - - - - - 1 2 6

v1 3 1 5 2 6 - - - - - 0 4

v2 4 5 2 6 3 0 - - - - - 1

v3 5 2 6 3 0 1 4 - - - - -

v4 - 6 3 0 4 2 1 5 - - - -

v5 - - 0 1 2 5 3 4 6 - - -

v6 - - - 4 1 3 0 2 5 6 - -

v7 - - - - 5 4 2 1 3 0 6 -

v8 - - - - - 6 5 3 2 4 1 0

v9 1 - - - - - 6 0 4 3 5 2

v10 2 0 - - - - - 6 1 5 4 3

v11 6 4 1 - - - - - 0 2 3 5

(b)

v0 v1 v2 v3 v4 v5 v6 v7

v0 0 3 1 5 - 2 6 4

v1 3 1 4 2 6 - 5 0

v2 1 4 2 6 3 0 - 5

v3 5 2 6 3 1 4 0 -

v4 - 6 3 1 0 5 4 2

v5 2 - 0 4 5 1 3 6

v6 6 5 - 0 4 3 2 1

v7 4 0 5 - 2 6 1 3

(c)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 6 0 1 5 - - - 3 2 4

v1 0 1 4 2 6 - - - 5 3

v2 1 4 2 6 3 0 - - - 5

v3 5 2 6 4 1 3 0 - - -

v4 - 6 3 1 0 2 4 5 - -

v5 - - 0 3 2 6 5 4 1 -

v6 - - - 0 4 5 1 6 3 2

v7 3 - - - 5 4 6 2 0 1

v8 2 5 - - - 1 3 0 4 6

v9 4 3 5 - - - 2 1 6 0

(d)

Table 1: Seed colorings which can generate colorings to any graph C3
n,

with n ⩾ 14. Total colorings using ∆+1 = 7 colors of the graphs: (a) C3
7 ,

(c) C3
8 , (d) C

3
10, and (b) C3

12.
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v0 v1 v2 v3 v4 v5 v6 v7 v8

v0 0 5 1 6 2 7 3 8 4

v1 5 1 6 2 7 3 8 4 0

v2 1 6 2 7 3 8 4 0 5

v3 6 2 7 3 8 4 0 5 1

v4 2 7 3 8 4 0 5 1 6

v5 7 3 8 4 0 5 1 6 2

v6 3 8 4 0 5 1 6 2 7

v7 8 4 0 5 1 6 2 7 3

v8 4 0 5 1 6 2 7 3 8

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

v0 0 4 1 6 2 - - - - - - - - 5 8 3 7

v1 4 1 0 2 7 3 - - - - - - - - 5 8 6

v2 1 0 2 7 3 8 4 - - - - - - - - 6 5

v3 6 2 7 3 8 4 0 5 - - - - - - - - 1

v4 2 7 3 8 4 1 5 0 6 - - - - - - - -

v5 - 3 8 4 1 0 2 6 5 7 - - - - - - -

v6 - - 4 0 5 2 1 3 7 6 8 - - - - - -

v7 - - - 5 0 6 3 2 1 4 7 8 - - - - -

v8 - - - - 6 5 7 1 3 0 2 4 8 - - - -

v9 - - - - - 7 6 4 0 5 1 2 3 8 - - -

v10 - - - - - - 8 7 2 1 0 3 5 6 4 - -

v11 - - - - - - - 8 4 2 3 1 6 0 7 5 -

v12 - - - - - - - - 8 3 5 6 2 7 0 1 4

v13 5 - - - - - - - - 8 6 0 7 3 1 4 2

v14 8 5 - - - - - - - - 4 7 0 1 6 2 3

v15 3 8 6 - - - - - - - - 5 1 4 2 7 0

v16 7 6 5 1 - - - - - - - - 4 2 3 0 8

(b)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 0 4 1 6 2 - 5 8 7 3

v1 4 1 0 2 7 3 - 6 5 8

v2 1 0 2 7 3 8 4 - 6 5

v3 6 2 7 3 8 4 0 5 - 1

v4 2 7 3 8 4 5 6 0 1 -

v5 - 3 8 4 5 0 7 1 2 6

v6 5 - 4 0 6 7 1 3 8 2

v7 8 6 - 5 0 1 3 2 4 7

v8 7 5 6 - 1 2 8 4 3 0

v9 3 8 5 1 - 6 2 7 0 4

(c)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

v0 0 4 1 6 2 - - - - - - - 5 7 3 8

v1 4 1 0 2 7 3 - - - - - - - 6 8 5

v2 1 0 2 7 3 8 4 - - - - - - - 5 6

v3 6 2 7 3 8 4 0 5 - - - - - - - 1

v4 2 7 3 8 4 0 1 6 5 - - - - - - -

v5 - 3 8 4 0 5 2 1 6 7 - - - - - -

v6 - - 4 0 1 2 6 3 7 5 8 - - - - -

v7 - - - 5 6 1 3 7 2 0 4 8 - - - -

v8 - - - - 5 6 7 2 0 4 3 1 8 - - -

v9 - - - - - 7 5 0 4 1 6 2 3 8 - -

v10 - - - - - - 8 4 3 6 2 5 7 0 1 -

v11 - - - - - - - 8 1 2 5 3 6 4 7 0

v12 5 - - - - - - - 8 3 7 6 4 1 0 2

v13 7 6 - - - - - - - 8 0 4 1 5 2 3

v14 3 8 5 - - - - - - - 1 7 0 2 6 4

v15 8 5 6 1 - - - - - - - 0 2 3 4 7

(d)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0 8 0 1 6 2 - - - 7 4 3 5

v1 0 1 5 2 7 3 - - - 6 8 4

v2 1 5 2 7 3 8 4 - - - 0 6

v3 6 2 7 3 8 4 0 5 - - - 1

v4 2 7 3 8 5 1 6 0 4 - - -

v5 - 3 8 4 1 0 2 6 5 7 - -

v6 - - 4 0 6 2 8 3 1 5 7 -

v7 - - - 5 0 6 3 1 8 2 4 7

v8 7 - - - 4 5 1 8 2 0 6 3

v9 4 6 - - - 7 5 2 0 3 1 8

v10 3 8 0 - - - 7 4 6 1 5 2

v11 5 4 6 1 - - - 7 3 8 2 0

(e)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

v0 0 4 1 6 2 - - - - - 7 5 8 3

v1 4 1 5 2 7 3 - - - - - 6 0 8

v2 1 5 2 7 3 8 4 - - - - - 6 0

v3 6 2 7 3 8 4 0 5 - - - - - 1

v4 2 7 3 8 4 0 1 6 5 - - - - -

v5 - 3 8 4 0 5 2 1 6 7 - - - -

v6 - - 4 0 1 2 6 3 7 5 8 - - -

v7 - - - 5 6 1 3 0 2 8 4 7 - -

v8 - - - - 5 6 7 2 1 3 0 8 4 -

v9 - - - - - 7 5 8 3 2 6 0 1 4

v10 7 - - - - - 8 4 0 6 3 1 2 5

v11 5 6 - - - - - 7 8 0 1 4 3 2

v12 8 0 6 - - - - - 4 1 2 3 5 7

v13 3 8 0 1 - - - - - 4 5 2 7 6

(f)

Table 2: Seed colorings which can generate colorings to any graph C4
n,

with n ⩾ 16. Total colorings using ∆ + 1 = 9 colors of the graphs: (a)

C4
9 , (c) C

4
10, (e) C

4
12, (f) C

4
14, and (d) C4

16. Total Coloring of the graph (b)

C4
17 with ∆ + 1 = 9 colors.
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Theorem 3.1. If two colorings πCk
n1

and πCk
n2
, with t1, t2 ⩽ γ, are

compatible, then we can build a coloring πCk
n
, such that n = n1 + n2

and t ⩽ γ. Moreover, Ck
n is compatible with any coloring πCk

nw
which is

compatible with πCk
n1

and πCk
n2

through the pivot vertices wl ∈ V (Ck
nw

)

and the vertices vi, uj , respectively.

Proof. Since πCk
n1

and πCk
n2

are compatible, there is a vertex vi ∈ V (Ck
n1
)

and a vertex uj ∈ V (Ck
n2
) that fulfill the restrictions of Definition 2.1. Let

G1 be a graph where V (G1) = V (Ck
n1
) and E(G1) = E(Ck

n1
)\S′(vi), where

V (G1) = {vi−1, vi−2, . . . , vi−n1} and G2 a graph where V (G2) = V (Ck
n2
)

and E(G2) = E(Ck
n2
) \ S′(uj), where V (G2) = {uj , vj+1, . . . , vj+n2−1}.

Note that the graphs G1 and G2 are subgraphs of Ck
n1

and Ck
n2
, respec-

tively.

To form the coloring πCk
n
we collate the colorings of the graphs G1 and

G2, to transfer the colorings of such graphs to our graph Ck
n. Figure 2a

shows an example of the collage of the two graphs G1 and G2 without the

final edges.

The edges that are out of G1 and G2 will be colored with the same color

of the set S′
c(vi) or S

′
c(uj).

Note that all the elements of the Ck
n receive a color. Suppose by contra-

diction that there is a conflict in the coloring πCk
n
, but, by Definition 2.1,

if there is a conflict in πCk
n
there exists a conflict in one of the colorings

πCk
n1

and πCk
n2
, which yields a contradiction.

By the construction, in πCk
n
the colors of the set S′

c(vi) and S−
c (vi)

remain the same and the colors of the set S+
c (vi) will be exactly the same

of the set S+
c (uj). It is easy to see that the graph πCk

nw
is compatible with

πCk
n
through the corresponding vertex vi ∈ V (Ck

n) and wl.

In the next theorem we use Theorem 3.1 to find the chromatic number

of the graphs C3
n and C4

n.

Theorem 3.2. A non-complete graph Ck
n, with k = 3 or k = 4, is Type 2

if n is odd and k > n/3− 1 and is Type 1, otherwise.



182 A. Zorzi, C. de Figueiredo and R. Machado

(a) (b)

Figure 2: A graph C3
18, its total coloring will be built through two colorings

of the graphs C3
10 and C3

8 . (a) The graphs G1 and G2 that will be used

to form a total coloring of πCk
n
. (b) The dashed edges represent the edges

that are not in the graphs G1 and G2 but they are in Ck
n.

Proof. First, note that in her PhD thesis Campos [2] proved, in Theorem

2.29 and Theorem 2.30, that TCC works for the graphs C3
n and C4

n. We

can use the sets of seed colorings of Table 1 and Table 2 to form any

coloring of a graph C3
n, with n ⩾ 14 and for graphs C4

n, with n ⩾ 18 if

k = 4, by collate successively only graphs of the respective sets.

Note that every time that we make a collage of two seed colorings we

generate another different coloring, which is compatible with all other seed

colorings. The graphs C3
9 , C

3
11, C

4
11 and C4

13 are known to be Type 2. So

the only non-complete graphs that are not covered are the graphs C3
13,

C4
15, and C4

17, but the graphs C3
13 and C4

15 have Type 1 total colorings,

which were shown by Campos in [2]. We show a total coloring of the graph

C4
17 in the Table 2b.

4 Conclusion

This work is an alternative proof for a presentation made by Sheila de

Almeida, JÃ´natas Belotti, Mayara Omai and Juliana Brim in the VI

Latin American Workshop on Cliques in Graphs, 2014. Therefore, this

work uses a more general technique that allows us to apply the same idea

to other graphs, like the C5
n. In the Table 3a we see the coloring of the

graph C5
11 and in the Table 3b C5

12 we see the coloring of the graph C5
12.

As these colorings are compatible, we can generate a (∆+ 1)-coloring for
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v0 0 6 1 7 2 8 3 9 4 10 5

v1 6 1 7 2 8 3 9 4 10 5 0

v2 1 7 2 8 3 9 4 10 5 0 6

v3 7 2 8 3 9 4 10 5 0 6 1

v4 2 8 3 9 4 10 5 0 6 1 7

v5 8 3 9 4 10 5 0 6 1 7 2

v6 3 9 4 10 5 0 6 1 7 2 8

v7 9 4 10 5 0 6 1 7 2 8 3

v8 4 10 5 0 6 1 7 2 8 3 9

v9 10 5 0 6 1 7 2 8 3 9 4

v10 5 0 6 1 7 2 8 3 9 4 10

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0 0 2 1 6 3 8 - 9 5 10 7 4

v1 2 1 0 7 8 3 9 - 4 5 10 6

v2 1 0 2 8 7 9 4 10 - 6 5 3

v3 6 7 8 3 2 4 10 5 0 - 9 1

v4 3 8 7 2 4 10 5 0 6 1 - 9

v5 8 3 9 4 10 5 1 2 7 0 6 -

v6 - 9 4 10 5 1 0 6 3 7 2 8

v7 9 - 10 5 0 2 6 1 8 4 3 7

v8 5 4 - 0 6 7 3 8 2 9 1 10

v9 10 5 6 - 1 0 7 4 9 3 8 2

v10 7 10 5 9 - 6 2 3 1 8 4 0

v11 4 6 3 1 9 - 8 7 10 2 0 5

(b)

Table 3: Seed colorings which can generate colorings to any graph C5
n,

with n ⩾ 110. Total colorings using ∆ + 1 = 11 colors of the graphs: (a)

C5
11; (b) C

5
12.

all but 20 graphs C5
n. Moreover, all graphs C5

n, with n > 110 have such

coloring. Currently, we are working to extend those results for all graphs

Ck
n.

Our work also represents a more general technique then the one used

by Campos [2] to established the total coloring of the graphs C2
n. Since

Campos collage is used only for k = 2, uses a different construction of the

seed colorings and different collage between two graphs as well. The other

techniques in [2] are not closely related with the technique presented in

this paper.
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