
Matemática Contemporânea, Vol. 46, 165–174

http://doi.org/10.21711/231766362020/rmc4617

©2019, Sociedade Brasileira de Matemática
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Abstract

Given a simple graph G, an ordered pair (π, cπ) is said to be a

gap-[k]-edge-labelling (resp. gap-[k]-vertex-labelling) of G if π is an

edge-labelling (vertex-labelling) on the set {1, . . . , k}, and cπ is a

proper vertex-colouring such that every vertex of degree at least two

has its colour induced by the largest difference among the labels of

its incident edges (neighbours), with isolated and degree-one vertices

treated separately. These proper labellings were introduced by M.

Tahraoui et al. in 2012 [6], and by A. Dehghan et al. in 2013 [3],

respectively. In the latter, the authors investigate complexity as-

pects of decision problems associated with these labellings. In this

work, we investigate both variants of this labelling for the family of

unicyclic graphs.

1 Introduction

Let G be a simple, finite and undirected graph with vertex set V (G) and

edge set E(G). The elements of G are its vertices and its edges. An edge

e ∈ E(G) with ends u, v ∈ V (G) is denoted by uv. The degree of a vertex
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v ∈ V (G) is denoted by d(v), and the minimum degree of G, by δ(G). The

set of edges incident with v is denoted by E(v) and its neighbourhood, by

N(v).

For a set C of colours, a (proper vertex-)colouring of G is a mapping

c : V (G) → C, such that c(u) ̸= c(v) for every pair of adjacent vertices

u, v ∈ V (G). If |C| = k, mapping c is called a k-colouring. The chromatic

number of G, denoted by χ(G), is the least number k for which G admits

a k-colouring. For a set S of elements of G and a set of labels [k] =

{1, . . . , k}, a labelling π of G is a mapping π : S → [k]. Also, given a set

of elements S′ ⊆ S, we denote by ΠS′ the set of labels assigned to S′ in π.

A gap-[k]-edge-labelling of a graph G is an ordered pair (π, cπ) such that

π : E(G) → [k] is a labelling of G and cπ : V (G) → C, a colouring of G

such that, for every v ∈ V (G), its colour is defined as:

cπ(v) =


max
e∈E(v)

{π(e)} − min
e∈E(v)

{π(e)}, if d(v) ≥ 2;

π(e)e∈E(v), if d(v) = 1;

1, otherwise.

We say that colour cπ(v) of a vertex v (with d(v) ≥ 2) is induced by the

largest gap between the labels in ΠE(v). The least k for which G admits a

gap-[k]-edge-labelling is called the edge-gap number of G and is denoted

by χg
E
(G).

Similarly, a gap-[k]-vertex-labelling of G is also an ordered pair (π, cπ),

with π : V (G) → [k] and the colour of a vertex v with d(v) ≥ 2 is induced

by the largest gap between the labels in ΠN(v); degree-one vertices receive

as induced colour the label assigned to its only neighbour and isolated

vertices receive colour 1. The least k for which G admits a gap-[k]-vertex-

labelling is the vertex-gap number of G, denoted by χg
V
(G). An interesting

remark is that all graphs without connected components isomorphic to K2

admit a gap-[k]-edge-labelling for some k, while there are graphs that, for

any k, do not admit a gap-[k]-vertex-labelling; such is the case of complete

graphs Kn, n ≥ 4.
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Gap-[k]-edge-labellings were introduced as a generalization of gap-k-

colour-ings in 2012 by M. Tahraoui et al. [6]. This labelling was first

studied by A. Dehghan et al. [3] in 2013. The authors proved that deciding

whether a given graph G admits a gap-[k]-edge-labelling, k ≥ 3, is NP-

complete. For the particular case of k = 2, they showed a dichotomy

regarding bipartite graphs: it is NP-complete to decide whether a bipartite

graph G admits a gap-[2]-edge-labelling; however, if G is bipartite and

planar, with δ(G) ≥ 2, then the problem can be solved in polynomial

time. Observe that this result indicates that the existence of degree-one

vertices in a bipartite planar graph seems to contribute significantly to

the hardness of the problem.

In 2015, R. Scheidweiler and E. Triesch [4, 5] continued investigat-

ing gap-[k]-edge-labellings, providing the first formal definition of the

edge-gap number of graphs1. They established that for any graph G,

χ(G) − 1 ≤ χg
E
(G) ≤ χ(G) + 5. These bounds were further improved in

2016, when A. Brandt et al. [1] proved that χg
E
(G) ∈ {χ(G), χ(G) + 1}

for all graphs except stars; they also determined the edge-gap number for

complete graphs, cycles and trees.

The vertex variant of gap-labellings was introduced by A. Dehghan

et al. [3] in 2013, who proved that deciding whether a graph admits a

gap-[k]-vertex-labelling, k ≥ 3, is NP-complete. Similar to their result for

the edge variant, they investigated the particular case k = 2 and showed

that, once again, a similar dichotomy appears in bipartite graphs: it is

NP-complete to decide whether a bipartite graph admits a gap-[2]-vertex-

labelling, but it is polynomial-time solvable if the graph is both planar

and bipartite. They showed that this problem is also NP-complete when

restricted to 3-colourable graphs and that the vertex-gap number of trees

and r-regular bipartite graphs, r ≥ 4, is 2. A. Dehghan [2] continued his

pursuit into this family in 2016, proving that it is NP-complete to decide

whether a bipartite graph G admits a gap-[2]-vertex-labelling such that

1In their article, the authors refer to this parameter as the gap-adjacent-chromatic

number.
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the induced colouring is a 2-colouring of the graph. It is important to

remark that in a gap-[2]-vertex-labelling of a graph G with δ(G) ≥ 2,

the induced colouring is a 2-colouring of the graph, with the fixed colour

set {0, 1}, whereas if there exists (at least) one degree-one vertex, say

v, then it is possible to induce colour cπ(v) = 2 by assigning label 2 to

its neighbour. Once again, the existence of degree-one vertices (or lack

thereof) seems to play an important role in determining the boundary of

tractability in gap-[2]-vertex-labellings.

In order to fully understand the true nature of a problem’s hardness, it is

important to study the limits of polynomial-time solvability as well as NP-

hardness over the instances of the problem. In this regard, here we extend

the “positive” news to a family of bipartite planar graphs with δ(G) ≥ 1,

namely even-length unicyclic graphs. We show that every such graph

admits a gap-[2]-vertex-labelling, and we also provide a polynomial-time

algorithm that decides when these graphs admit gap-[2]-edge-labellings.

For completeness, we show results for the case of odd-length unicyclic

graphs, establishing both the vertex-gap and edge-gap numbers for this

case.

2 Results for unicyclic graphs

A unicyclic graph is a connected simple graph G = (V,E) with |V | =
|E|, as exemplified in Figure 1(a). We denote the vertices of the only

cycle of G by V (Cp) = {v0, . . . , vp−1}. Also, we denote by Ti the tree

rooted at vi, with E(Ti) ∩ E(Cp) = ∅. A leaf of Ti is a vertex w ∈ V (Ti)

such that d(w) = 1 and an internal vertex of Ti is one that is neither

the root nor a leaf of Ti. Finally, we define Lj
i ⊂ V (Ti) as the set of

vertices of Ti that are at distance j from vi, that is, Lj
i = {v ∈ V (Ti) :

the path between vi and v has j edges}. We refer to Lj
i as the j-th level

of tree Ti. Figure 1(b) exhibits a tree Ti of a unicyclic graph G, rooted at

vi, highlighting its three levels (other than L0
i ).

Our first results are on gap-[k]-vertex-labellings of unicyclic graphs. In
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Figure 1: (a) An example of a unicyclic graph; (b) a tree Ti with three

levels. Level Li
0 is omitted.

order to establish tightness, we use the following theorem from C. Weffort-

Santos’ masters thesis [7].

Theorem 1 (cf. [7]). Let G be a gap-[k]-vertex-labelable graph that is not

isomorphic to K1,m, m ≥ 2. Then, χ(G) ≤ χg
V
(G) ≤ 2|V (G)|.

In the following theorem, we establish the vertex-gap number for the

family of unicyclic graphs. Since this result has already been established

for cycles [7, 8], we consider only unicyclic graphs that have at least one

nontrivial tree, i.e., there is at least one vertex vi ∈ Cp such that d(vi) ≥ 3.

Theorem 2. Let G ̸∼= Cn be a unicyclic graph. Then, χg
V
(G) = χ(G).

Sketch of the proof. Let G be as stated in the hypothesis. Since Theo-

rem 1 establishes that χg
V
(G) ≥ χ(G), it suffices to show a gap-[2]-vertex-

labelling for bipartite unicyclic graphs, and one that uses k = 3 labels for

others. In both cases, we define a partial2 labelling π : S → {1, . . . , χ(G)},
where S consists of the vertices of cycle Cp together with all vertices in

the first level of each tree Ti, i.e. S =
⋃p−1

i=0 Li
1 ∪ V (Cp). This first step is

done so as to induce a proper χ(G)-colouring of cycle Cp. Furthermore,

this initial colouring of root vertices vi ∈ V (Cp) creates three possible

2A partial labelling is one that assigns labels to some subset of elements of the graph.
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combinations of pairs (π(vi), cπ(vi)) for cycles of even length, and five

combinations for odd-length cycles. For each of these combinations, we

assign labels to the vertices of each level of tree Ti such that the induced

colours of internal vertices alternate between 0 and 1 and the leaves re-

ceive induced colours 1 and 2 that do not conflict with their neighbour.

This labelling technique is inspired by the labelling of trees formulated by

A. Dehghan et al. [3] in 2013.

Regarding the edge-labelling variant, we can prove that every odd-

length unicyclic graph admits a gap-[3]-edge-labelling by using a similar

technique. Therefore, given the bounds by Brandt et al. [1], the following

result also holds.

Theorem 3. Let G be an odd-length unicyclic graph with at least one

nontrivial tree. Then, χg
E
(G) = χ(G) = 3.

Thus, it remains to consider only the gap-[k]-edge-labelling of even-

length (and, consequently, bipartite) unicyclic graphs. Recall that A.

Brandt et al. [1] established that for every graph G with no connected

components isomorphic to K2, it holds that χg
E
(G) ∈ {χ(G), χ(G) + 1}.

Hence, for this family, it is a matter of deciding whether k = 2 or k = 3.

Although a labelling technique such as the one employed in Theorem 2

seems like a natural approach to the problem, it is a fruitless one. We

explain by recalling the unicyclic graph G in Figure 1(a), drawing the

reader’s attention to tree T ′ highlighted in the image. For this graph, no

gap-[2]-edge-labelling exists; observe that any attempt to induce colour

0 to the root of T ′ causes the labels in edges incident with the leaves of

the tree to be distinct. Therefore, the one that receives label 1 induces

a conflicting colour on its respective leaf. Since tree T ′ is isomorphic to

the other nontrivial tree rooted in Cp and none of them can have induced

colour 0 at its root, no gap-[2]-edge-labelling exists.

Based on this observation, we argue that there exists an infinite family of

bipartite unicyclic graphs which do not admit any gap-[2]-edge-labelling.

Consider G the graph obtained by the following construction. Let Cp be
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any even-length cycle of order n ≥ 4 and vi, vj ∈ V (Cp) be two vertices in

distinct parts of a bipartition {A,B} of G. We root a copy of tree T ′ in vi,

meaning we identify the root of T ′ with vi, and another copy in vj . Next,

consider the operation of rooting copies of tree T ′ in any vertex of part

A in G. By a similar reasoning, the resulting graph also does not admit

a gap-[2]-edge-labelling. Furthermore, this result also holds if we root

any other nontrivial tree in other vertices of V (Cp). Although we do not

fully characterize bipartite unicyclic graphs which do not admit a gap-[2]-

edge-labelling, we contribute to the problem providing a polynomial-time

algorithm which correctly decides if such a graph admits a labelling using

only two labels.

Let T be a tree rooted at a vertex r and let u1, . . . , ud(r) be the children

of r. We denote the subtree rooted at ui by Ti. In order to present our

result, we introduce an auxiliary recursive algorithm that, given a child

vertex ui, a label l ∈ {1, 2} and a colour c ∈ {0, 1}, decides whether Ti

admits a gap-[2]-edge-labelling (π, cπ) such that: (i) the induced colour in

ui is c; (ii) colour cπ(ui) is determined by the largest gap in the entirety

of ΠE(ui), i.e., considering the label assigned to edge rui; and (iii) label

l is assigned to rui. The base case for this algorithm is when ui is a

leaf. If the input c is 0, its parent must have induced colour 1, and the

algorithm returns True if and only if l = 2. Otherwise, if c = 1, it always

returns True.

For internal vertices, the idea is that, in any gap-[2]-edge-labelling of

T , the only possible induced colours in ui are 0 and 1. Therefore, if

c = 0, we make a recursive call for each child of ui, passing label l and

colour c̄ ∈ {1, 2} \ c as parameters. The algorithm returns True if and

only if all subtrees below ui admit a gap-[2]-edge-labelling (under the

aforementioned assumptions). Otherwise, e.g. c = 1, we do as follows.

For each child of ui, we make two recursive calls, both with colour c̄, and

each one with a possible value for l. Then, we verify (in linear time)

if there is an assignment of labels to the edges incident with ui which

induces cπ(ui) = c. Thus, for a tree on n vertices, the algorithm takes
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time T (n) =
∑d(r)−1

i=1 T (ni) + O(n), where ni corresponds to the number

of vertices in each subtree Ti rooted in each child of r. By induction, it is

possible to prove that this algorithm executes in time bounded by O(n2).

Now, for a bipartite unicyclic graph G, let e = vivj be an edge of

Cp ⊂ G with d(vi) ≥ 3. Let T = G− e. Since there are only two possible

label assignments to e in any gap-[2]-edge-labelling of G, we need only

verify if there exists a gap-[2]-edge-labelling of T satisfying cπ(vi) = 0

or cπ(vi) = 1, such that the label assigned to e contributes correctly to

the colouring. A small adjustment to our previous algorithm is required

in order to account for the value of this fixed label in e. However, this

modification has no impact on the execution time nor the correctness of

the algorithm. Therefore, the following theorem holds.

Theorem 4. Let G be a bipartite unicyclic graph. Then, there exists an

O(n2) algorithm which decides whether G admits a gap-[2]-edge-labelling.

3 Concluding remarks and open problems

Our results contribute to a more refined knowledge of the hardness of the

decision problem regarding gap-labellings of bipartite planar graphs using

two labels, for which the boundaries of tractability seem quite unclear

— even more so in regard to the contribution of degree-one vertices to

the hardness of the problem. Concerning the edge variant, two important

questions remain. Can we extend the results from our algorithm in order to

provide a full characterization of gap-[2]-edge-labelable bipartite unicyclic

graphs? Moreover, what other families of planar bipartite graphs with

minimum degree one admit gap-[2]-edge-labellings? We leave these open

problems for future research.
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