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Abstract

We show how the problem of computing an optimal edge-colouring

of a graph G can be decomposed into the problem of computing op-

timal edge-colourings of the biconnected components of G. That is,

once optimal edge-colourings of the biconnected components are in-

dependently given, they can be adjusted in polynomial time in order

to compose an optimal edge-colouring of the whole graph G with no

colour conflicts. We use this decomposition strategy to show that

a long-standing conjecture (proposed by Figueiredo, Meidanis, and

Mello in mid-1990s) on edge-colouring chordal graphs of odd max-

imum degree ∆ holds when ∆ = 3. We discuss further decomposition

algorithms for graph edge-colouring.
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1 Introduction

A k-edge-colouring of a graph G is a function φ : E(G) → C such that

C is a set with k colours and φ(e) ̸= φ(f) whenever e and f are distinct

adjacent edges of G. The chromatic index of G, denoted χ′(G), is the least

k for which G admits a k-edge-colouring, in which case such edge-colouring

is said to be optimal.

A natural lower bound for χ′(G) is the maximum degree ∆(G) ofG. The

celebrated Vizing’s Theorem, on the other hand, states that a (∆(G) +

1)-edge-colouring of G can be constructed in polynomial time for any

simple graph G [13]. Therefore, simple graphs have been called Class 1

or Class 2 , if they have chromatic index ∆(G) or ∆(G) + 1, respectively.

All graphs considered in this work are simple. The vertices of degree

∆(G) in a graph G are referred to as the majors of G. The subgraph of

G induced by its majors is referred to as the core of G, denoted Λ[G].

The subgraph of G induced by its majors and by the neighbours of these

majors is referred to as the semi-core of G, denoted Λ[G]. Graphs with

acyclic core are Class 1 and admit polynomial-time optimal edge-colouring

algorithms [8].

Despite the polynomiality of the algorithm implicit in Vizing’s con-

structive proof, deciding if a graph G is Class 1 is NP-complete [10],

even when restricted to graph classes such as perfect graphs or d-regular

graphs with girth at least g, for any fixed d, g ≥ 3 [3]. Examples of

graph classes in which the problem was shown to be polynomial are also

known (e.g. [4, 2, 12]). For many other graph classes the complexity of the

problem remains open1. In particular, for chordal2 graphs the following

conjecture remains open for more than 20 years.

Conjecture 1 ([5, 6, 7]). All chordal graphs of odd maximum degree are

Class 1.

1We refer the reader to [14, Sect. 1.6] for an extensive table on the complexity of

edge-colouring restricted to several graph classes.
2Recall that a chordal graph is a graph with no induced cycle Ck with k ≥ 4.



158 L. M. Zatesko, J. P. W. Bernardi, S. M. de Almeida, R. Carmo, A. L. P. Guedes

While much investigation on graph classes in which edge-colouring prob-

lems can be solved efficiently has been done, there has also been much

work aimed at identifying which kind of structural information of a gen-

eral graph G is relevant to determine its chromatic index. In particular,

the chromatic index of any graph is equal to the chromatic index of its

semi-core. Furthermore, if an optimal edge-colouring of Λ[G] is given,

then an optimal edge-colouring of the whole graph G can be constructed

in polynomial time [11]. As recently observed in [9], this also leads to

results on the parameterised complexity of edge-colouring problems.

This work explores results similar to the result by [11] in order to provide

decomposition strategies for graph edge-colouring. In particular, we show

how an optimal edge-colouring of a graph G can be efficiently constructed

once optimal edge-colourings of the biconnected components3 of G are

given. We also observe some interesting corollaries which follow from our

result, such as the fact that all chordal graphs with maximum degree at

most 3 are Class 1 and admit a polynomial-time optimal edge-colouring

algorithm.

2 Main results and corollaries

Theorem 2 below presents our main decomposition result. In the state-

ment, a biconnected ∆-component of a graph G is a biconnected compon-

ent H of G such that ∆(H) = ∆(G). Remark that Theorem 2 generalises

the straightforward observation that the chromatic index of any disconnec-

ted graph is the maximum amongst the chromatic indices of its connected

components.

Theorem 2. The chromatic index of any graph G is the maximum amongst

the degrees of the articulation points of G and the chromatic indices of its

biconnected components. Moreover, being B the set of the biconnected ∆-

components of G, if optimal edge-colourings of all H ∈ B are given,

3Recall that the biconnected components of G are the maximal subgraphs of G which

are biconnected.
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then an optimal edge-colouring of the whole graph G can be constructed

in polynomial time.

Proof. We first prove the following:

Claim 2.1. If G1 and G2 are any two graphs with V (G1)∩V (G2) = {u},
then χ′(G1 ∪G2) = max{χ′(G1), χ

′(G2), dG1∪G2(u)}.

It should be noticed in the particular case wherein G2 = K2 that χ
′(G1∪

K2) = max{χ′(G1), dG1(u) + 1}.

Proof of the claim. Let k := χ′(G1∪G2) = max{χ′(G1), χ
′(G2), dG1∪G2(u)}.

We assume that independent k-edge-colourings of both G1 and G2 are

given, using the same colour set C , and we shall demonstrate how to adjust

these edge-colourings in order to obtain a valid k-edge-colouring of G1∪G2

in polynomial time. It is interesting to remark that we may not need op-

timal edge-colourings of both G1 and G2. If k > max{∆(G1),∆(G2)},
then both k-edge-colourings of G1 and G2 can be obtained in polynomial

time using Vizing’s Theorem. If k = ∆(G1) > ∆(G2), without loss of gen-

erality, then we need an optimal edge-colouring only of G1, using Vizing’s

Theorem to obtain a k-edge-colouring of G2 in polynomial time.

Since both k-edge-colourings of G1 and G2 use the same colour set, if we

try to use these edge-colourings to compose a k-edge-colouring of G1∪G2,

then colour conflicts may be created in the edges incident to u. However,

as k ≥ dG1(u) + dG2(u), we can identify a set S of dG2(u) colours of C

not assigned to any edge incident to u in G1 and simply permute C on

G2 so that the colours of the edges incident to u in G2 are exactly the

colours in S (see Figure 1). Observe that this operation can be carried

out in polynomial time.

The proof is concluded by observing that the chromatic index of G1∪G2

cannot be less than k, since it cannot be less than the chromatic index of

any of its subgraphs, and since χ′(G1 ∪ G2) ≥ ∆(G1 ∪ G2) ≥ dG1∪G2(u).

♢
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Figure 1: Permuting the colours of G2 in order to resolve colour conflicts

around vertex u (a) and obtain an optimal edge-colouring of G2 (b)

The proof of the theorem follows by decomposing G into its (possibly

many) biconnected components and its bridges (recall that K2 is not con-

sidered a biconnected graph) and then inductively applying the construct-

ive proof of the claim at each articulation point of G.

From Theorem 2 follow interesting corollaries.

Corollary 3. If no biconnected component of a graph G has the same

maximum degree of G, then G is Class 1.

Corollary 4. Let C be the class of the graphs whose biconnected ∆-

components have logarithmic size in the size of the graph. The problem of

computing an optimal edge-colouring of a graph can be solved in polynomial

time for graphs in C .

Proof. Follows from Theorem 2 and from the result in [1] according to

which an optimal edge-colouring of any graph with m edges can be com-

puted in O(2mmO(1)) time.

Below we prove the restriction of Conjecture 1 for chordal graphs with

∆ ≤ 3.
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Theorem 5. Except for the K3, all chordal graphs with maximum degree

∆ ≤ 3 are Class 1.

Proof. Since odd cycles are the only Class 2 graphs with ∆ ≤ 2, and since

the K3 is the only odd cycle which is chordal, from Theorem 2 it suffices

to prove that all biconnected chordal graphs with maximum degree ∆ ≤ 3

are 3-edge-colourable. In order to do so, we shall demonstrate that if G

is a biconnected chordal graph with maximum degree ∆ ≤ 3, then G is a

subgraph of the K4, hence 3-edge-colourable.

For the sake of contradiction, assume that G has at least five vertices.

Since ∆ ≤ 3 and G is biconnected, there must be two non-adjacent vertices

u and v in G such that, by Menger’s Theorem, there are two internally

disjoint paths between u and v, which implies that there is a cycle C =

x0x1 · · ·xtx0 in G for some t ≥ 3 such that u = x0 and v = xk for some

k ∈ {2, . . . , t − 1}. Now, let i be the smallest integer in {1, . . . , k − 1}
such that xiv ∈ E(G), and let j be the greatest integer in {k + 1, . . . , t}
such that xjv ∈ E(G). Since G is chordal, the edges uxi, uxj , and xixj

must all exist in G, which implies, since ∆ ≤ 3, that C has only the four

vertices u, xi, v, xj , which induce a diamond in G.

It is not hard to see that C is the only cycle containing u and v. If

there is another cycle C ′, we can again demonstrate that C ′ has only four

vertices and that these vertices induce a diamond in G. However, this

would imply that V (C) ∩ V (C ′) = {u, v}, since xi and xj already have

degree three in C. But this would make the degrees of u and v at least

four in G, a contradiction.

Since we have proved that C is the only cycle containing u and v, there

must be at least one vertex x of V (G)\V (C) which is a neighbour of either

u or v, say u, such that all paths between x and v contain u, contradicting

the biconnectedness of G.
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3 Further comments

In view of Corollary 4, we encourage further investigation on phase

diagrams for the size of the biconnected components in random graph

models which capture the aspects of real-world networks.

As we have shown that an edge-colouring decomposition strategy can be

achieved by decomposing a graph at its articulation points, we also believe

that similar connectivity-based decomposition strategies can be achieved

by considering separating K2’s, or separating Kℓ’s for higher values of ℓ.

We remark that this can lead to proofs for restrictions of Conjecture 1 to

chordal graphs with odd maximum degree at most ∆, for higher values of

∆.

Combining our results with other results from the literature, we can also

obtain other decomposition strategies for edge-colouring algorithms. For

example, given a graph G, which we want to optimally edge-colour, we

know that we can take only the semi-core of G, leaving the other edges to

be coloured later. Then, we break Λ[G] into its biconnected components.

Finally, each biconnected component of Λ[G] is now a new graph for each

we recursively call the decomposition algorithm. The halting criteria for

this recursion can be: when we end up with a graph with smaller maximum

degree, or acyclic core, or any edge-colouring result whatsoever from the

literature that we may want (e.g. graph classes wherein edge-colouring is

polynomial, as discussed in Sect. 1).
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