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Abstract

Let G = (V,E) be a graph. The P3-convex hull (resp. P ∗
3 -

convex hull) of a set C ⊆ V is obtained by the iteratively addition

of vertices with at least two neighbors (resp. non-adjacent neigh-

bors) in C. A P3-Helly-independent (resp. P ∗
3 -Helly-independent)

of G is a set S ⊆ V such that the intersection of the P3-convex

hulls (resp. P ∗
3 -convex hulls) of S \ {v} (∀v ∈ S) is empty. The

P3-Helly number (resp. P ∗
3 -Helly number) is the size of a maximum

P3-Helly-independent (resp. P ∗
3 -Helly-independent). The edge ver-

sions of these two P3-Helly-independent follow the same restrictions

applied to its edges. The VP3HI, VSP3HI, EP3HI, and ESP3HI

problems aim to determine the P3-Helly number, P ∗
3 -Helly number,

edge P3-Helly number, and edge P ∗
3 -Helly number of a graph, re-

spectively. A graph G is (q, q − 4) when every induced subgraph of

G with q vertices has at most q − 4 paths of size four as induced

2000 AMS Subject Classification: 05C75 and 68W40

Key Words and Phrases: P3 convexity, Helly property, (q, q − 4) graphs.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, by the Fundação de Amparo
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subgraphs. We.establish polynomial time algorithms to VP3HI,

VSP3HI, EP3HI, and ESP3HI for (q, q − 4) graphs with fixed q.

1 Introduction

Several concepts concerning variations of convexities on graphs has been

established [3, 4]. The interest in these convexities comes from both their

central role in many applications and purely theoretical questions. Among

such applications, there are those related to distributed systems [8], social

networks, and marketing strategies [6]. Moreover, various problems have

been dealt considering the Helly property in the past [5]. This paper stud-

ies the Helly number in the P3-convexity, P
∗
3 -convexity, edge P3-convexity,

and edge P ∗
3 -convexity.

Let G = (V,E) be a graph. The P3-convex hull (resp. P ∗
3 -convex hull)

of a set C ⊆ V is obtained by the iteratively addition of vertices with

at least two neighbors (resp. non-adjacent neighbors) in C. A P3-Helly-

independent (resp. P ∗
3 -Helly-independent) of G is a set S ⊆ V such that

the intersection of the P3-convex hulls (resp. P ∗
3 -convex hulls) of S \ {v}

(∀v ∈ S) is empty. The P3-Helly number (resp. P ∗
3 -Helly number) is the

size of a maximum P3-Helly-independent (resp. P ∗
3 -Helly-independent).

A natural variation of the P3 convexities occurs when we consider the

same corresponding concepts of the vertices in the edges of the graph.

The VP3HI, VSP3HI, EP3HI, and ESP3HI problems aim to determine

the P3-Helly number (hP3), P
∗
3 -Helly number (hP ∗

3
), edge P3-Helly number

(h′P3
), and edge P ∗

3 -Helly number (h′P ∗
3
) of a graph, respectively.

A graph G is (q, q−4) when every induced subgraph of size q has at most

q − 4 induced subgraphs of paths of size four (P4). A graph G = (V,E)

with V = K∪I∪R is a thin spider (resp. thick spider) when |K| = |I| ≥ 2

(resp., |K| = |I| ≥ 3), K induces a clique, I is a stable set, there is a join

between vertices of K and R, and there is a one-to-one relation between

vertices of K and I which gives the |K| edges between I and K (resp.

which gives the |K| non-edges between I and K). Babel and Olariu [1]
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showed that a (q, q − 4) graph G is structurally quite rich in the sense

that G is always: (i) the union or the join of two (q, q − 4) graphs; (ii) a

spider such that G[R] is a (q, q − 4) graph; (iii) a graph with a separable

p-component H ⊆ V (G) (H = H1 ∪H2) with |V (H)| ≤ q such that G \H
is a (q, q− 4) graph, there is a join between vertices of G \H and H1 and

there is no edges between vertices of G \H and H2 or; (iv) a graph with

at most q vertices (which can be V (G) = ∅).
Our contributions in the present work concern to settle the compu-

tational complexity of the VP3HI, VSP3HI, EP3HI, and ESP3HI for

(q, q−4) graphs. We succeed to show an FPT (fixed parameter tractable)

polynomial time algorithms for these problems when q is a constant.

2 Union and Join of graphs

Since, in the considered convexities, a vertex of a connected component

cannot be in the convex hull of a set of vertices contained in a different

connected component, the parameters are given as the sum of the param-

eters of its connected components. Moreover, when the parameters are

bounded by a constant, we may test which possible combinations of sets

of vertices (or edges) respect the P3-convexity with the Helly property and

determine the largest size among them in polynomial time. As a remark,

when |V (G)| is a constant, we may also obtain the parameters in polyno-

mial time by brute force. Hereinafter we only consider connected graphs

without trivial small values of the parameter.

Carvalho et al. [2] established the computational complexity of VP3HI,

VSP3HI, EP3HI, and ESP3HI for subclasses of bipartite graphs, split

graphs, and join of graphs. The following property about the edge P ∗
3

Helly number of a graph G plays a central role in our proofs: h′P ∗
3

=

|V (G)| − st(G), where st(G) is the least number of vertex disjoint stars

subgraphs to partition V (G) such that the centers of the stars with at

least three vertices are non-adjacent [2]. Carvalho et al. [2] also point

out two useful forbidden configurations to a P3-Helly-independent S of a
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graph G: (Forbidden 1) three vertices of S adjacent to a same vertex

of G; and (Forbidden 2) three vertices x, y and z of S such that xyz is

a P3 subgraph of G. Note that (Forbidden 1) and (Forbidden 2) are

also forbidden configurations for a P ∗
3 -Helly-independent if we consider the

vertices to be an induced star of size four or induced path of size three.

Lastly, in order to establish the values of the parameters for the join graph

G = G1∧G2 of (q, q−4) graphs, we refer the following results of Carvalho et

al [2] for any join of graph G: (i) hP3(G) ≤ 2; (ii) hP ∗
3
(G) = max{ω(G1)+

ω(G2), hP ∗
3
(G1∧K1), hP ∗

3
(G2∧K1)}; (iii) h′P3

(G) = max{β∗(G1), β
∗(G2)};

(iv) h′P ∗
3
(G) = max{|V (G1)| + h′P ∗

3
(G2), |V (G2)| + h′P ∗

3
(G1)}. Note that

hP ∗
3
(H ∧ K1) of a (q, q − 4) graph H is given by the size of a maximum

induced complete bipartite graph in Hc (which are also a (q, q−4) graph).

Using the polynomial-time algorithms to determine the size of a maximum

complete subgraph ω and the size of a maximum induced complete bipar-

tite subgraph for (q, q−4) graphs (which can be trivially constructed using

its structural decomposition [1]) and the algorithm to determine β∗(G) for

(q, q−4) graphs [7], we are able to obtain the P3-Helly parameters in poly-

nomial time for join of graphs.

3 Spider graphs

Let G = (V,E) be a spider graph with V = I ∪K ∪R.

Thin spiders

(P3-Helly-independent S) If there are three vertices of K ∪ R in S,

then we have a Forbidden 1 or Forbidden 2 configuration. Moreover,

if there are two vertices ofK∪R in S and a vertex of I in S, then we have a

Forbidden 1 or Forbidden 2 configuration. Therefore, hP3(G) = |I|+1

where S is composed by all vertices of I and one vertex of K ∪R.

(P ∗
3 -Helly-independent S∗) If there is no vertex of K ∪ I in S∗, then

hP ∗
3
(G) = hP ∗

3
(G[R] ∧K1), which is the size of a maximum induced com-

plete bipartite subgraph on the complement graph of G[R]. If there are

two non-adjacent vertices of R and a vertex of I∪K in S∗, then we have a
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Forbidden 1 or Forbidden 2 configuration. Moreover, if there is a vertex

x ∈ R in S∗ and two adjacent vertices y ∈ K and z ∈ I in S∗, then we have

a Forbidden 2 configuration. Therefore, if there are one or more pairwise

adjacent vertices of R in S∗, then we can only have at most K vertices of

K∪I in S∗ and such S∗ exists with |S∗| = |K|+ω(G[R]), where it is com-

posed by the vertices of a maximum clique of G[R] and the vertices of K.

Lastly, if there is no vertex ofR in S∗, then |S∗| ≥ |I|+1 and such S∗ exists,

where it is composed by the vertices of I and one vertex of K. For the sake

of contradiction, assume there is no vertex of R in S∗ and |S∗| ≥ |I|+ 2,

then there is two adjacent vertices x ∈ K and y ∈ I in S∗ and at least

another vertex z ∈ K in S∗ which form a Forbidden 2 configuration con-

tradiction. Therefore, hP ∗
3
= max{|K|+ω(G[R]), |I|+1, hP ∗

3
(G[R]∧K1)}.

(edge P3-Helly-independent M) Due to nature of thin spiders, the

edge P3-convex hull of a set reaches all edges when: (i) there are two

edges in the set with both endpoints in vertices of K ∪ I; (ii) there are an

edge with both endpoints in K ∪ I and other edge with both endpoints in

R in the set or; (iii) there are two edges with both endpoints in vertices of

R in the set and other edge (not necessarily in the set) sharing endpoints

with both these edges. Therefore, h′P3
(G) = max{2, β∗(G[R])}, where M

is any two edges or a maximum induced matching of G[R] (the induced

subgraph of G by the vertices of R). Note that we obtain β∗ for the

(q, q − 4) graph G[R] [7] in polynomial time.

(edge P ∗
3 -Helly-independent M∗) Recall that h′P ∗

3
= |V (G)| − st(G).

To partition the vertices of G in |I| vertex disjoint star subgraphs we take

a vertex x of K as the center of a star with all other vertices of K ∪R and

one vertex of I as their leaves, and others |I|−1 vertices of I as one vertex

stars. This is the best possible, since we have the additional restriction to

forbid two centers of stars in K ∪R with degree two or more. Therefore,

h′P ∗
3
= |V (G)| − st(G) = |V (G)| − |I| where M∗ is composed by the edges

of the star centered in the vertex x.

Thick spiders

(P3-Helly-independent S) Due to the nature of a thick spider, any
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three vertices of S imply a Forbidden 1 or Forbidden 2 configuration.

Therefore, hP3(G) = 2 where S is composed by any two vertices of G.

(P ∗
3 -Helly-independent S∗) By a similar argument of thin spiders, we

have hP ∗
3

= max{|K| + ω(G[R]), |I|, hP ∗
3
(G[R] ∧ K1)}. The proof only

differs when there is no vertex of R in S∗. In this case, |S∗| = |I| instead
of |I|+ 1

(edge P3-Helly-independent M) The same argument for thin spiders

holds.

(edge P ∗
3 -Helly-independent M∗) Recall that h′P ∗

3
= |V (G)| − st(G).

Since G has no universal vertex, st(G) ≥ 2. To partition the vertices of

G in two vertex disjoint star subgraphs we take a vertex x of K as a star

with |K|+ |R|+ |I|− 2 leaves and the vertex y of I no adjacent to x as an

one vertex star. Therefore, h′P ∗
3
(G) = |V (G)| − 2 where M∗ is composed

by the edges incidents to x.

4 (q, q − 4) graphs with separable p-component

(P3-Helly-independent S) Since there is a join between the vertices of

G \H and H1, there are at most two vertices of G \H2 in S. Moreover,

|H| = |H1 ∪ H2| is a constant q. Thus, there are O(|V (G)|2) combina-

tions of at most two vertices in G \ H2 and O(2q) = O(1) subsets of

vertices of H2. One can combine these two sets obtaining a new one with

O(2q|V (G)|2) elements. For each one, we test if the resulting combina-

tions are indeed a P3-Helly-independent. The size of the valid combination

servers as a witness to a lower bound of the parameter hP3(G). At the

end, hP3(G) is the largest size among these valid combinations.

(P ∗
3 -Helly-independent S∗) When there is no vertex of G \H in S∗ we

obtain M1, the largest size of a subset of vertices of H1 ∪H2 that are P ∗
3 -

Helly-independent, by testing all O(2q) = O(1) possible subsets. When

there is no vertex of H1 ∪H2 in S∗ we obtain M2 as hP ∗
3
((G \H) ∧K1)

that are the size of a maximum induced complete bipartite graph of the

(q, q−4) graph (G\H)c (the complement graph ofG\H). When there is no
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vertex of H1 in S∗, since every vertex of H2 is adjacent to a vertex of H1,

two non-adjacent vertices of (G \H) ∈ S∗ and a vertex of H2 ∈ S∗ or two

non-adjacent vertices of H2 ∈ S∗ and a vertex of (G\H) ∈ S∗ would imply

a Forbidden 1 configuration. Then, we obtain M3 = ω(G∧H)+ω(H2).

Otherwise, we test all possible subsets of H with at least one vertex of

H1, for each of them we add a maximum clique of G∧H in S∗ and verify

if they are a valid P ∗
3 -Helly-independent, in the end, we obtain M4 as the

maximum among their sizes. Therefore, hP ∗
3
(G) = max{M1,M2,M3,M4}.

(edge P3-Helly-independent M) If the edges of M have no endpoint

in G \ H, it is easy to test which O(2q
2
) subsets of edges of H are edge

P3-Helly-independent of G and take the largest size among them as M5.

Otherwise, due to the nature of the p-separable components, the edge P3-

convex hull of the following sets of edges reaches all edges of G: (i) sets

that contains two edges e1 and e2 of M , where e1 = uv with u ∈ G\H and

v ∈ G \H2, and e2 = xy with x ∈ H1 and y ∈ H; (ii) sets that contains

edges e1 and e2 with both endpoints in G \H and there is another edge

(not necessarily in the set) which shares one endpoint with e1 and the

other with e2; (iii) sets that contains an edge e1 with an endpoint in G\H
and two edges e2 and e3 with both endpoints in H2 such that there exits

another edge e4 (not necessarily in the set) which shares one endpoint

with e2 and the other with e3. Therefore, h
′
P3
(G) = max{2, β∗(G ∧H) +

β∗(G[H2]),M5}.

(edge P ∗
3 -Helly-independent M∗) There are O(2q

2
) = O(1) subsets of

edges of H. For each one of these, we can test if they are a partition of

the vertices in stars. When there is a star centered in H1 with degree

more than two or a star with degree one or zero in H1 not adjacent to a

star with degree more than two in H2, we can extend this star and add all

edges between its center and the vertices of G \H, considering the sum of

these two values as a lower bound to h′P ∗
3
(G). Otherwise, the lower bound

is given by the sum of the number of edges of this set and h′P ∗
3
(G\H). At

the end, h′P ∗
3
(G) is given by the largest size among these sets.
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5 Final Remarks

In this work we manage to show that VP3HI, VSP3HI, EP3HI, and

ESP3HI are in P for (q, q − 4) graphs with fixed q. Our approach to

accomplish this directly lies on the structural characterization of (q, q−4)

graphs given by Babel and Olariu [1]. Particularly, (4, 0) graphs are also

known as cographs and (5, 1) are the P4-sparse [1]. As a consequence,

VP3HI, VSP3HI, EP3HI, and ESP3HI are in P for cographs and P4-

sparse. We invite the readers to check the modifications required to adapt

our algorithm for (q, q − 4) graphs to P4-tidy, a superclass of P4-sparse.

Informally, we only need to deal with one new case, the quasi-spiders (that

are spiders for which we can add one true twin or false twin to one vertex

of K or I). Such adaptation is quite natural for P4-tidy, but it is not so

obvious for others superclasses of P4-lite (the P4-tidy which are also perfect

graphs). Therefore, further investigations are required for the following

hierarchy of nested superclasses of P4-lite: P4-laden, split-perfect, and

brittle.
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