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Covering a body using unequal spheres

and the problem of finding covering holes
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Abstract

This article deals with partial coverings of convex bodies using

unequal spheres Si, i ∈ N , where N is an index set. For the matter

of this work, it is assumed that the covering spheres structure had

already been obtained and the objective is just to certify that there

are no “holes” in it. Let G be the undirected graph G(V,E) where

V is the set of centers of the spheres and E is the set of the edges,

such that edge eij ∈ E if spheres Si and Sj overlap each other. A

method involving the geometrical properties of the cliques K3 and

K4, as subgraphs of G, will be presented, which permits to identify

the presence of “holes” in the covering structure.

1 Introduction

This article deals with partial coverings, which may not integrally cover

a target, in contrast with full coverings, which totally cover a target.

Articles and theses dealing with full and partial coverings are abundant

in the literature [4, 6, 7, 8, 9]. Some of those works also deal with “holes”

or “cavities” present in partial covering structures [1, 2, 3, 5].
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In this work we consider partial covering structures B formed of solid

spheres, usually with different radii, used to cover compact and convex

subsets T of R3. Holes in those covering structures B are void spaces

inside the solid formed by the union of the covering spheres.

Partial coverings are important in pratical applications like the Gamma

Knife radiosurgery treatment, where a brain tumor is modeled as the

subset T and the shots of radiation are modeled as spheres. The covering

structures B normally employed present some remarking characteristics:

� B is connected (it is composed of agglutinated spheres);

� There are no spheres in the interior of other spheres;

� The bigger spheres form the inner part of B.

One interesting question can then be posed: given a covering structure

B, are there holes in it? A standard way to deal with this kind of situation

is by applying homology.

Since the covering problem at hand is a concrete and well defined prob-

lem in the three dimensional space, this work exploits the geometric prop-

erties of cliques K3 and K4 in a graph G, derived from the covering struc-

ture B, to create an algorithm which generates a subgraph H ⊆ G that

retains all the information necessary to identify the presence of holes.

2 Methodology

Given a partial covering structure B =
⋃

i∈N Si, let G(V,E) be an

undirected simple graph defined by:

� V = {Si | i ∈ N};

� E = {{Si, Sj} | Si ∩ Sj ̸= ∅, i ̸= j}.

G is an abstract simplification of the geometric properties of the covering

structure B. As a consequence, it is observable that G has some special

properties:
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� G is always connected;

� If G has a cycle, it is the sum of K3 cliques;

� Whenever present in B, 3D void spaces are always inside K4 cliques.

We will focus on (assume that our graphs are) simple graphs G hav-

ing the above properties, which are the basis for a straightforward (and

intuitive) definition of covering holes:

� If G is a tree then B has no holes;

� There is a 2D hole in a K3 clique if the union of the spheres at each

of its vertices don’t cover the triangle T formed by its vertices. This

K3 is an uncovered K3 (UK3). Otherwise, this K3 is a covered K3

(CK3);

� There is a 3D hole in a K4 clique if the union of the spheres at each

of its vertices don’t cover the tetrahedron H formed by its vertices.

This K4 is an uncovered K4 (UK4). Otherwise, this K4 is a covered

K4 (CK4).

The covering holes definition now permits to sketch a method to find

holes in B:

� Build G based on B;

� Find all K3 and K4 of G. If not present (G is a tree), then B has

no holes;

� If all K3 are CK3 and all K4 are CK4, then B has no holes;

� Otherwise, B may have holes (in UK3’s or UK4’s).

Subgraphs of G may have some special geometrical configurations: “lin-

ear K3: LK3”, “flat K4: FK4” and “overlapped K4’s”. The test instances
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didn’t produce LK3’s but it was possible to identify FK4’s in some in-

stances. The overlapped K4’s are a real challenge because they represent

a covering redundancy that must be properly taken into account.

The main objective now is to present a method to classify K3’s and

K4’s. Figure 1 shows the geometrical idea to classify K3’s as UK3’s or

CK3’s.

(a) A UK3triangle (b) A CK3 triangle

Figure 1: K3 triangle coverings

The intersection points P , Q and R always exist, by definition of G.

This geometrical configuration leads to the Areas test : Let S be the area

of a K3 triangle ABC. Let SP , SQ and SR be the areas of the triangles

PBC, QAC and RAB. Then:

� If SP + SQ + SR < S then ABC is a UK3 triangle;

� If SP + SQ + SR ≥ S then ABC is a CK3 triangle.

Figure 2 presents geometrically the inequalities used in the Areas test

for an UK3 triangle and a CK3 triangle.

A similar geometric argument is employed to classify K4’s as UK4’s

or CK4’s, but now using volumes and the Volumes test. Barycentric

coordinates are used to simplify the calculation of the areas and volumes

tests.

It is now possible to make a final statement regarding holes in a covering

structure B based on the subgraph H defined below:
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(a) A UK3 triangle (b) A CK3 triangle

Figure 2: K3 triangle coverings

“The covering structure B has no holes if there is a span-

ning subgraph H ⊂ G composed only of CK3’s and non-

overlapped CK4’s”

An algorithm to eliminate redundancies and select the right CK3’s and

CK4’s to create H is currently under development and implementation.

The pseudocode of this algorithm is presented below:

3 Results

Arbitrary data from previous partial covering works will now be used.

Table 1 presents the solids T used for the covering instances. Table 2

presents the characteristics of graphs G derived from these covering in-

stances.

As an example of the application of the algorithm, let’s consider the

original graph G for oblate ellipsoid covering 1: 3UK3, 30CK3, 5FK4,

5UK4 and 11CK4. After deleting edges E1,4, E3,4 and E3,5 we obtain

a spanning subgraph H of G for oblate ellipsoid covering 1: 22CK3 and

7CK4. The existence of this subgraph implies that the covering has no

holes, according to the presented definition.
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Algorithm 1 Find holes in a partial covering structure B

Input: A covering structure B

Output: A graph H and the number of holes NH in B

NH = 0

Build graph G based on geometric information of B

H = G

Find all K3’s and K4’s, and classify them

if (There are no cliques) or (All K3 are CK3 and All K4 are CK4)

then

return H and NH {leave algorithm}
end if

loop

Delete edges of F4’s and overlapped K4’s to eliminate UK3’s and

UK4’s

Update H

end loop

return H and NH = #UK3 +#UK4 {a simplified number of holes}
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Solid T Length Width Height

Parallelepiped 15 9 9

Cube 12 12 12

Sphere 12 12 12

Prolate ellipsoid 15 9 9

Oblate ellipsoid 9 15 15

Table 1: Characteristics of the selected solids

4 Conclusion

The results so far are encouraging. The basic ideas proposed in this text

proved to be useful in the search for covering holes. Unfortunately, the

algorithm to find H starting with G demands some improvements, mainly

in the area of identification of the redundant CK4’s in an overlapped

CK4’s configuration.
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