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Abstract

A (0, 1)-matrix has the Consecutive Ones Property (C1P) for the

rows if there is a permutation of its columns such that the ones in

each row appear consecutively. We say a (0, 1)-matrix is nested if

it has the consecutive ones property for the rows (C1P) and every

two rows are either disjoint or nested. We say a (0, 1)-matrix is

2-nested if it has the C1P and admits a partition of its rows into

two sets such that the submatrix induced by each of these sets is

nested. We say a split graph G with split partition (K,S) is nested

(resp. 2-nested) if the matrix A(S,K) which indicates the adjacency

between vertices in S and K is nested (resp. 2-nested). In this work,

we characterize nested and 2-nested matrices by minimal forbidden
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submatrices. This characterization leads to a minimal forbidden

induced subgraph characterization of these graph classes, which are

superclasses of threshold graphs and subclasses of split and circle

graphs.

1 Introduction

Let A = (aij) be a n × m (0, 1)-matrix. We denote ai. and a.j the

ith row and the jth column of matrix A. Let li = min{j : aij = 1} and

ri = max{j : aij = 1} for each i ∈ {1, . . . , n}. Two rows ai. and ak. are

disjoint if there is no j such that aij = akj = 1. We say that ai. is contained

in ak. if for each j such that aij = 1 also akj = 1. We say that ai. and

ak. are nested if ai. is contained in ak. or ak. is contained in ai.. Finally,

we say that ai. and ak. start (resp. end) in the same column if li = lk

(resp. ri = rk), and we say ai. and ak. start (end) in different columns

otherwise. We say a (0, 1)-matrix A has the consecutive ones property

for the rows (for short, C1P) if there is permutation of the columns of A

such that the 1’s in each row appear consecutively. Tucker characterized

all the minimal forbidden submatrices for the C1P, later known as Tucker

matrices. For the complete list of Tucker matrices, see [8], where a graphic

representation of them can be found in Figure 3.

We say a (0, 1)-matrix is nested if it has the consecutive ones property

for the rows (C1P) and every two rows are either disjoint or nested. We

say a (0, 1)-matrix is 2-nested if it has the C1P for the rows and there is a

partition S1, S2 of the rows such that each submatrix obtained is nested.

All graphs in this work are simple. The pair (K,S) is a split partition

of a graph G if {K,S} is a partition of the vertex set of G and the vertices

of K (resp. S) are pairwise adjacent (resp. nonadjacent), and we denote

it G = (K,S). A graph G is a split graph if it admits some split partition.

Let G be a split graph with split partition (K,S), n = |S|, and m = |K|.
Let s1, . . . , sn and v1, . . . , vm be linear orderings of S and K, respectively.

Let A = A(S,K) be the n × m matrix defined by A(i, j) = 1 if si is
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Figure 1: Some useful graphs, from left to right: tent, 4-tent, co-4-tent

and net.

adjacent to vj and A(i, j) = 0, otherwise.

A split graph G = (K,S) is nested (resp. 2-nested) if there is a linear

ordering Π of K, such that the associated matrix A(S,K) is nested (resp.

2-nested) and if its columns are ordered as in Π then the ones in each row

occur in consecutive columns.

Circle graphs [3] are intersection graphs of chords in a circle. These

graphs were characterized by Bouchet [2] in 1994 by forbidden induced

subgraphs under local complementation, and by Geelen and Oum [5] in

terms of pivoting. These graphs can be recognized in O((n+m)α(n+m))-

time, where α is the inverse of the Ackermann function [6]. The character-

ization of the entire class of circle graphs by forbidden induced subgraphs

of the graph itself is still an open problem. However, some partial char-

acterizations are known [1]. It follows from the definition that nested and

2-nested graphs are common subclasses of circle graphs. Furthermore,

nested and 2-nested graphs are also a superclass of threshold graphs (see

Golumbic [7] for more details on these definitions).

The problem of characterizing 2-nested graphs by minimal forbidden

induced subgraphs arises as a natural subproblem in our ongoing efforts

to obtain the same kind of characterization of those split graphs that are

circle graphs. We started by considering a split graph H such that H is

minimally non-circle. Since comparability graphs are a subclass of circle

graphs, in particular H is not a comparability graph. Notice that permu-

tation graphs are those comparability graphs for which their complement

is also a comparability graph. It is easy to prove that permutation graphs

are precisely those circle graphs having a circle model with an equator.

See Gallai [4] for the complete list of minimal forbidden subgraphs of
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comparability graphs. Using the list of minimal forbidden subgraphs of

comparability graphs and the fact that H is also a split graph, we con-

clude that H contains either a tent, a 4-tent, a co-4-tent or a net as a

subgraph (see Figure 1). We first considered the case in which H contains

an induced tent as a subgraph, thus reaching a problem when trying to

give a circle model for H. Once analyzed the compatibilities between the

vertices in the complete and independent partitions of such a graph, it

arises that there is exactly one subclass –which we denoted α– of inde-

pendent vertices for which both endpoints of each vertex could be entirely

drawn in two distinct areas of the circle model, when for every other ver-

tex there is a unique possible placement. Hence, for the subgraph induced

by taking the tent graph union the subclass α to admit a circle model,

the subclass α must be partitioned into two disjoint subsets such that,

for each subset, every pair of vertices are either disjoint or nested, thus

leading to the definition of 2-nested graphs.

2 Nested matrices

We begin by giving the following characterization of nested matrices.

Theorem 1. A (0, 1)-matrix is nested if and only if it contains no G0 as

a submatrix (see Figure 2).

Figure 2: The G0 matrix and the gem graph

Proof. Since no Tucker matrix has the C1P and the rows of G0 are nei-

ther disjoint nor nested, no nested matrix contains a Tucker matrix or

G0 as submatrices. Conversely, as each Tucker matrix contains G0 as

a submatrix, every matrix containing no G0 as a submatrix is a nested

matrix.
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Corollary 2. A split graph is nested if and only if it contains no induced

gem.

3 2-nested matrices

We define the following matrices, since they play an important role in

the sequel.

F0 =
(

11100
01110
00111

)
F1(k) =


011...111
111...110
000...011
000...110

.....

.....

.....
110...000

 F2(k) =


0111...10
1100...00
0110...00

.....

.....

.....
0000...11


Figure 3: F0, F1(k) ∈ {0, 1}k×k−1, and F2(k) ∈ {0, 1}k×k, for any odd

k ≥ 5.

Theorem 3. A (0, 1)-matrix A is 2-nested if and only if there is a linear

ordering Π of the columns such that the matrix A with its columns ordered

according to Π does not contain any Tucker matrix, or F0, F1(k), F2(k)

for every odd k ≥ 5 as a configuration.

We define the auxiliary graph H(A) = (V,E) where the vertex set

V = {w1, . . . , wn} has one vertex for each row in A, and two vertices wi

and wk in V are adjacent if and only if the rows ai. and ak. are neither

disjoint nor nested. With a minor misuse of notation, wi will refer to both

the vertex wi in H(A) and the row ai. of A. In particular, the definitions

given in the introduction apply to the vertices in H(A); i.e., we say two

vertices wi and wk in H(A) are nested (resp. disjoint) if the corresponding

rows ai. and ak. are nested (resp. disjoint). And two vertices wi and wk

in H(A) start (resp. end) in the same column if the corresponding rows

ai. and ak. start (resp. end) in the same column. It follows from the

definition of 2-nested matrices that A is a 2-nested matrix if and only if

there is a bicoloring of the auxiliary graph H(A) or, equivalently, if H(A)

is bipartite (i.e., H(A) does not contain cycles of odd length).
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Proof. Since A admits a C1P, then A contains no Tucker matrices. More-

over, if A contains F0, F1(k) or F2(k) for some odd k ≥ 5, since the

corresponding subgraphs in H(A) of every such matrix induces an odd

cycle, then it follows that H(A) does not admit a proper 2-coloring and

this results in a contradiction. Therefore, A does not contain any F0,

F1(k) or F2(k) for any odd k ≥ 5 as a configuration.

Conversely, let Π be a linear ordering of the columns such that the

matrix A does not contain any F0, F1(k), F2(k) for any odd k ≥ 5 or

Tucker matrices as configurations. Due to Tucker’s Theorem, since there

are no Tucker submatrices in A, the matrix A has the C1P.

For a proof by contradiction, suppose that the auxiliary graph H(A) is

not bipartite. Hence there is an induced odd cycle C in H(A).

Suppose first that H(A) has an induced odd cycle C = w1, w2, w3, w1

of length 3, and suppose without loss of generality that the first rows of

A are those corresponding to the cycle C. Since w1 and w2 are adjacent,

both begin and end in different columns. The same holds for w2 and w3,

and w1 and w3. We assume without loss of generality that the vertices

start in the order of the cycle, in other words, that l1 < l2 < l3.

Since w1 starts first, it is clear that a2l1 = a3l1 = 0, thus the column

a.l1 of A is the same as the first column of the matrix F0.

Since A has the C1P and w1 and w2 are adjacent, then a1l2 = 1. As

stated before, w2 starts before w3 and thus a3l2 = 0. Hence, column a.l2
is equal to the second column of F0.

The third column of F0 is a.l3 , for w3 is adjacent to w1 and w2, hence

it is straightforward that a1l3 = a2l3 = a3l3 = 1.

To find the next column of F0, let us look at column a.(r1+1). Notice

that r1 + 1 > l3. Since w1 is adjacent to w2 and w3, and w2 and w3 both

start after w1, then necessarily a2(r1+1) = a3(r1+1) = 1, and thus a.(r1+1)

is equal to the fourth column of F0.

Finally, we look at the column a.(r2+1). Notice that r2+1 > r1+1. Since

A has the C1P, a1(r2+1) = 0 and r2 + 1 > r1 + 1, then a1(r2+1) = 0 and

a3(r2+1) = 1, which is equal to last column of F0. Therefore we reached a
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contradiction that came from assuming that there is a cycle of length 3 in

H(A).

Suppose now that H(A) has an induced odd cycle C = w1, . . . , wk, w1

of length k ≥ 5. We assume without loss of generality that the first k rows

of A are those in C and that A is ordered according to the C1P.

Remark 1. Let wi, wj be vertices in H(A). If wi and wj are adjacent and

wi starts before wj , then airi = ajri = 1 and ai(ri+1) = 0, aj(ri+1) = 1.

Remark 2. If li−1 > li and li+1 > li for some i = 3, . . . , k−1, then for all

j ≥ i+ 1, wj is nested in wi−1. The same holds if li−1 < li and li+1 < li.

Since li−1 > li and li+1 > li, then wi−1 and wi+1 are not disjoint, thus

necessarily wi+1 is nested in wi−1. It follows from this argument that this

holds for j ≥ i+ 1.

Notice that w2 and wk are nonadjacent, hence they are either disjoint

or nested. Using this fact and Remark 1, we split the proof into two cases.

Case 1. w2 and wk are nested

We may assume without loss of generality that wk is nested in w2, for

if not, we can rearrange the cycle backwards as w1, wk, wk−1, . . . , w2, w1.

Moreover, we will assume without loss of generality that both w2 and wk

start before w1. First, we need the following Claim.

Claim 1. If w2 and wk are nested, then wi is nested in w2, for i =

4, . . . , k − 1.

Suppose first that w1 and w3 are disjoint, and for a proof by contradic-

tion suppose that w2 and w4 are disjoint. In this case, l4 < l3 < r4 < l2 <

r3 < r2. The contradiction is clear if k = 5. If instead k > 5 and w5 starts

before w4, then ri < l3 for all i > 5, which contradicts the assumption

that wk is nested in w2. Hence, necessarily w5 is nested in w3 and w5 and

w2 are disjoint. This implies that l3 < l5 < r4 < r5 < l2 and once more,

ri < l2 for all i > 5, which contradicts the fact that wk is nested in w2.

Suppose now that w3 is nested in w1. For a proof by contradiction,

suppose that w4 is not nested in w2. Thus, w2 and w4 are disjoint since
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they are nonadjacent vertices in H(A). Notice that, if w3 is nested in w1,

then l2 < l3 and r2 < r3. Furthermore, since w4 is adjacent to w3 and

nonadjacent to w2, then l3 < r2 < l4 < r3 < r4. This holds for every odd

k ≥ 5.

If k = 5, since w5 is nested in w2, then r5 < r2 < l4, which results in a

contradiction for w4 and w5 are adjacent.

Suppose that k > 5. If w2 and wi are disjoint for all i = 5, . . . , k − 1,

then wk−1 and wk are nonadjacent for wk is nested in w2, which results in

a contradiction. Conversely, if wi and w2 are not disjoint for some i > 3,

then they are adjacent, which also results in a contradiction that came

from assuming that w2 and w4 are disjoint. Therefore, since w4 is nested

in w2, w2 and wi are nonadjacent and wi is adjacent to wi+1 for all i > 4,

then necessarily wi is nested in w2, which finishes the proof of the Claim.

Claim 2. Suppose that w2 and wk are nested. Then, if w3 is nested in w1,

then li > li+1 for all i = 3, . . . , k − 1. If instead w1 and w3 are disjoint,

then li < li+1 for all i = 3, . . . , k − 1.

Recall that, by the previous Claim, since wi is nested in w2 for all

i = 4, . . . , k, in particular w4 is nested in w2. Moreover, since w3 and w4

are adjacent, notice that, if w3 is nested in w1, then l3 > l4, and if w1 and

w3 are disjoint, then l3 < l4.

It follows from Remark 2 that, if l5 > l4, then wi is nested in w3

for all i = 5, . . . , k, which contradicts the fact that w1 and wk−1 are

adjacent. The proof of the first statement follows from applying this

argument successively.

The second statement is proven analogously by applying Remark 2 if

l5 < l4, and afterwards successively for all i > 4.

If w1 and w3 are disjoint, then we obtain F2(k) first, by putting the

first row as the last row, and considering the submatrix given by columns

j1 = l1 − 1, j2 = l3, . . ., ji = li+1, . . ., jk = r1 + 1 (using the new ordering

of the rows). If instead w3 is nested in w1, then we obtain F1(k) by taking

the submatrix given by the columns j1 = l1 − 1, j2 = rk, . . ., ji = lk−i+2,
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. . ., jk−1 = r3.

Case 2. w2 and wk are disjoint

We assume without loss of generality that l2 < l1 and lk > l1.

Claim 3. If w2 and wk are disjoint, then li < li+1 for all i = 2, . . . , k−1.

Notice first that, in this case, wi is nested in w1, for all i = 3, . . . , k−1. If

not, then using Remark 2, we notice that it is not possible for the vertices

w1, . . . , wk to induce a cycle. This implies, in particular, that w3 is nested

in w1 and thus l2 < l3. Furthermore, using this and the same remark, we

conclude that li < li+1 for all i = 2, . . . , k − 1, therefore proving Claim 3.

In this case, we obtain F2(k) by considering the submatrix given by the

columns j1 = l1 − 1, j2 = l3, . . ., ji = li+1, . . ., jk = r1 + 1.

4 Conclusions

Nested and 2-nested graphs are a particular case of those split graphs

that are also circle. When comparing the structural characterization given

in this work with known partial characterizations of circle graphs by min-

imal forbidden induced subgraphs, it is oddly interesting that this result

gives several families of forbidden subgraphs which are not only different

to those already known but are also infinite. As a consequence of this fact,

a structural charaterization by minimal forbidden induced subgraphs for

the entire class of circle graphs may be even harden than expected.

A possible sequel of this work could be characterizing those self-comple-

mentary graphs that are also circle graphs.
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