

Matemática Contemporânea, Vol. 46, 112–118 http://doi.org/10.21711/231766362020/rmc4611 ©2019, Sociedade Brasileira de Matemática

Colorings, Cliques and Relaxations of Planarity

Val Pinciu

Abstract

A conjecture by Albertson states that if $\chi(G) \geq n$ then $cr(G) \geq cr(K_n)$, where $\chi(G)$ is the chromatic number of G and cr(G) is the crossing number of G. This conjecture is true for positive integers $n \leq 16$, but it is still open for $n \geq 17$. In this paper we consider the statements corresponding to this conjecture where the crossing number of G is replaced with the skewness $\mu(G)$ (the minimum number of edges whose removal makes G planar), the genus $\gamma(G)$ (the minimum genus of the orientable surface on which G is embeddable), and the thickness $\theta(G)$ (the minimum number of planar subgraphs of G whose union is G.) We show that the corresponding statements are true for all positive integers n when cr(G) is replaced with $\mu(G)$ or $\gamma(G)$. We also show that the corresponding statement is true for infinitely many values of n, but not for all n, when cr(G) is replaced with $\theta(G)$.

2000 AMS Subject Classification: 05C15, 05C10 and 05C69.

Key Words and Phrases: chromatic number, crossing number, skewness, genus, thickness.

Supported through a Connecticut State University research grant.

1 Introduction

Throughout this paper, G = (V, E) denotes a connected simple graph with vertex set V = V(G) and edge set E = E(G). A graph G is planar if it can be embedded in the plane, i.e., it can be drawn on the plane such that no edges cross each other. There are many relaxations of planarity, i.e., graph invariants that measure how close a graph is to a planar graph. Examples of relaxations of planarity include: the crossing number cr(G)(the minimum number of edge crossings in any drawing of G in the plane), the skewness $\mu(G)$ (the minimum number of edges whose removal makes the graph planar), the genus $\gamma(G)$ (the minimum genus of the orientable surface on which G is embeddable), and the thickness $\theta(G)$ (the minimum number of planar subgraphs of G whose union is G).

A conjecture by Albertson [1] states that if $\chi(G) \ge n$ then $cr(G) \ge cr(K_n)$, where $\chi(G)$ is the chromatic number of G. The statement is trivial when $n \le 4$, and it is equivalent to the Four Color Theorem ([3, 16]) when n = 5. Opproved in a Zhao [12] proved that every graph with crossing number at most two is 5-colorable, therefore the conjecture is true when n = 6. Albertson, Cranston, and Fox [1] verified the conjecture for $7 \le n \le 12$, and Barat and Toth [4] verified the conjecture for $13 \le n \le 16$. This conjecture is still open for $n \ge 17$.

In this paper we consider the statements corresponding to Albertson's Conjecture where the crossing number of G is replaced with the relaxations of planarity $\mu(G)$, $\gamma(G)$, and $\theta(G)$. In Sections 2 and 3 we show that the corresponding statements are true for all positive integers n when the crossing number of G is replaced with the skewness or the genus of G respectively. In Section 4 we show that the corresponding statement is true for infinitely many values of n, but not for all n, when the crossing number of G is replaced with the thickness of G.

2 Skewness and a Coloring Theorem

The skewness $\mu(G)$ of a simple graph G = (V, E) is the minimum number of edges whose removal makes the graph planar. It is obvious that $\mu(G) \leq cr(G)$. However the skewness and the crossing number of a graph can differ widely, since $\mu(G)$ can be of size $O(|V|^2)$, while cr(G) can be as large as $O(|V|^4)$. A general lower bound for the skewness of a graph is given by the following:

Theorem 1 ([13]). If G = (V, E) is a connected simple graph with girth $g \ge 3$, then:

$$\mu(G) \ge |E(G)| - \frac{g(|V(G)| - 2)}{g - 2}$$

Equality holds if and only if G has a spanning planar subgraph that is face-regular of degree g.

It is easy to use Theorem 1 to show that Petersen's Graph has skewness and crossing number 2, while Heawood's Graph has skewness and crossing number 3. It is less obvious to show that Grötzsch's Graph has skewness 3 and crossing number 5 (for more information see [13]). However, an exact formula for the skewness of an arbitrary nonplanar graph is unknown:

Theorem 2 ([10]). Determining the skewness of an arbitrary nonplanar graph is NP-complete.

Exact formulae are known for several classes of graphs, including the complete graphs on n vertices K_n , and the complete bipartite graphs on m + n vertices $K_{m,n}$:

Theorem 3 ([9]). If K_n and $K_{m,n}$ are the complete graph on n vertices and the complete bipartite graph on m + n vertices respectively, then:

1. $\mu(K_n) = \frac{(n-3)(n-4)}{2}$.

2.
$$\mu(K_{m,n}) = mn - 2(m+n) + 4$$

In this section we show that the statement that is obtained from Albertson's Conjecture by replacing cr(G) with $\mu(G)$ is true for all positive integers *n*. Here is our main result:

Theorem 4. Let G be any simple graph and let n be any positive integer. If $\chi(G) \ge n$, then $\mu(G) \ge \mu(K_n)$, where $\chi(G)$ is the chromatic number of G.

This statement is equivalent with the fact that among all graphs requiring n colors, the complete graph on n vertices K_n is the one with the smallest skewness. The statement is trivial for positive integers $n \leq 4$, it is equivalent to the Four Color Theorem when n = 5, and it is equivalent to a generalization of the Five Color Theorem by Kainen [8] when n = 6. We provide a proof by induction on |V(G)| when $n \geq 7$ and the following lemma is the main ingredient of our proof:

Lemma 5. Let G be any simple graph and let $n \ge 7$ be a positive integer. If $\mu(G) < \mu(K_n)$, then G has a vertex v such that deg(v) < n - 1.

3 Genus and a Coloring Theorem

The genus $\gamma(G)$ of a simple graph G = (V, E) is the minimum genus of the orientable surface on which G is embeddable. While determining the genus of an arbitrary nonplanar graph is NP-complete [17], exact formulae are known for several classes of graphs, including the complete graphs on n vertices K_n :

Theorem 6 ([14]). $\gamma(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$.

Using Heawood's upper bound for the chromatic number of a graph embeddable on an orientable surface of a given genus [5] and the Ringel-Youngs Theorem [14], it is easy to prove that the statement obtained by replacing cr(G) with $\gamma(G)$ in Alberston's Conjecture is true:

Theorem 7. Let G be any simple graph and let n be any positive integer. If $\chi(G) \ge n$, then $\gamma(G) \ge \gamma(K_n)$, where $\chi(G)$ is the chromatic number of G.

4 Thickness and a Coloring Theorem

The thickness $\theta(G)$ of a simple graph G = (V, E) is the minimum number of planar subgraphs of G whose union is G. Determining the thickness of an arbitrary nonplanar graph is NP-hard [11]. However exact formulae are known for several classes of graphs, including the complete graphs on n vertices K_n :

Theorem 8 ([2]). The thickness of the complete graph K_n satisfies:

$$\theta(K_n) = \left\lfloor \frac{n+7}{6} \right\rfloor,\,$$

except when n = 9, 10 for which the thickness is 3.

In this section we consider the statement that corresponds to Albertson's Conjecture when cr(G) is replaced with $\theta(G)$. Is it true that if $\chi(G) \geq n$ then $\theta(G) \geq \theta(K_n)$? The statement is trivially true for positive integers $n \leq 4$. Since K_5 is biplanar, this statement is equivalent to the Four Color Theorem when n = 5. Since K_6 , K_7 and K_8 are biplanar, this statement is also true when $6 \leq n \leq 8$. However, the statement is false when n = 9. The Sulanke's Graph $K_{11} - C_5$ is a counterexample, since it is 9-critical and biplanar. This result was proved by Sulanke and reported by Gardner in [6]. Determining the truth value of this statement when n = 10, 11, 12 is equivalent to Ringel's famous Earth-Moon problem: what is the largest chromatic number of any thickness 2 graph? When $n \geq 13$, our main result in this section states that the statement is true for infinitely values of n:

Theorem 9. Let G be any simple graph and let $n \ge 13$ be a positive integer such that $n \equiv 1, 2, 3, 4 \pmod{6}$. If $\chi(G) \ge n$, then $\theta(G) \ge \theta(K_n)$, where $\chi(G)$ is the chromatic number of G.

References

 M.O. Albertson, D.W. Cranston and J. Fox, Crossings, Colorings and Cliques, *Electron. J. Combin.*, 16 (2009) #R45.

- [2] V. B. Alekseev and V. S. Gonchakov, Thickness of Arbitrary Complete Graphs, *Mat. Sbornik* **101** (1976), 212–230.
- [3] K. Appel and W. Haken, Every Planar Map is Four Colorable, Part I. Discharging, *Illinois J. Math.*, **21** (1977), 429–490.
- [4] J. Barat and G. Toth, Towards the Albertson Conjecture, *Electron. J. Combin.*, **17** (2010) #R73.
- [5] P. J. Heawood, Map Colour Theorem, Quarterly Journal of Mathematics 24 (1890), 332–338.
- [6] M. Gardner, Mathematical games, *Sci. Amer.*, **242** 1980, 14–19.
- [7] T. Jensen and B. Toft, *Graph coloring problems*, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1995.
- [8] P. Kainen, A Generalization of the 5-Color Theorem, Proc. Amer. Math. Soc. 45 (1974), 450–453.
- [9] A. Kotzig, On a Certain Decomposition of a Graph, Mat.-Fyz. Čaposis 5 (1955), 144–151.
- [10] P. C. Liu and R. C. Gelmacher, On the Deletions of Nonplanar Edges of a Graph, *Congressus Numerantium* 24 (1979), 727–738.
- [11] A. Mansfeld, Determining the Thickness of a Graph is NP-Hard, Math. Proc. Cambridge Philos. Soc. 93 (1983), 9–23.
- [12] B. Oporowski, D. Zhao, Coloring graphs with crossings, *Discrete Math.*, **309** (2009),2948–2951.
- [13] V. Pinciu and W. Soss, A Note on the Skewness of a Graph, Congressus Numerantium 227 (2016), 209–214.
- [14] G. Ringel and J. M. Youngs, Solution of the Heawood Map-Coloring Problem, Proc. Nat. Acad. Sci. USA 60 (1968), 438–445.

- [15] N. Robertson, The Smallest Graph of Girth 5 and Valency 4, Bull. Amer. Math. Soc. 70 (1964) 824–825.
- [16] N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas, The Four-Color Theorem, J. Combin. Theory Ser. B 70 (1997), 2–44.
- [17] C. Thomassen, The graph genus problem is NP-complete, *Journal of Algorithms* 10 (4) (1989), 568–576.

Val Pinciu Department of Mathematics Southern Connecticut State University New Haven, CT, U.S.A. valpinciu@gmail.com