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Size multipartite Ramsey numbers for

bipartite graphs

Pablo H. Perondi * Emerson L. Monte Carmelo�

Abstract

Size multipartite Ramsey numbers were initially investigated when

the sought monochromatic graph is complete, balanced and multi-

partite, extending the celebrated bipartite Ramsey numbers. Nowa-

days, this generalization has been studied for several classes of graphs.

In this note we obtain near-optimal bounds and a few exact classes on

the size multipartite Ramsey numbers when the required monochro-

matic graph is a bipartite graph K2,n. In particular, an exact class

for the four-cycle C4 is derived by using Dirichlet’s Theorem on

primes numbers.

1 Introduction

Many variants and generalizations of the classical Ramsey numbers have

been widely investigated. In this note we deal with the following extension

introduced by Burger et al. [2, 3]. Let Kc×s denote the complete multipar-

tite graph having c classes with s vertices per each class. Given a positive
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integer c ≥ 2 and graphs G1, . . . , Gk, the size multipartite Ramsey number

mc(G1, . . . , Gk) denotes the smallest positive integer s (if it exists) such

that any k-coloring of the edges of Kc×s contains a monochromatic copy

of Gi in color i for some i, 1 ≤ i ≤ k. As usual, the case where Gi = G

for 1 ≤ i ≤ k is simplified by mc(G; k).

Particularly interesting, m2(G1, . . . , Gk) corresponds to the well-known

bipartite Ramsey number. We focus now on mc(Kn,n1 , . . . ,Kn,nk
). For

n = 1, these numbers were evaluated in [7] (when c = 2) and [9] (for

an arbitrary c ≥ 2). The case n ≥ 2 is much more difficult even for

c = 2. Indeed, bounds and few exact classes were determined in [1, 7],

but the exact value for a general case remains a hard open problem. It is

worth mentioning that the exact values of m2(C4; k) are known only for

2 ≤ k ≤ 4.

As the goal of this note, we estimate mc(K2,n1 , . . . ,K2,nk
) when c ≥ 2.

For this purpose, we obtain an upper bound based on density arguments

from [10] and a few lower bounds by using classic results linked to strongly

regular graphs, finite fields, and number theory. In some cases these

bounds are sharp or near-optimal. In particular, the following exact classes

is established.

Theorem 1. For each u ≥ 4, there are infinitely many primes k such

that

muk(C4; k) = ⌊k/u⌋+ 1.

2 A few tools

We briefly describe the main tools used in this note.

Theorem 2. (Dirichlet [6]) For relatively prime numbers t and u, there

are infinitely many prime numbers p such that p ≡ t (mod u).

The celebrated Dirichlet’s Theorem on primes in arithmetic progres-

sions plays a central role in the proof of Theorem 1. Concepts and tools

from graph theory and Ramsey theory are also applied here. Indeed,
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a closely related variant of the size multipartite Ramsey number is de-

scribed as follows. Given a positive integer s and graphs G1, . . . , Gk, the

set multipartite Ramsey number Ms(G1, . . . , Gk) denotes the smallest pos-

itive integer c such that any k-coloring of the edges of Kc×s contains a

monochromatic copy of Gi in color i for some i, 1 ≤ i ≤ k. Both versions

of the multipartite Ramsey numbers are linked by the relation below.

Proposition 3. For integers s ≥ 1, c ≥ 2 and graphs G1, . . . , Gk, the

equivalence holds: mc(G1, . . . , Gk) ≤ s if and only if Ms(G1, . . . , Gk) ≤ c.

Proof: The proof is a natural extension of a particular case in [3].

The upper bound below is proved by density arguments.

Proposition 4. ([10]) Let s, k, n1, . . . , nk be positive integers with k ≥ 2.

If a positive integer c satisfies( (c−1)s
k

2

)
>

k∑
i=1

(ni − 1)

(
cs

2

)
, (1)

then Ms(K2,n1 , . . . ,K2,nk
) ≤ c.

Thus a combination of Propositions 3 and 4 yields the lemma below.

Lemma 5. Let c, k, n1, . . . , nk be positive integers with c ≥ 2, k ≥ 2. If a

positive integer s satisfies (1), then mc(K2,n1 , . . . ,K2,nk
) ≤ s.

On the other hand, the following relationship is very useful to obtain

lower bounds. The proof is similar to that in [10].

Proposition 6. Suppose that mc(G1, . . . , Gk) exists. The following con-

nection holds ⌊
r(G1, . . . , Gk)− 1

c

⌋
+ 1 ≤ mc(G1, . . . , Gk),

where r(G1, . . . , Gk) = M1(G1, . . . , Gk) denotes the classic Ramsey num-

ber.
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3 Contribution: bounds and a few exact classes

The upper bounds m2(K2,n,K2,n) ≤ 4n− 3 ([1]), m2(K2,2; k) ≤ k2 +

k − 1 ([7]), and m2(K2,n; k) ≤ (n − 1)k2 + k − 1 ([4]) are well-known. A

corresponding version to an arbitrary c ≥ 2 follows.

Proposition 7. Given positive integers c, k, n1, . . . , nk with c, k, n1 ≥ 2,

let S =
∑k

i=1 ni. The upper bound holds

mc(K2,n1 , . . . ,K2,nk
) ≤

⌈
ck(S − k) + (c− 1)k

(c− 1)2

⌉
.

Proof: The result is an application of Lemma 5. Indeed, note that the

inequality (1) is equivalent to the inequality in the variable s

(c− 1)2s2 −
(
ck(S − k) + (c− 1)k

)
s+ k(S − k) > 0. (2)

Thus the result follows if we show that s0 :=
⌈(
ck(S−k)+(c−1)k

)
/(c−1)2

⌉
satisfies the inequality above.

For this purpose, write (2) in the form αs2+βs+γ > 0 and let ∆ := β2−
4αγ. If ∆ < 0, then any real number s satisfies (2), in particular, s0, hence

the result is valid in this case. Otherwise, note that 0 ≤ ∆ = β2−4αγ < β2

because α, γ > 0 (here we use n1 ≥ 2). Since
√
∆ < |β| = −β, we conclude

that

−β +
√
∆

2α
<

−β + (−β)

2α
≤

⌈
−β

α

⌉
=

⌈
ck(S − k) + (c− 1)k

(c− 1)2

⌉
= s0.

Thus s0 satisfies (2) and Lemma 5 concludes the proof.

Theorem 8. (Exoo, Harborth, and Mengersen [5]) For each n ≥ 2,

r(K2,n,K2,n) = 4n− 2 if and only if there exists a strongly regular graph

with parameters (4n− 3, 2n− 2, n− 2, n− 1).

By exploring the literature on r(G1, . . . , Gk), Proposition 6 might pro-

duce near-optimal lower bounds on mc(G1, . . . , Gk). For instance, Theo-

rem 8 and Propositions 6 and 7 yield the next result.
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Proposition 9. Suppose that there is a strongly regular graph with pa-

rameters (4n− 3, 2n− 2, n− 2, n− 1). Then⌊
4n− 3

c

⌋
+ 1 ≤ mc(K2,n,K2,n) ≤

⌈
4c(n− 1)

(c− 1)2
+

2

c− 1

⌉
.

The classical construction of Paley graph assures that such graph with

parameters (4n− 3, 2n− 2, n− 2, n− 1) exists whenever 4n− 3 is a prime

power, see [5] for instance. Furthermore, for c ≥ 3, note that

4c(n− 1)

(c− 1)2
+

2

c− 1
≤ 4c(n− 1)

c(c− 2)
+

2

c− 2
=

4n− 2

c− 2
.

The remarks above and Proposition 9 yield the next result.

Corollary 10. Given positive integers c, r with c ≥ 3 and a prime p such

that pr ≡ 1 (mod 4), let n = (pr + 3)/4. Then

⌊pr/c⌋+ 1 ≤ mc(K2,n,K2,n) ≤ ⌈(pr + 1)/(c− 2)⌉. (3)

A closer look reveals that if c = pt for some t such that r/2 < t < r,

both lower and upper bounds in (3) are sharp, more specifically.

Corollary 11. Let r, t be positive integers such that r/2 < t < r. Given

a prime p such that pr ≡ 1 (mod 4), let n = (pr + 3)/4 and c = pt. Then

mc(K2,n,K2,n) = pr−t + 1.

Proof: Apply Corollary 10 and note that (pr + 1)/(pt − 2) ≤ pr−t + 1.

Indeed,

(pr−t + 1)(pt − 2) = pr +
(
pr−t(p2t−r − 2)

)
− 2 ≥ pr + p− 2 ≥ pr + 1.

We now explore bounds on the multicolored case. Motivated by Corol-

lary 11, a question arises: can we find an exact class for k ≥ 3? In order

to answer this question, we recall a result whose proof is based on finite

fields.
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Theorem 12. (Lazebnik and Mubayi [8]) Given a prime p, suppose that

k = pα and n = pβ + 1 with α ≥ 1 and β ≥ 0. Then

(n− 1)k2 + 1 ≤ r(K2,n; k).

Theorem 13. Let n, u ≥ n + 2, k ≥ 2 be positive integers such that

k ≡ 0 (mod u) or k ≡ 1 (mod u). Suppose k = pα and n = pβ + 1 with

α ≥ 1 and β ≥ 0 for some prime p. Then

muk(K2,n; k) = ⌊(n− 1)k/u⌋+ 1.

Proof: Let s = ⌊(n− 1)k/u⌋+ 1. Proposition 6 and Theorem 12 produce

the desired lower bound muk(K2,n; k) ≥ s. The proof of the upper bound

muk(K2,n; k) ≤ s requires accurate estimates. Indeed, Proposition 7 yields

muk(K2,n; k) ≤
⌈
(n− 1)uk3 + uk2 − k

u2k2 − 2uk + 1

⌉
≤

⌈
(n− 1)k2 + k

uk − 2

⌉
.

Since (n−1)k2+k = (uk−2)

(
(n− 1)k

u
+
2(n− 1) + u

u2

)
+
4(n− 1) + 2u

u2
,

we can write

muk(K2,n; k) ≤
⌈
(n− 1)k

u
+

2(n− 1) + u

u2
+

4(n− 1) + 2u

u2(uk − 2)

⌉
. (4)

By hypothesis, there is q ∈ N such that k = qu+ r, where r = 0 or r = 1.

Thus (n − 1)k/u = (n − 1)q + r(n − 1)/u ≤ (n − 1)q + (n − 1)/u. Let

ε = (n − 1)u + 2(n − 1) + u + (4(n − 1) + 2u)/(uk − 2). After a simple

algebraic manipulation, (4) and the facts above yield

muk(K2,n; k) ≤ ⌈(n− 1)q + ε/u2⌉. (5)

It remains to estimate ε. By hypothesis, n− 1 ≤ u− 3 holds, and conse-

quently

ε ≤ (u− 3)u+ 2(u− 3) + u+
4(u− 3) + 2u

uk − 2
≤ u2 − 6 +

6u− 12

2u− 2
< u2 − 3. (6)

Finally, the inequalities (5) and (6) imply

muk(K2,n; k) ≤ (n− 1)q + 1 = (n− 1)⌊k/u⌋+ 1 ≤ ⌊(n− 1)k/u⌋+ 1 = s.
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As an immediate consequence, the exact class below is derived.

Corollary 14. Consider integers β ≥ 0, α ≥ γ ≥ 1. If p is a prime such

that pγ ≥ pβ + 3, then

mpα+γ (K2,pβ+1; p
α) = pα+β−γ + 1.

Proof: Apply Theorem 13 with k = pα, n = pβ + 1 and u = pγ .

For example, select p = 3, β = 2 and γ = 3. The result above yields

m3α+3(K2,10; 3
α) = 3α−1+1 for any α ≥ 3. In particular,m729(K2,10; 27) =

10.

Moreover, the case β = 0 in Theorem 13 produces n = pβ+1 = 2. Since

the graphs K2,2 and C4 are isomorphic, the following statement follows.

Corollary 15. For an integer u ≥ 4 and a prime power k such that

k ≡ 0 (mod u) or k ≡ 1 (mod u),

muk(C4; k) = ⌊k/u⌋+ 1.

In contrast with Theorem 13, a closer look reveals that k in Corollary

15 does not need to be a power of a pre-determined prime, but a power

of any prime. In particular, Theorem 2 states that there are infinitely

many prime numbers k such that k ≡ 1 (mod u). This fact combined with

Corollary 15 imply Theorem 1.

Particularly interesting, Theorem 1 is essentially existential, due to the

fact that the sequence of prime numbers in Theorem 2 is proved by exis-

tential approach.

4 Final Remarks

In this work we investigated a few bounds on mc(K2,n1 , . . . ,K2,nk
) by

using density arguments and known tools from graph theory, finite fields,
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and number theory. For future research, it would be interesting to explore

bounds on mc(Kn,n1 , . . . ,Kn,nk
) for n ≥ 3 as well as theirs connections

with algebraic and combinatorial structures.
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