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Decomposition of graphs into trees with

bounded maximum degree

Fábio Botler

Abstract

A decomposition of a graph G is a set of edge-disjoint subgraphs

of G that cover the edge set of G. In 1968, Gallai conjectured that

every connected simple graph on n vertices admits a decomposition

with at most ⌈n/2⌉ elements and that contains only paths. In 1977,

Chung proved a weaker version of this statement, that every graph

on n vertices admits a decomposition into trees, and with size at

most ⌈n/2⌉. In this paper we prove a strengthening of Chung’s

result, that every graph on n vertices admits a decomposition into

trees with maximum degree at most ⌈n/2⌉, and with size at most

⌈n/2⌉.

1 Introduction

In this paper, every graph considered is simple, i.e., contains nei-

ther loops nor multiple edges. A decomposition of a graph G is a set

D = {H1, . . . ,Hk} of edge-disjoint subgraphs of G such that E(G) =
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⋃k
i=1E(Hk). If Hi is a simple path for every i ∈ {1, . . . , k}, then we say

that D is a path decomposition of G. Erdős (see [9]) proposed the study

of the size of a path decomposition with a minimum number of elements,

which is called the path number of G, and is denoted by pn(G). In order

to answer Erdős problem, Gallai posed the following conjecture.

Conjecture 1 (Gallai, 1968). If G is a connected graph on n vertices,

then pn(G) ≤
⌈
n/2

⌉
.

Conjecture 1 was listed by Bondy [2] as one of the most beauti-

ful conjectures in Graph Theory and, although it has been widely ex-

plored [1, 3, 4, 6, 7, 8, 9, 10], it remains open. In 1977, Chung [5] studied

a weak version of Conjecture 1 that considers trees instead of paths, and

proved the following result.

Theorem 2 (Chung, 1977). If G is a connected graph on n vertices,

then G admits a decomposition in at most
⌈
n/2

⌉
trees.

Note that the bound of
⌈
n/2

⌉
is best possible. Indeed, since any tree

in a graph G with n vertices contains at most n − 1 edges, if |E(G)| >
⌊n/2⌋(n − 1), which is the case of complete graphs with an odd number

of vertices, then

|D| ≥ |E(G)|/max{|E(T )| : T ∈ D} ≥ |E(G)|/(n− 1) > ⌊n/2⌋. (1)

In this paper we consider a strengthening of Theorem 2 in which we

require a maximum degree condition on the elements of the decomposition.

More specifically, given a connected graph G on n vertices, let φ(G) denote

the minimum positive integer such that G admits a decomposition D into

trees with maximum degree at most φ(G), and such that |D| ≤ ⌈n/2⌉.
Note that, given a connected graph G on n vertices, Theorem 2 says that

φ(G) ≤ n − 1, while Conjecture 1 states that φ(G) ≤ 2. In this paper,

we prove that φ(G) ≤ ⌈n/2⌉. Our technique follows the idea in [5]. For

using induction on the order of the graph, we find a special pair of vertices

that can be removed without disconnecting it. Then we are able to restore
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these vertices while adding at most one new tree (with bounded maximum

degree) to the decomposition.

This paper is organized as follows. In Section 2 we prove our main result,

and in Section 3 we present some concluding remarks and variations of

the problem considered in this paper. For missing definitions, we refer the

reader to [3].

2 Trees with bounded maximum degree

In this section, we prove the main result of this paper. Given a vertex

x of a graph G, we denote by dG(x) and NG(x), respectively, the degree

and the set of neighbors of x in G. The distance between two vertices x

and y in a graph G is the length of a shortest path that joins x and y, and

it is denoted by distG(x, y). The diameter of a graph G is the maximum

distance between two of its vertices. We say that a decomposition D of

a graph G is a (k, d)-decomposition if each element of D is a tree with

diameter at most k and maximum degree at most d. Thus, Conjecture 1

and Theorem 2 state, respectively, that every graph admits an (n− 1, 2)-

decomposition and an (n− 1, n− 1)-decomposition of size at most ’⌈n/2⌉.
In this section, we prove that every connected graph on n vertices admits

a
(
4, ⌈n/2⌉

)
-decomposition with size at most ⌈n/2⌉. We use the follow-

ing lemma, which is a strengthening of a lemma presented by Chung [5,

Lemma 2.1].

Lemma 3. Let G be a connected graph with at least three vertices. Then,

there are vertices x, y such that G − x − y is connected and either (i)

dG(x) = dG(y) = 1 and distG(x, y) = 2; or (ii) xy ∈ E(G).

Proof. Let G be as in the statement. Given a spanning tree T of G and

a vertex v ∈ V (G), we denote by lT (v) the number of leaves of T that

are neighbors of v in T . Let T be a spanning tree of G that minimizes

δl(T ) = min{lT (v) : lT (v) ≥ 1 and v ∈ V (G)}, and let v be a vertex of G

such that lT (v) = δl(T ). If lT (v) = 1, then let x = v and let y be the
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leaf of T adjacent to v. In this case, we have xy ∈ E(G) and T − x − y

is a spanning tree of G − x − y, hence G − x − y is connected. This

proves case (ii). Thus, we may suppose that lT (v) ≥ 2. Let u be a leaf

of T that is a neighbor of v. Suppose that dG(u) > 1. Thus u has a

neighbor v′ different from v. Put T ′ = T − uv + uv′. If v′ is a leaf

that is a neighbor of v, then δl(T
′) = 1, a contradiction. Thus, we have

δl(T
′) ≤ lT ′(v) = lT (v)− 1 = δl(T )− 1, a contradiction to the minimality

of δl(T ). Thus, we have dG(u) = 1 for every leaf of T that is a neighbor of

v. Since lT (v) ≥ 2, there are two leaves, say x, y, of T that are neighbors

of v. Since dG(x) = dG(y) = 1, the graph G−x− y is connected, and xvy

is a path in G that joins x and y, hence distG(x, y) = 2. This proves case

(i).

For the proof of our result we use the following concept. A double-rooted

decomposition of a graph G is a pair (D, ρ) in which D is a decomposition

of G and ρ : V (G) → D is a function such that, for every T ∈ D, the

following hold.

(a) if ρ(v) = T , then v ∈ V (T );

(b) |ρ−1(T )| ≤ 2; and

(c) if ρ−1(T ) = {x, y}, then distT (x, y) ≤ 2.

Given a tree T ∈ D, the vertices in ρ−1(T ) are called the roots of T .

Theorem 4. Let G be a connected graph on n vertices. Then G admits

a double-rooted decomposition (D, ρ) with |D| ≤ ⌈n/2⌉ and such that D is

a
(
4, ⌈n/2⌉

)
-decomposition.

Proof. The proof follows by induction on n. Since every graph with n ≤ 4

vertices has path number at most ⌈n/2⌉, we may assume n ≥ 5. Let G be

a connected graph on n vertices. By Lemma 3, there are vertices x and y

such that G′ = G − x − y is connected and either (i) dG(x) = dG(y) = 1

and distG(x, y) = 2; or (ii) xy ∈ E(G). By the induction hypothesis, there

is a double-rooted decomposition (D′, ρ′) of G′ with |D′| ≤
⌈
(n−2)/2

⌉
and
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such that every tree in D′ has diameter at most 4 and maximum degree

at most
⌈
(n − 2)/2

⌉
. First, suppose that case (i) holds. Then, there is a

vertex v ∈ V (G) such that NG(x) = NG(y) = {v}. Put T ∗ = xvy, and

put ρ(v) = ρ′(v) for every v ∈ V (G) \ {x, y}, and ρ(x) = ρ(y) = T ∗. Let

D = D′∪{T ∗}, and note that (D, ρ) is a double-rooted decomposition with

|D| ≤ ⌈n/2⌉ and such that D is a
(
4, ⌈(n − 2)/2⌉

)
-decomposition. This

concludes the proof when case (i) holds.

Now, let us analyze case (ii), i.e. suppose that xy ∈ E(G). Let Z =

NG(x) ∩ NG(y), and let X (resp. Y ) be the set of neighbors of x (resp.

y) that are not neighbors of y (resp. x), i.e., X = NG(x) \ Z and Y =

NG(y) \ Z. Put W = X ∪ Y ∪ Z. In what follows, we partition D′

according to the distribution of the roots of each element in W . There are

three types of subsets of D′ as follows. Let D′
0 be the set of elements of D′

that have no roots in W ; for S ∈ {X,Y, Z}, let D′
S be the set of elements

of D′ containing precisely one root in W , and such that this root is in S;

for S,R ∈ {X,Y, Z} (possibly, S = R), let D′
SR be the set of elements of

D′ containing precisely two roots, say x, y, in W , and such that x ∈ S,

y ∈ R. It is clear that these sets partition D′, i.e., we have

D′ = D′
0 ∪ D′

X ∪ D′
Y ∪ D′

Z ∪ D′
XX ∪ D′

Y Y ∪ D′
ZZ ∪ D′

XY ∪ D′
XZ ∪ D′

Y Z .

Given a tree T ′ ∈ D′ and S ⊂ V (G), we denote by ρ′−1
S (T ′) the set

ρ′−1(T ′) ∩ S. In what follows, for each tree T ′ ∈ D′ we construct a new

tree T by adding at most two edges of E(G) \ E(G′). This operation is

performed in such a way that each new edge is added at a vertex z ∈
ρ′−1(T ′), which implies that T is connected and has diameter at most 4.

Moreover, if T is obtained from T ′ by adding exactly two edges, then (a)

these edges are added at distinct vertices of ρ′−1(T ′), which implies that

∆(T ) ≤ ⌈(n− 2)/2⌉+1 = ⌈n/2⌉; and (b) one of these edges is incident to

x and the other is incident to y, which implies that T has no cycles. The

construction of T consists of the following seven rules.

1. If T ′ ∈ D′
0, then let T = T ′;
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2. If T ′ ∈ D′
X ∪D′

XX ∪D′
Z , then let z ∈ ρ′−1

X∪Z(T
′) and put T = T ′+zx.

In this case, we choose precisely one vertex z in ρ′−1
X∪Z(T

′) to add

zx to T ′;

3. If T ′ ∈ D′
Y ∪ D′

Y Y , then let z ∈ ρ′−1
Y ∪Z(T

′) and put T = T ′ + zy. As

above, we choose precisely one vertex z in ρ′−1
Y ∪Z(T

′) to add zy to

T ′;

4. If T ′ ∈ D′
XY , then let z ∈ ρ′−1

X (T ′), z′ ∈ ρ′−1
Y (T ′) and put T =

T ′ + zx+ z′y;

5. If T ′ ∈ D′
XZ , then let z ∈ ρ′−1

X (T ′), z′ ∈ ρ′−1
Z (T ′) and put T =

T ′ + zx+ z′y;

6. If T ′ ∈ D′
Y Z , then let z ∈ ρ′−1

Y (T ′), z′ ∈ ρ′−1
Z (T ′) and put T =

T ′ + zy + z′x;

7. If T ′ ∈ D′
ZZ , then let z, z′ ∈ ρ′−1

Z (T ′) with z ̸= z′ and put T =

T ′ + zx+ z′y.

Now, let T ∗ be the tree induced by the remaining edges, i.e., the edges

in E(G) \ E(G′) not present in T , for every T ′ ∈ D′. We claim that

∆(T ∗) ≤ ⌈n/2⌉. It is not hard to check that the only neighbors of x in

T ∗ are y; one, but not two, of the roots of each tree in D′
XX ; the roots

in Z of the trees in D′
XZ ; and one, but not two, of the roots of each

tree in D′
ZZ . Thus, we have dT ∗(x) ≤ 1 + |D′

XX | + |D′
XZ | + |D′

ZZ | ≤
1 + |D′| ≤ 1 + ⌈(n− 2)/2⌉ ≤ ⌈n/2⌉. Analogously, the only neighbors of y

in T ∗ are x; the roots in Z of the trees in D′
Z ; one, but not two, of the

roots of each tree in D′
Y Y ; the roots in Z of the trees in D′

Y Z ; and one,

but not two, of the roots of each tree in D′
ZZ . Thus, we have dT ∗(x) ≤

1 + |D′
Z |+ |D′

Y Y |+ |D′
Y Z |+ |D′

ZZ | ≤ 1 + |D′| ≤ 1 + ⌈(n− 2)/2⌉ ≤ ⌈n/2⌉.
Finally, by the remarks above, we have ∆(T ) ≤ ⌈n/2⌉ for every T ′ ∈ D′,

and hence D = {T : T ′ ∈ D′} ∪ {T ∗} is a
(
4, ⌈n/2⌉

)
-decomposition of G

such that |D| ≤ ⌈n/2⌉. Moreover, let ρ(v) : V (G) → D be such that

ρ(v) = ρ′(v) for every v ∈ V (G) \ {x, y}; and ρ(x) = ρ(y) = T ∗. Clearly,

(D, ρ) is a double-rooted decomposition of G, as desired.
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3 Concluding remarks

In this paper, we give a first step in a novel approach for dealing with

Gallai’s Conjecture by proving an intermediate statement between Con-

jecture 1 and Theorem 2. In this section, we present some variations

of the problem studied in this paper, that explore decompositions into

subgraphs with constraints on their degrees or diameter. Let ek,d de-

note the maximum number of edges in a tree with diameter at most k

and maximum degree at most d. By induction on k, one can check that

ek,d = d
(
1 + (d − 1) + (d − 1)2 + · · · + (d − 1)k/2−1

)
if k is even; and

ek,d = 1 + 2
(
(d− 1) + · · ·+ (d− 1)⌊k/2⌋

)
if k is odd. The following state-

ment generalizes both Conjecture 1 and Theorem 4.

Conjecture 5. Let k, d be positive integers such that k ≥ 3, d ≥ 2

and ek,d ≥ n− 1. If G is a connected graph on n vertices, then G admits

a (k, d)-decomposition with size at most ⌈n/2⌉.

Note that, by Equation 1, the condition ek,d ≥ n−1 is necessary. More-

over, Conjecture 1 does not imply Conjecture 5 since a path decomposition

may contain paths of arbitrary lengths, and hence arbitrary diameter. For

example, any minimum path decomposition of the complete graph K2k

consists of Hamilton paths.

We believe that a natural first step to improve the result in this paper

is to explore the case k = 6 and d = ⌈n/4⌉. Following the idea in [5],

our proof consisted in presenting a lemma (Lemma 3) that allows us to

remove a pair of special vertices without disconnecting the graph. For

improving Theorem 4, one may generalize Lemma 3 even further, perhaps

by introducing new ingredients.

Another possible direction to tackle Conjecture 1 by using trees with

weaker maximum degree conditions is to omit the diameter condition and

aim the following statements.

Conjecture 6. –
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1. There is a positive constant c1 < 1/2 such that every connected

graph on n vertices admits an (n − 1, c1n)-decomposition with size

at most ⌈n/2⌉.

2. There is a positive integer c2 such that every connected graph on n

vertices admits an (n−1, c2)-decomposition with size at most ⌈n/2⌉.

The statements above are significant improvements on the result of this

paper. Clearly, proving that c2 = 2 implies Conjecture 1. To prove these

statements one may easily avoid the cases for which Conjecture 1 has been

already verified. For example, one may assume that the given graph has

maximum degree at least 6 [1], and that it contains a cycle consisting only

of vertices with even degree [10].

Let T be a tree. We say that T is internally even if the only vertices

of odd degree in T are its leafs. Clearly, every path decomposition is

a decomposition into internally even trees. The following is a natural

weakening of Conjecture 1 for internally even trees.

Conjecture 7. Every connected graph on n vertices admits a decomposi-

tion into internally even trees with size at most ⌈n/2⌉.

Finally, one may weaken the acyclic condition on the elements of

the decomposition as follows. We say that a decomposition D is a d-

decomposition if every element of D is connected and has maximum degree

d. The following conjecture generalizes Lovász’s result [9].

Conjecture 8. Let d ≥ 2 be a positive integer. Then every connected

graph on n vertices admits a d-decomposition with size at most ⌈(n−1)/d⌉.
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