
Matemática Contemporânea, Vol. 46, 74–82

http://doi.org/10.21711/231766362020/rmc467

©2019, Sociedade Brasileira de Matemática

Critical ideals and applications

Carlos A. Alfaro

Abstract

Critical ideals were defined as a generalization of the critical

group, also known as sandpile group. Furthermore, the varieties

associated to these ideals can be regarded as a generalization of the

Laplacian and adjacency spectra of the graph. Recently, there have

been found relations between the algebraic co-rank, the zero forcing

number, and the minimum rank of a graph. We outlook how all

these concepts are related.

1 Introduction

Let R be a commutative ring and consider an n × n matrix M whose

entries are in the polynomial ring R[x1, . . . , xm] with m indeterminates.

For i ∈ [n] := {1, . . . , n}, let I = {rj}ij=1 and J = {cj}ij=1 be two

sequences such that

1 ≤ r1 < r2 < · · · < ri ≤ n and 1 ≤ c1 < c2 < · · · < ci ≤ n.

Let M [I;J ] denote the submatrix of a matrix M induced by the rows

with indices in I and columns with indices in J . The determinant of
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M [I;J ] is called an i-minor of M . The i-th determinantal ideal of matrix

M is the ideal generated by all i-minors of M , and denoted by Ii(M). We

denote by minorsi(M) the set of all i-minors of M .

Given a graph G with n vertices and a set of variables XG = {xu :

u ∈ V (G)}, the generalized Laplacian matrix L(G,XG) of G is the matrix

whose uv-entry is given by

L(G,XG)uv =

xu if u = v,

−muv otherwise,

where muv is the number of the edges between vertices u and v.

Definition 1. Let R[XG] be the polynomial ring over a commutative ring

R in the variables XG. For i ∈ [n], the i-th critical ideal IRi (G,XG) ⊆
R[XG] of G is the determinantal ideal generated by minorsi(L(G,XG)).

An ideal is said to be trivial if it is equal to ⟨1⟩ (= R[X]). The algebraic

co-rank γR(G) of G is the maximum integer i for which IRi (G,XG) is

trivial.

Example 1. Consider the generalized Laplacian matrix of the cycle with

4 vertices.

L(C4, XC4) =


x0 −1 0 −1

−1 x1 −1 0

0 −1 x2 −1

−1 0 −1 x3


Below we give a Gröbner bases of the critical ideals over Z[XC4 ].

IZi (C4, XC4) =


⟨1⟩ if i ≤ 2

⟨x0 + x2, x1 + x3, x2x3⟩ if i = 3

⟨x0x1x2x3 − x0x1 − x0x3 − x1x2 − x2x3⟩ if i = 4.

From which follows that γZ(C4) = 2. For this graph, these Gröbner bases

coincide with the Gröbner bases of the critical ideals over R[XC4 ]. In

general they are different.
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In the following, we are going to see two applications of the critical

ideals. In Section 2, critical ideals are defined over R[X] with R a field,

we will see that they can be used to bound the minimum rank (defined over

R) and the zero forcing number, this opens new applications of algebraic

geometry. In Section 3, critical ideals are defined over Z[X]. Here we will

see that critical ideals generalize the sandpile group and the Smith group

of a graph.

2 Minimum rank and zero forcing number

Let R be a field and I ⊆ R[X] be an ideal. The variety V (I) of I is

defined as the set {a ∈ Rn : f(a) = 0 for all f ∈ I} , that is, V (I) is the

set of common roots between polynomials in I. Note that these varieties

can be regarded as a generalization of the Laplacian and adjacency spectra

of a graph.

An important property of the critical ideals is that they form a chain

of ideals.

Proposition 1. For any graph, we have

⟨1⟩ ⊇ IR1 (G,XG) ⊇ · · · ⊇ IRn (G,XG) ⊇ ⟨0⟩.

And

∅ = V (⟨1⟩) ⊆ V (IR1 (G,XG)) ⊆ · · · ⊆ V (IRn (G,XG)) ⊆ V (⟨0⟩) = Rn.

Proof. Let M be an (i+ 1)× (i+ 1)-submatrix of L(G,XG). We have

detM =

i+1∑
j=1

Mj,1 detM [j; 1],

where Mj,1 denotes the (j, 1) entry of the M and M [j; 1] denotes the

submatrix of M whose j-th row and 1st column were deleted. This

gives that IRi+1(G,XG) ⊆ IRi (G,XG). From which in turn follows that

V (IRi+1(G,XG)) ⊇ V (IRi (G,XG)).
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There are several problems where bounds depend on the spectra of a

matrix associated to a graph, it could be that we could obtain bounds by

finding roots in the varieties of the critical ideals. An example comes from

minimum rank and zero forcing number.

The zero forcing game is a color-change game where vertices can be

blue or white. At the beginning, the player can pick a set of vertices B

and color them blue while others remain white. The goal is to color all

vertices blue through repeated applications of the color change rule: If u

is a blue vertex and v is the only white neighbor of u, then v turns blue.

An initial set of blue vertices B is called a zero forcing set if starting with

B one can make all vertices blue. The zero forcing number Z(G) is the

minimum cardinality of a zero forcing set.

Example 2. For any cycle graph with n ≥ 3 vertices, any pair of two

adjacent vertices form a zero forcing set of minimum cardinality. From

which follows Z(Cn) = 2 for n ≥ 3.

For a graph G on n vertices, the family SR(G) collects all n × n sym-

metric matrices with entries in the ring R, whose i, j-entry (i ̸= j) is

nonzero whenever i is adjacent to j and zero otherwise. Note that the

diagonal entries can be any element in the ring R. The minimum rank

mrR(G) of G is the smallest possible rank among matrices in SR(G). Let

mz(G) = |V (G)| − Z(G). In [1], it was proved that mz(G) ≤ mrR(G) for

any field R.

Theorem 1. [3] For any commutative ring R with unity, mz(G) ≤ γR(G).

The relation between mrR(G) and γR(G) is still not completely under-

stood. However, we have the following.

Proposition 2. [3] If there exist k ∈ N and a ∈ Rn such that IRk (G,a) =

⟨0⟩ for some k, then mrR(G) ≤ k − 1.

In particular, we have the following.

Corollary 1. If V
(
IRγR(G)+1(G,XG)

)
is not empty, then mrR(G) ≤

γR(G).
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Therefore, mz and γ can be used to compute exact values of the mini-

mum rank, as next example shows.

Example 3. Continuing Example 1, we observe vector 0 is a root of all

polynomials in IR3 (C4, XC4), then mrR(C4) ≤ γR(C4). Thus, by Theorem 1

and Example 2, it follows that mz(G) = mrR(C4) = γR(C4) = 2.

In [3], it was noted the Weak Nullstellensatz implies that if R is an

algebraically closed field, then mrR(G) ≤ γR(G). Also, there exist graphs

for which mrZ(G) > γZ(G). For the field of real numbers, it is conjectured

[3] that mrR(G) ≤ γR(G). In [3] it was proved that if a graph G have

mrR(G) ≤ 2, then mrR(G) ≤ γR(G). And in [2] that if a graph G have

mrR(G) = 3, then mrR(G) ≤ γR(G). Moreover, in [3] there were found

families of graphs where mz, the minimum rank and the algebraic co-rank

coincide. Among these graph families are the trees, cycles, and line graphs

of trees.

3 Sandpile group and Smith group

Another interest in computing critical ideals comes when they are eval-

uated, since we recover information of the graph. For instance, the adja-

cency matrix A(G) and Laplacian matrix L(G) of G are the evaluation of

−L(G,XG) and L(G,XG) at XG = 0 and at XG = deg(G), respectively,

where deg(G) is the degree vector of G. A subtler relation is obtained with

the sandpile group and the Smith group. We will explore these relations

in more detail.

By considering an m × n matrix M with integer entries as a linear

map M : Zn → Zm, the cokernel of M is defined as the quotient module

Zm/ImM . By the fundamental theorem for finitely generated Abelian

groups, the cokernel of M can be described as

coker(M) ∼= Zf1(M) ⊕ Zf2(M) ⊕ · · · ⊕ Zfr(M) ⊕ Zm−r,

where the integer number f1(M), f2(M), ..., fr(M) are the invariant fac-

tors of M . One way to compute the invariant factors is by means of the
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following formula.

Proposition 3. [8, Theorem 3.9] Let ∆i(M) denote the greatest common

divisor of the i-minors of a m × n matrix M with integer entries. Then,

the i-th invariant factor fi(M) of M is equal to ∆i(M)/∆i−1(M), where

∆0(M) = 1.

This finitely generated Abelian group becomes a graph invariant when

we take the matrix M to be a matrix associated with a graph, say, the

adjacency or Laplacian matrices. The cokernel of A(G) is known as the

Smith group of G and is denoted S(G), and the torsion part of the cokernel

of L(G) is known as the sandpile groupK(G) ofG. It is known that |K(G)|
is equal to the number of spanning trees of G. For an introduction to the

sandpile group and the smith group we refer the reader to [9] and [10],

respectively.

The relation between invariant factors and the critical ideals is given

in the following result. Here we present a general form of [7, Proposition

3.6].

Proposition 4. Let R be a principal ideal domain, and M a matrix with

entries in R. If M − diag(M) = −A(G), then

IRi (G,XG)|XG=diag(M) =

〈
i∏

j=1

fj(M)

〉
=

〈
∆R

i (M)
〉
for all 1 ≤ i ≤ r,

where r is the rank of M , ∆R
i (M) is the greatest common divisor of the

i-minors of M over R, and f1(M) | · · · | fr(M) are the invariant factors

in the Smith normal form of M .

Proof. After evaluating the ideal IRi (G,XG) at XG = diag(M), the ideal

obtained is the generated by the i-minors of M . Since R is p.i.d., then the

evaluated ideal is principal and generated by the g.c.d. of the i-minors of

M . The last equality follows since fi(M) = ∆i(M)/∆i−1(M).

Therefore, by evaluating the i-th critical ideal IZi (G,XG) at the degree

vector or the zero-vector, we get that the ideal is generated by ∆i(L(G))
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and ∆i(A(G)), respectively. Thus, objects like the sandpile group and the

Smith group can be recovered from critical ideals.

Example 4. Consider again Example 1. By evaluating the critical ideals

over Z of C4 at XC4 = deg(C4) = (2, 2, 2, 2), we obtain ∆i(L(C4)) = 1

for i ≤ 2, ∆3(L(C4)) = 4 and ∆4(L(C4)) = 0. Thus the sandpile group

K(C4) ∼= Z4. An evaluation of the critical ideals of C4 atXC4 = (0, 0, 0, 0),

we obtain ∆i(A(C4)) = 1 for i ≤ 2, and ∆i(A(C4)) = 0 for i ∈ {3, 4}.
Therefore, the Smith group S(C4) ∼= Z1 ⊕ Z2.

In general, sandpile group is not induced monotone, for instanceK(K4) ∼=
Z2
4 is not a subgroup ofK(K5) ∼= Z3

5. One interesting feature of the critical

ideals is that they are induce monotone.

Proposition 5. Let H be an induced subgraph of G. Then IRi (H,XH) ⊆
IRi (G,XG).

Proof. Let M be an i× i submatrix of L(H,XH). Then M is a submatrix

of L(G,XG). From which follows that IRi (H,XH) ⊆ IRi (G,XG).

This implies that if H is an induced subgraph of G, then γR(H) ≤
γR(G). Therefore, for each k, the class of graphs with γR(G) ≤ k can

be characterized by a collection (possibly infinite) of forbidden induced

subgraphs. A consequence of Proposition 4 is that γR(G) ≤ f1(M), where

M is such that M −diag(M) = −A(G). Therefore, critical ideals can also

be used in finding characterizations of graphs whose associated adjacency

or Laplacian matrices have few invariant factors equal to 1. These ideas

have been used to characterize the graphs whose Laplacian matrix have

at most 2 or 3 invariant factors equal to one, see [4, 5]. In the following we

give the characterization of the digraphs with at most one trivial critical

ideals, which in turn is related with mz and the minimum rank.

Let Λn1,n2,n3 be the digraph defined in the following way: The vertex

set V (Λn1,n2,n3) is partitioned in three sets T , T ′ and K with n1, n3 and n2

vertices, respectively, such that T and T ′ are two trivial digraphs (which
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have no arcs), and K is a complete digraph (which has double arcs be-

tween each pair of vertices). Additionally, the arc sets (T,K)Λn1,n2,n3
,

(T, T ′)Λn1,n2,n3
and (K,T ′)Λn1,n2,n3

are complete.

Theorem 2. [3, 6] Let R be a commutative ring with unity. The following

are equivalent:

(1) D is isomorphic to Λn1,n2,n3,

(2) mrR(D) ≤ 1,

(3) mz(D) ≤ 1,

(4) γR(D) ≤ 1.
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