
Matemática Contemporânea, Vol. 46, 65–73

http://doi.org/10.21711/231766362020/rmc466

©2019, Sociedade Brasileira de Matemática
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Abstract

An equitable total coloring is the assignment of colors to the ver-

tices and edges of a graph such that incident and adjacent elements

receive different colors and the difference between the cardinalities

of any two color classes is at most 1. The equitable total chro-

matic number of a graph (χ′′
e ) is the smallest integer for which the

graph has an equitable total coloring. Wang (2002) conjectured that

∆ + 1 ≤ χ′′
e ≤ ∆+ 2. In this work, we contribute to this conjecture

by proving that infinite classes of tripartite complete non balanced

graphs have equitable total coloring with ∆+1 colors using coloring

matrices.
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1 Introduction

Let G = (V,E) be a graph. A k-total coloring of G is an assignment

of k colors to the vertices and edges of G such that adjacent or incident

elements have different colors. The total chromatic number of G, denoted

by χ′′, is the smallest k for which G has a k-total coloring. From the

definition of total coloring, we have that χ′′ ≥ ∆+1 and the Total Coloring

Conjecture (TCC) (Behzad [1], Vizing [10]) states that the total chromatic

number of any graph is at most ∆ + 2, where ∆ is the maximum degree

of the graph. In 1989, Sànchez-Arroyo [5] proved that the problem of

determining the total chromatic number of an arbitrary graph is NP-hard,

and it remains NP-hard even for cubic bipartite graphs.

A k-equitable total coloring is an assignment of k colors to the edges

and vertices of the graph such that adjacent and incident elements receive

different colors and the difference between the cardinalities of any two color

classes is at most one. The smallest integer k for which a graph G has

a k-equitable total coloring is called the equitable total chromatic number

of G and it is denoted by χ′′
e(G). In 2002, Wang [11] conjectured that the

equitable total chromatic number of any graph is at most ∆+2 (Equitable

Total Coloring Conjecture (ETCC)). In 2016, Dantas et al. [3] proved that

the problem of determining the equitable total chromatic number of a

cubic bipartite graph is NP-complete.

A graph is said to be r-partite if its vertex set can be partitioned into

r sets such that no two vertices within the same part are adjacent. An

r-partite graph is complete if there is an edge between any two vertices of

different parts of the partition. When the cardinalities of the parts of the

partition are equal, we say that the graph is balanced.

In 1974, the total chromatic number of all complete r-partite balanced

graphs was determined by Bermond [2]. In 1994, Fu [4] determined that

the equitable total coloring of complete bipartite graphs is ∆ + 2 and

proved that there exist equitable (∆ + 2)-total colorings for all complete

r-partite graphs of odd order.
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Recently, for all complete r-partite balanced graphs the Equitable Total

Coloring Conjecture was verified in 2018 [7] and the sharp value for the

equitable total chromatic number for this class of graphs was determined

in 2019 [6].

In order to contribute with the ETCC, we investigate equitable total

colorings of complete 3-partite (tripartite) non balanced graphs. These

graphs have also been investigated in the context of different kinds of

colorings such as the adjacent vertex distinguishing total coloring and

the adjacent vertex distinguishing edge coloring. The results from such

investigations can be found, respectively, in [9] and [8].

The complete tripartite non balanced graphs are denoted by Ka,b,c

meaning that the parts of the partition of the vertex set have, respec-

tively, a, b and c vertices. For convenience we adopt the convention that

a ≤ b ≤ c, without a, b and c being equal simultaneously. We verify

the ETCC for the following classes of complete tripartite non balanced

graphs:

1. Ka,b,c with a < b = c has χ′′
e = ∆+ 1;

2. Ka,b,c with a = b and c ≥ b2 if b ̸= 1 or c ≥ 2 if b = 1 has χ′′
e = ∆+1;

3. Ka,b,c with a < b and c ≥ b2 has χ′′
e = ∆+ 1.

2 Main results

Throughout this paper we analyze the equitable total chromatic number

of complete tripartite non balanced graphs, which we denote by Ka,b,c,

where a ≤ b ≤ c and not all of them are equal. The partition of the vertex

set is denoted by V = {X1, X2, X3} and vertices are labeled vi, where

i = 1, 2, · · · , a+ b+ c. The vertices of the graph are denoted by vi, where

vi ∈ X1 (resp. vi ∈ X2, vi ∈ X3) if 1 ≤ i ≤ a (resp. a + 1 ≤ i ≤ a + b,

resp. a+ b+ 1 ≤ i ≤ a+ b+ c).

In this section we show that some classes of Ka,b,c, where a ≤ b ≤ c

(not all of them are equal) have an equitable total coloring with ∆ + 1
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colors. We determine the equitable total chromatic number of the cases:

a < b = c; a = b and c ≥ b2 if b ̸= 1 or a = b and c ≥ 2 if b = 1; and a < b

and c ≥ b2.

Theorem 2.1. The graph Ka,b,c with a < b = c has χ′′
e = ∆+ 1.

Proof. We obtain the coloring of this class of graphs from the graphs of

type K3×b. For Ka,b,b (a < b) we have that ∆(Ka,b,b) = 2b = ∆(Kb,b,b).

Since Kb,b,b is a regular graph with χ′′
e = ∆+1, as shown in [7], this means

that each color is represented in all vertices. When removing k vertices

and their incident edges from the part X1 of Kb,b,b, each color class has its

cardinality reduced in k unities. Thus, the difference between the cardi-

nalities of any two color classes is not changed in Ka,b,b (a = b− k). Also,

because no incident or adjacent elements received the same color in Kb,b,b

and their colors were not changed in the subgraph Ka,b,b, we conclude

that, indeed, Ka,b,b has an equitable total coloring with ∆ + 1 colors. In

Figure 1, we show, on the left, the graph K3×2 totally colored according

to algorithm presented in [6]; on the right, we show the graph K1,2,2 to-

tally colored according to Theorem 2.1. We observe that the partition

into independent sets of the graphs presented in Figure 1 are, respec-

tively: X1 = {x11, x12}, X2 = {x21, x22}, X3 = {x31, x32} (we followed the

notation of [6]); and X1 = {v1}, X2 = {v2, v3}, X3 = {v4, v5}.

Figure 1: The graph K1,2,2 with an equitable total coloring using 5 colors.

Theorem 2.2. The graph Ka,b,c with a = b and c ≥ b2 if b ̸= 1 or a = b

and c ≥ 2 if b = 1 has χ′′
e = ∆+ 1.
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Proof. We define a coloring matrix as a matrix whose entries determine

the colors of elements of a graph. Let M be a matrix of order 2b+ c. Our

goal is to fill the entries of M with ∆+1 = b+c+1 different elements. The

entry mij of M represents the color that the vertex vi receives if i = j.

If i ̸= j the entry mij will either be left empty (if vivj is not an edge of

Kb,b,c) or represent the color of the edge vivj otherwise. The first b rows

refer to set X1 since a = b and it has vertices 1 to b then. The same thing

can be made for the next rows (b+1 to 2b refer to X2 and 2b+1 to 2b+ c,

to X3). Note that M is symmetric, since if i ̸= j, then entry mij and mji

will either both be left empty or will represent the color of the edge vivj

(= vjvi). Therefore, we are only interested in filling the entries mij where

j ≥ i.

The total number of elements in the graph Kb,b,c is b2 + 2bc + 2b + c

and ∆+ 1 = b+ c+ 1. We refer the reader to [6, 7], where it is explained

in details how to determine the number of elements and ∆ in the case

where all the independent sets have the same cardinality. The reasoning

to obtain such values when the cardianlities of the independent sets is not

the same is similar. One can easily check that dividing the number of

elements by the number of colors the quotient is 2b and the remainder

is c − b2. Since in this case, by assumption, c ≥ b2 we ensure that the

remainder is non negative. It can be easily seen that the remainder is

strictly less than the divisor. This means that c− b2 colors must be used

2b+ 1 times, whereas b2 + b+ 1 colors are used 2b times.

As we said previously, we fill the entries mij where j ≥ i and, since the

matrix is symmetric, the other entries are automatically filled. To fill the

coloring matrix, we distribute the numbers from 1 to ∆ + 1 in the first

row in ascending order in the entries that represent either the color of a

vertex or the color of an edge. In the second row, we shift all elements of

the first row one column to the right, except for the color ∆ + 1, which

occupies the entry below the number 2 of the first row. The process is

analogous until the b-th row. We shift one unity to the right at every new

row because repetition of colors in column would imply that incident or
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adjacent elements were assigned to the same color. If a color occupies the

entry mk,2b+c (1 ≤ k ≤ b − 1), in the next row such color occupies the

entry mk+1,b+1. Since the matrix is symmetric, after this step, the first

b columns have their entries determined. Also, it can be easily seen that

each color was used b times so far.

For the next b rows, the process of shifting is repeated except for two

cases. First, the colors 1 and the color in the entry mb,2b+c are switched,

because if color 1 kept being shifted 1 column to the right at every new

row, it would imply that such color was assigned to the vertices of parts

X1 and X2, which are adjacent. Also, we remark that the first b columns

were already filled by the previous step. So, when filling an entry of a row

from b+ 1 to 2b, if a color has occurred in that row by the previous step,

the entry is left empty at first. Such entries will be filled with the last

b− 1 colors, that is, by colors ∆ + 1,∆,∆− 1, · · · ,∆− b+ 3 as follows:

Color ∆ − b + 3 goes on entries mb+2,2b+3,mb+3,2b+4,mb+4,2b+5, · · · ,
m2b,3b+1, whereas color ∆ − b + 4 occupies entries mb+3,2b+5,mb+4,2b+6,

mb+5,2b+7, · · · ,m2b+1,3b+3. Color ∆ + 1 appears in the entry m2b,4b−1. In

general, color ∆ − b + i is used in entries mb+(i−1)+j,2b+3+2(i−3)+j , with

0 ≤ j ≤ b+ 1− i.

After that step, it only lacks to determine the colors of the vertices ofX3

since that, by symmetry, the first 2b columns were filled. The colors that

are less used so far are the ones in the entries mb+1,1,mb+1,2, · · · ,mb+1,b,

mb+2,1, · · · ,mb+2,b, · · · ,m2b,1, · · · ,m2b,b. We begin using the colors of the

referred entries in the vertices ofX3 so that all the colors are used the same

number of times. We observe that the colors of the submatrix of order b

below the submatrix that represents the colors of the vertices of part X1

are 2, 3, 4, · · · , b+1,∆−b+3,∆−b+4,∆−b+5, · · · ,∆+1 and we use such

colors in the following order: ∆+1 in the first vertex of part X3, 2 in the

b2-th vertex of part X3 and for the vertices in between the first and the b2-

th, we use the colors 2, 3, 4, · · · , b+1,∆−b+3,∆−b+4,∆−b+5, · · · ,∆+1

as many times as they are used in the above described submatrix, except

for 2 and ∆ + 1, since they have already been used once each. However,
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if c is strictly greater than b2 we have that c − b2 > 0 and those vertices

would remain without a color, but since this is an equitable total coloring,

the difference between the cardinalities of two color classes might be 1,

which allows us to use the color of the entry m2b,i in the (i+ 1)-th vertex

of part X3 for i ≥ b2. By construction, we get that no incident or adjacent

elements receive the same color and by the last step we ensure that the

coloring is equitable, as desired. For instance, observe the coloring matrix

presented below, which is for the graph K2,2,4.

1 2 3 4 5 6 7

1 7 2 3 4 5 6

2 7 6 1 3 4 5

3 2 6 5 1 7 4

4 3 1 5 7

5 4 3 1 2

6 5 4 7 3

7 6 5 4 2

(a) Coloring matrix of K2,2,4 (b) Coloring of K2,2,4

Theorem 2.3. The graph Ka,b,c with a < b and c ≥ b2 has χ′′
e = ∆+ 1.

Proof. We obtain the coloring of this class of graphs from the class de-

scribed in Theorem 2.2. Consider now the graph Kb,b,c (c ≥ b2). By

removing k vertices from X1 (1 ≤ k < b) and their incident edges, we

get a subgraph Ka,b,c (a = b − k) such that ∆(Kb,b,c) = ∆(Ka,b,c). Anal-

ogously to the first class of graphs to have its equitable total chromatic

number determined, we get that Ka,b,c (a < b and c ≥ b2) has an equi-

table total coloring with ∆+1 colors. The graph K1,2,4 with an equitable

(∆+ 1)-total coloring is presented in Figure 3. It can be easily seen that,

by Theorem 2.3, the coloring of K1,2,4 can be obtained from the coloring

matrix of K2,2,4 by excluding the first column and row of that matrix.
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Figure 3: The graph K1,2,4 with an equitable total coloring using 7 colors.

3 Final considerations

In this paper we proved that three infinite classes of tripartite complete

non balanced graphs have equitable total coloring with ∆+1 colors using

coloring matrices. Future works include determining the equitable total

chromatic number of the graphs of the remaining cases a = b < c < b2

and a < b < c < b2, as well as other r-partite non balanced graphs.
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