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Abstract

A tessellation of a graph G = (V,E) is a set of disjoint cliques

that covers V (G). A tessellation cover of G is a set of tessellations

that covers E(G). The tessellation cover number of G, denoted

by T (G), is the minimum size of a smallest tessellation cover of

G. The t-tessellability of G aims to decide whether T (G) ≤
t. In this work, we present a polynomial time algorithm for t-

tessellability for quasi-threshold graphs. Next, we introduce the

t-tessellability completion of G, which aims to decide whether

there is a tessellation cover T of G with t tessellations given a par-

tial tessellation cover T ′ of G that must be part of T . Finally,

we compare the behavior of the computational complexity of t-

tessellability completion and k-edge precoloring in some

subclasses of graphs with few P4, such as complete bipartite graphs,

triangulated of complete graphs, and complete graphs.
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1 Introduction

Nowadays quantum computation receives a lot of attention from the sci-

entific community. An important concept in this computational paradigm

is the quantum walk. This concept is defined as a mathematical model

of a particle’s walk thought the edges of a graph. Recently, Portugal

et al. [11] proposed the Staggered Quantum Walk Model, that includes

Szegedy Model and an important part of Coined Model. The Staggered

Model uses the concept of tessellations on graphs to generate the evolu-

tion operators that rules the corresponding quantum walk. Given a graph

G = (V,E), a tessellation is a set of disjoint cliques of G that covers

V (G). A set of tessellations T = {C1, . . . , Cj} is a tessellation cover when

T covers E(G). The size of a smallest tessellation cover in a graph G is

denoted by T (G). The t-tessellability problem aims to decide whether

a graph G has T (G) ≤ t [1].

Let K(G) be the clique graph of G, i.e., the vertices of K(G) are re-

lated to maximal cliques of G and two vertices are adjacent if the re-

lated maximal cliques are non-disjoint in G. Abreu et al. [1] proved that

T (G) ≤ min{χ(K(G)), χ′(G)}, where χ(K(G)) and χ′(G) denote the chro-

matic number and chromatic index of graphs K(G) and G, respectively.

They also showed NP -completeness proofs of the t-tessellability prob-

lem for several graph classes. Moreover, they showed that this problem is

polynomial-time solvable for threshold graphs G = (C ∪ S,E). A thresh-

old graph G has K(G) that is a complete graph, and T (G) = χ(K(G)) =

|S|+ 1 (C is a largest maximum clique of G, S = V \ C is a stable set of

G).

Note that the computational complexity of t-tessellability is still

open for cographs, whereas it is polynomial time solvable for thresh-

old graphs [1]. In this work, we present the tessellation cover num-

ber for quasi-threshold graphs and the polynomial-time algorithm for t-

tessellability for this graph class, in Sec. 2. We also present the defi-

nition of t-tessellability completion relating it to k-edge precol-
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oring, in Sec. 3. Finally, in Sec. 4, we present the concluding remarks.

2 Tessellability for quasi-threshold graphs

Note that the tessellation cover number of a disconnected graph is given

by the maximum of the parameters of their connected components, i.e., if

G = G1 ∪G2, then T (G) = max{T (G1), T (G2)}.
A graph G is a cograph, quasi-threshold, threshold if G is {P4}-free,

{P4, C4}-free, and {P4, C4, 2K2}-free, respectively [3]. Let G be a graph

with a vertex u. The addition of a twin vertex v of u in G includes v in

G with the same neighborhood of u, and there is an edge uv in E(G) if

v is a true twin. Otherwise, v is a false twin. Let G′ be obtained from a

graph G by adding a true twin v of u ∈ V (G). The cliques containing u in

G will become cliques in G′ that also contain v. So, we can use the same

cliques of tessellations that cover the edges incident to u in G to cover the

edges incident to v in G′.

Lemma 1. If G is a graph with a vertex u and G′ is obtained from G by

the addition of a true twin vertex v of u, then T (G) = T (G′).

Quasi-threshold graphs can be recursively obtained by the following

operations from a K1: adding universal vertices, and; the union operation

of two quasi-threshold graphs [12].

Theorem 1. Let G be a quasi-threshold graph and G′ be a quasi-threshold

graph constructed by adding a universal vertex v to G. Hence, T (G′) =∑
i T (Ci), where Ci is a connected component of G.

Proof. The vertex v is universal, and we have two cases:

(I) Consider G connected. Therefore, G has a universal vertex u such

that v and u are true twin vertices in G′. So, by Lemma 1, T (G′) =∑
i T (Ci) = T (G).

(II) Consider G disconnected. Therefore each connected component Ci

of G is a subgraph that is a quasi-threshold graph with a universal vertex

ui. So we can consider that vertices v and ui are true twin vertices in

each connected component C ′
i (that is related to each Ci before adding
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vertex v), thus the tessellation cover number in each connected component

C ′
i remains equal to T (Ci). Since each connected component shares the

vertex v in G′, the cliques in each connected component share the vertex v.

Then, to cover the incident edges of v we cannot use the same tessellations

for each connected component, so T (G′) =
∑

i T (Ci).

Every quasi-threshold graph is also a cograph, which have a cotree, that

is a tree where the internal nodes represent operations of union or join,

and the nodes that are leaves represent the vertices of the cograph [3].

We can construct the cotree of quasi-threshold graphs in such a way that

every join operation occurs between a vertex and a quasi-threshold graph,

and the cotree be binary where, w.l.o.g., the left side is a cotree and the

right side is a leaf. Thereby, we are able to calculate the tessellation cover

number of graphs of this class using its cotree by climbing this tree until

the root. When the internal node of this cotree is a union operation, we

know the value is the maximum among the parameters of the connected

components. Otherwise, the internal node represents the join operation,

so we use the result provided in Theorem 1. Note that the number of

connected components in this situation is exactly the number of union

operations in sequence until the next join operation in this cotree plus

one. Therefore, we can calculate the tessellation cover number for quasi-

threshold graphs in polynomial time.

3 Tessellability completion

We now introduce the t-tessellability completion problem, which

has a graph G and a partial tessellation cover T ′ of G as instance and

aims to decide whether G has a tessellation cover T with t tessellations

such that the tessellations of T ′ are part of T . Note that in this work we

consider that the cliques of tessellations of T ′ in T may expand, including

new vertices. The k-edge precoloring problem has a graph G and a

partial edge coloring of G as instance and aims to decide whether G has

an edge coloring with k colors such that the colors used in the partial edge

coloring given by the instance are maintained.
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The Latin Square problem has a n× n matrix M as instance and a set

of elements of M with values in {1, ..., n} and aims to decide whether it

is possible to fill the remaining elements of M with values in {1, . . . , n}
in such way that there is no repeated value in any line or column of

M . Colbourn [4] proved that k-edge precoloring is NP-complete for

complete bipartite graphs Kx,y showing a polynomial transformation from

the Latin Square. The idea of the proof is that the lines of M will be

vertices of one stable set of the complete bipartite, the columns will be

vertices of the other stable set. Moreover, the set of given values of M is

related to the colors of the partial edge coloring of the complete bipartite

graph such as if Mi,j = α, then the edge ij of the complete bipartite graph

receives the color α. It is not hard to verify that this complete bipartite

graph has a n-edge coloring using that partial n-edge coloring if and only

if the matrix can be filled with values in {1, . . . , n} given a set of elements

of M already labeled. Figure 1(a) illustrates this construction.
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Figure 1: Latin Square and k-edge precoloring on complete bipar-

tite.

Bonomo et al. [2] proved that (n− 1)-edge precoloring of complete

split (resp. complete) graphs is NP-complete. The key idea of that proof

is that given an instance I of Latin Square with a n×n matrix M , it is

possible to create another instance I ′ with a 2n×2nmatrixM ′ in such way

I has a YES answer if and only if I ′ also has a YES answer. The matrix

M ′ is obtained by adding two n×n elements in the top right and bottom

left ofM ′ with permutations of the values in {n+1, . . . , 2n} and by copying
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the values of M in the bottom right positions of M ′ (see Figure 1(b)).

Moreover, given an instance I ′ of Latin Square with even n′ we can

construct a complete bipartite graph as described before. Next, we include

all the missing edges of one clique (resp. two disjoint cliques) of size n′ such

that all these edges of the clique (resp. cliques) of even size n also appears

in the partial edge coloring using colors in {n′ + 1, . . . , 2n′ − 1}. Now, I ′

has a YES answer if and only if the (2n′−1)-edge precoloring of this

complete split graph of 2n′ vertices (resp. complete graph of 2n′ vertices)

also is YES. Therefore, (n− 1)-edge precoloring is NP-complete for

complete bipartite graphs (a superclass of cographs), complete graphs,

and complete split graphs.

In triangle-free graphs a tessellation cover behaves just like an edge

coloring [1], the same holds for t-tessellability completion and par-

tial k-edge coloring. Therefore, the computational complexity of k-

edge precoloring and k-tessellability completion for triangle-

free graphs are the same. Moreover, since k-edge precoloring of

Star graphs Sn is always YES for k ≥ ∆(Sn) = n and NO otherwise,

both k-edge precoloring and k-tessellability completion are in

P for star graphs Sn. Marx [7] proved that k-edge precoloring is

NP-complete for planar 3-regular bipartite graphs; bipartite outerpla-

nar graphs; and bipartite series-parallel graphs. Thus, t-tessellability

completion is also hard for these graph classes.

Consider t-tessellability completion for a complete graph G. If

there is an edge without any available tessellation, then we know that the

answer isNO. Otherwise, each edge has at least one available color and we

obtain a tessellation cover of G by selecting one color for each unlabeled

edge, and then covering all the endpoints of these unlabeled edges with

a same color as a single clique in the tessellation related to this color,

repeating this process for all colors.

The triangulated TR(G) of a graph G = (E, V ) is obtained by adding

to G, for each e = uv ∈ E, a vertex euv adjacent only to u and to v.

Note that the TR(Kn) of complete graphs Kn are split graphs. Let I
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be an instance of (n − 1)-edge precoloring of a complete graph Kn

with even n, which is NP-complete [2]. Now, consider an instance I ′ of

t-tessellability completion of the graph TR(Kn). Moreover, for each

edge uv in the partial edge coloring of I we relate the triangle euv, u, v to a

tessellation of the same label of the color of uv in the partial t-tessellation

cover of TR(Kn). Since TR(Kn) has an induced star of size n− 1, all the

triangles with e-vertices incident to any vertex of the original clique Kn in

TR(Kn) need to be entirely covered by some tessellation. Note that each

of these triangles of TR(Kn) are related to an edge of Kn. Therefore, I

has a YES answer if and only if I ′ also is YES.

Theorem 2. t-tessellability completion for Stars, Completes are

in P whereas it is NP-complete for Complete Bipartite and Triangulated

Complete.

Table 1: Computational Complexities Behaviors
Sn Kn Kx,y TR(Kn) threshold cograph

t-tessellation P P NP − c NP − c Open NP − c

completion

k-partial edge P NP-c NP-c NP-c NP-c NP-c

colorability [4] [4] [4] [4] [4] [4]

t-tessellability P P P P P Open

[1] [1] [1] [1] [1]

k- edge P P P P P Open

colorability [5] [5] [6] [5] [9]

4 Final Remarks

In this work, we show that the tessellation cover number of quasi-

threshold graphs is T (G) =
∑

i T (Ci), where Ci is a connected compo-

nent of G. Using these results we also prove that the t-tessellability

is polynomial-time solvable for quasi-threshold graphs.

There exist polynomial algorithms for k-edge coloring restricted to

complete graphs [5], complete bipartite graphs [6], complete split graphs [10],
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split indifference [8], and threshold graphs [9]. Similarly, in this work we

have established polynomial time solutions for t-tessellability com-

pletion restricted to star graphs and complete graphs. Moreover, we

showed the hardness of t-tessellability completion for complete bi-

partite graphs and triangulated complete graphs, a subclass of split graphs.

Table 1 summarizes these results.

All the proofs for t-tessellability NP-complete also hold in the case

of t-tessellability completion. Therefore, it is only interesting to

investigate graph classes for which t-tessellability is in P or its com-

putational complexity is open. We are close to establish a polynomial time

algorithm for t-tessellability completion restricted to line graphs of

bipartite graphs, complete split graphs, and split indifference graphs, all

graph classes for which we know t-tessellability has linear time solu-

tion [1].
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