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Abstract

The t-pebbling number is the smallest integer m so that any ini-

tially distributed supply of m pebbles can place t pebbles on any

target vertex via pebbling moves. The 1-pebbling number of di-

ameter 2 graphs is well-studied. Here we investigate the t-pebbling

number of diameter 2 graphs under the lens of connectivity.

1 Introduction

Graph pebbling models the transportation of consumable resources. It

has an interesting history, with many challenging open problems, and with

applications to zero-sum theory in abelian groups. Calculating pebbling

numbers of graphs is a well known computationally difficult problem. See

[4, 5] for more background.

A configuration C of pebbles on the vertices of a connected graph G is

a function C : V (G)→N (the nonnegative integers), so that C(v) counts

the number of pebbles placed on the vertex v. We write |C| for the

size
∑

v C(v) of C; i.e. the number of pebbles in the configuration. A
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pebbling step from a vertex u to one of its neighbors v reduces C(u) by

two and increases C(v) by one. Given a specified root vertex r we say

that C is t-fold r-solvable if some sequence of pebbling steps starting from

C places t pebbles on r. We are concerned with determining πt(G, r),

the minimum positive integer m such that every configuration of size m

on the vertices of G is t-fold r-solvable. The t-pebbling number of G is

defined to be πt(G) = maxr∈V (G) πt(G, r). We omit t when t = 1. Clearly,

πt(G) ≤ tπ(G).

Pebbling number of diameter 2 graphs was solved and characterized by

the following theorem. For the purpose of the present work, it is enough

to know that a pyramidal graph has no universal vertex (a vertex adjacent

to every other vertex) and has connectivity 2.

Theorem 1. [2, 6] For a diameter 2 graph G with connectivity k and n

vertices, π(G) = n+ 1 if and only if k = 1 or G is pyramidal. Otherwise

(i.e. k = 2 and G is not pyramidal, or k ≥ 3), π(G) = n.

In contrast, other than the following bound, little is known about the

t-pebbling number of diameter 2 graphs.

Theorem 2. [3] If G is a diameter 2 graph on n vertices then πt(G) ≤
π(G) + 4t− 4. Moreover, lim inft→∞ πt(G)/t = 4.

The goal of the present paper is to determine the exact t-pebbling num-

ber of a large subfamily of diameter 2 graphs by considering their con-

nectivity. Define G(n, k) to be the set of all k-connected graphs on n

vertices having a universal vertex. Set ft(n, k) = n + 4t − k − 2 and

ht(n) = n + 2t − 2. Notice that ht(n) ≥ ft(n, k) if and only if k ≥ 2t.

Define pt(n, k) = max{ft(n, k), ht(n)}. The main result is the following

theorem which is proved in Section 3.

Theorem 3. If G ∈ G(n, k) then πt(G) = pt(n, k).

We observe from our result that, for any fixed t, in the family of graphs

with universal vertex, there are graphs whose t-pebbling number is much
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lower than the bound given by Theorem 2, and also that there are graphs

reaching that bound: when k ≥ 2t we have πt(n, k) = (n+4t−4)−2(t−1);

when k < 2t πt(n, k) = (n+ 4t− 4)− (k − 2).

It will be useful to take advantage of the following version of Menger’s

Theorem ([7], exercise 4.2.28).

Theorem 4. (Menger’s Theorem) [7] Let G be a k-connected graph

and S = {v1, . . . , vk} be a multiset of vertices of G. For any r ̸∈ S there

are k pairwise-internally-disjoint paths, one from each vi to r.

2 Technical Lemmas

We begin with a lemma that is used to prove lower bounds on the

pebbling number of a graph by helping to show that certain configurations

are unsolvable.

For a vertex v, define its open neighborhood N(v) to be the set of vertices

adjacent to v, and its closed neighborhood N [v] = N(v)∪{v}. We say that

a vertex y is a junior sibling of a vertex x (or, more simply, junior to x)

if N(y) ⊆ N [x], and that y is a junior if it is junior to some vertex x.

Lemma 5. (Junior Removal Lemma) [1] Given the graph G with root

r and t-fold r-solvable configuration C, suppose that y ̸= r is a junior with

C(y) = 0. Then C (restricted to G− y) is t-fold r-solvable in G− y.

Given a configuration C of pebbles, we say that a pathQ = (r, q1, . . . , qj)

with j ≥ 1 is a slide from qj to r if no qi is empty and qj has at least two

pebbles.

A potential move is a pair of pebbles sitting on the same vertex. To say

that C has j potential moves means that the j pairs are pairwise disjoint.

For example, any configuration on 5 vertices with values 0, 1, 1, 2, and 7

has 4 potential moves. The potential of C, pot(C), is the maximum j for

which C has j potential moves; i.e., pot(C) =
∑

v∈V ⌊(C(v)/2)⌋. Because

every solution that requires a pebbling move uses a potential move, the

following fact is evident.
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Fact 6. If C is a configuration with C(r)+pot(C) < t then C is not t-fold

r-solvable.

Basic counting yields the following lemma.

Lemma 7. (Potential Lemma) Let G be a graph on n vertices. If

C is a configuration on G of size n + y (y ≥ 0) having z zeros, then

pot(C) ≥ ⌈y+z
2 ⌉.

A nice application of the Potential Lemma is the following result, which

we will use repeatedly in the arguments that follow.

Lemma 8. (Slide Lemma) Let r be a vertex of a k-connected graph

G. Let C be a configuration on G of size n + y (y ≥ 0) with z zeros. If

⌈y+3z
2 ⌉ ≤ k then C is ⌈y+z

2 ⌉-fold r-solvable.

Proof. Set p = ⌈y+z
2 ⌉. By Lemma 7 we can choose a set P of p potential

moves. Note that the hypothesis implies that p ≤ k − z. Delete all non-

root zeros to obtain G′. Since G is k-connected, G′ is p-connected. Thus

Menger’s Theorem 4 implies that there are p pair-wise disjoint slides in

G′ from P to r, which implies that C is p-fold r-solvable. 2

3 Proof of Theorem 3

The proof will follow from Lemmas 9 and 10, below. Let u be a universal

vertex of a graph G ∈ G(n, k). If C is a configuration of size n + 2t − 3

with C(u) = 0 and every other vertex odd then pot(C) = t− 1, and so C

is not t-fold u-solvable. Hence πt(G, u) ≥ n+ 2t− 2. On the other hand,

if |C| ≥ n+ 2t− 2 then pot(C) ≥ t when u is empty, and pot(C) ≥ t− 1

when u is not; either way C is t-fold u-solvable because u is universal.

Thus πt(G, u) = n+ 2t− 2, which is at most pt(n, k) always.

3.1 Lower bound

Clearly, πt(G) ≥ πt(G, u) = ht(n). Now let r be any non-universal

vertex of G, and let s be a vertex at distance 2 from r. Let X be any



42 L. Alcón, M. Gutierrez and G. Hurlbert

(r, s)-cutset of size k (in particular, u ∈ X) and define the configuration
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Figure 1: The values m for which πt(G) = |V (G)|+m.

Ft(n, k) by placing 0 on r and on every vertex in X, 4t− 1 on s, and 1 on

each vertex of V (G)−(X∪{r, s}); then |Ft(n, k)| = (4t−1)+(n−k−2) =

ft(n, k)− 1.

Since the vertices of X − {u} have 0 pebbles and all them are juniors

to u, Lemma 5 states that if t pebbles can reach r then 2t pebbles can

reach u. But, with exactly 2t− 1 potential moves in F , by Fact 6, we can

place at most 2t− 1 pebbles on u. Therefore πt(G, r) ≥ ft(n, k), implying

πt(G) ≥ ft(n, k).

We record these results as

Lemma 9. For G ∈ G(n, k) we have πt(G) ≥ pt(n, k).

3.2 Upper bound

We will prove that any configuration of size ft(n, k) when k ≤ 2t, and

of size ht(n) when k ≥ 2t, is t-fold r-solvable for any r ∈ V (G).

Lemma 10. For k ≥ 2, let G ∈ G(n, k) be a graph with a universal vertex

u, and let r be any root vertex. Then πt(G, r) ≤ pt(n, k).
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Proof. First note that the lemma is true when t = 1. Indeed, in this

case we have k ≥ 2t, and so pt(n, k) = ht(n) = n + 2t − 2 = n. On the

other hand, because no pyramidal graph has a universal vertex, we have

from Theorem 1 that π(G) = n, hence π(G, r) ≤ n.

In addition, the lemma holds for k = 2. Indeed, in this case we have

k ≤ 2t, and so pt(n, k) = ft(n, k) = n+ 4t− k − 2 = n− 4t− 4. Also, we

have by Theorem 2 that πt(G, r) ≤ n+ 4t− 4.

Hence, we may assume that t ≥ 2 and k ≥ 3. Figure 1 shows the struc-

ture of this proof. As was noted above, the grey section has been proven

before. We continue by proving the dashed-bordered, lower left section

and diagonal circled entries together, and then the solid-bordered, upper

right section by induction.

Base case.

We will simultaneously address the case k = 2t− 1 (the circled entries),

for which |C| = ft(n, k) = n + 2t − 1, and the case k ≥ 2t (the dashed-

bordered section), for which |C| = ht(n) = n + 2t − 2, by writing k ≥
2t− 1 and considering a configuration of size |C| = n+ 2t− 2 + ϕ, where

ϕ = 1 if 2t − 1 = k and 0 otherwise. The natural idea we leverage here

is repeating the argument that increased zeros force increased potential,

which, combined with connectivity, yields either more solutions or more

zeros.

Let x ≥ 0 such that k = 2t − 1 + x. By Lemma 7, since we may

assume that C(r) = 0 (otherwise apply induction on t), we have at least

⌈(2t−2+1)/2⌉ = t potential moves. Therefore, we have at least t solutions

if there are at least t different slides from them to r.

Thus we consider the case in which there are at most t−1 slides; that is,

from some of the vertices in which a potential move is sitting, say v, there

is no path to r without an internal zero after considering the remaining

t − 1 slides. Since G is k-connected, that implies that C has at least

k − (t − 1) zeros between v and r and so, because of r, C has at least

k − (t− 1) + 1 = t+ 1 + x zeros.
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Assume that there are exactly z = t+1+j zeros, for some j ≥ x. Then,

by Lemma 7, C has at least⌈
(2t− 2) + (t+ 1 + j)

2

⌉
= t+

⌈
t− 1 + j

2

⌉
potential moves. If there are at least t−

⌈
t−1+j

2

⌉
slides from them to r, then

we can use those slides for that many solutions. Then, the other
⌈
t−1+j

2

⌉
solutions can be obtained from the remaining 2

⌈
t−1+j

2

⌉
potential moves,

putting 2
⌈
t−1+j

2

⌉
pebbles on the universal vertex u and then

⌈
t−1+j

2

⌉
on

r.

Otherwise, there are at most t−
⌈
t−1+j

2

⌉
−1 slides, from which we find,

using k = 2t− 1 + x, at least

k −
(
t−

⌈
t− 1 + j

2

⌉
− 1

)
+ 1 = t+ x+

⌈
t− 1 + j

2

⌉
+ 1

zeros. Clearly, this number cannot exceed the total number of zeros z =

t+ 1 + j; therefore j ≥ x+
⌈
t−1+j

2

⌉
≥ x+ t−1+j

2 , and so j ≥ t− 1 + 2x.

Let j = t− 1 + 2x+ i for some i ≥ 0; then z = t+ 1 + j = t+ 1 + t−
1 + 2x+ i = 2t+ 2x+ i. Applying Lemma 7 again, there are at least⌈

(2t− 2) + (2t+ 2x+ i)

2

⌉
= 2t+ x− 1 + ⌈i/2⌉

potential moves.

If either x ≥ 1 or i ≥ 1, then we can move 2t pebbles to the universal

vertex u, and then t to r.

Hence, we consider the case for which x = i = 0; i.e. k = 2t− 1, z = 2t,

and |C| = n+2t− 1 (because ϕ = 1 in such a case). We let T be the star

centered on u, having leaves r and the nonzero vertices of G. Clearly, T is

a subgraph of G with n+ 2t− 1 pebbles on it and with either 2 + (n− z)

or 1+ (n− z) vertices, depending on whether u is empty or not. In either

case n(T ) ≤ 2 + n− z = 2 + n− 2t. Therefore, since

πt(T, r) = n(T ) + 4t− 3 ≤ (2 + n− 2t) + 4t− 3 = n+ 2t− 1 = |C(T )|,
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we see that C is r-solvable.

Induction step.

Finally, we consider the case k < 2t− 1 (the solid-bordered section); so

|C| = ft(n, k) = n+ 4t− k − 2. Since 2(t− 1) = 2t− 1− 1 ≥ k, we have

πt−1(G, r) = ft−1(n, k) = n+4(t−1)−k−2 = n+4t−k−2−4 = |C|−4.

Hence, if C has a solution of cost at most 4, we are done. Otherwise,

there is at most one vertex v having two or more pebbles, and on such a

vertex there are at most 3 pebbles. This implies the contradiction |C| ≤
3 + (n− 2), which completes the proof. 2

In future work we intend to study k-connected diameter 2 graphs with-

out a universal vertex, and use that work as a base step toward studying

graphs of larger diameter.
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