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Abstract

The t-pebbling number is the smallest integer m so that any ini-
tially distributed supply of m pebbles can place ¢t pebbles on any
target vertex via pebbling moves. The 1-pebbling number of di-
ameter 2 graphs is well-studied. Here we investigate the ¢-pebbling

number of diameter 2 graphs under the lens of connectivity.

1 Introduction

Graph pebbling models the transportation of consumable resources. It
has an interesting history, with many challenging open problems, and with
applications to zero-sum theory in abelian groups. Calculating pebbling
numbers of graphs is a well known computationally difficult problem. See
[4, 5] for more background.

A configuration C of pebbles on the vertices of a connected graph G is
a function C' : V(G)—N (the nonnegative integers), so that C(v) counts
the number of pebbles placed on the vertex v. We write |C| for the
size Y, C(v) of C; i.e. the number of pebbles in the configuration. A
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pebbling step from a vertex u to one of its neighbors v reduces C'(u) by
two and increases C'(v) by one. Given a specified root vertex r we say
that C' is t-fold r-solvable if some sequence of pebbling steps starting from
C places t pebbles on . We are concerned with determining (G, ),
the minimum positive integer m such that every configuration of size m
on the vertices of GG is t-fold r-solvable. The t-pebbling number of G is
defined to be m;(G) = max,cy () m(G,7). We omit ¢ when ¢ = 1. Clearly,
m(G) < tn(G).

Pebbling number of diameter 2 graphs was solved and characterized by
the following theorem. For the purpose of the present work, it is enough
to know that a pyramidal graph has no universal vertex (a vertex adjacent

to every other vertex) and has connectivity 2.

Theorem 1. [2, 6/ For a diameter 2 graph G with connectivity k and n
vertices, 1(G) =n+ 1 if and only if k =1 or G is pyramidal. Otherwise
(i.e. k=2 and G is not pyramidal, or k > 3), 7(G) = n.

In contrast, other than the following bound, little is known about the

t-pebbling number of diameter 2 graphs.

Theorem 2. [3] If G is a diameter 2 graph on n wvertices then m(G) <
7(G) + 4t — 4. Moreover, liminf; ,o, m(G)/t = 4.

The goal of the present paper is to determine the exact ¢t-pebbling num-
ber of a large subfamily of diameter 2 graphs by considering their con-
nectivity. Define G(n, k) to be the set of all k-connected graphs on n
vertices having a universal vertex. Set fi(n,k) = n+ 4t — k — 2 and
hi(n) = n + 2t — 2. Notice that hi(n) > fi(n,k) if and only if £ > 2¢.
Define p(n, k) = max{fi(n,k),hi(n)}. The main result is the following

theorem which is proved in Section 3.
Theorem 3. If G € G(n, k) then m(G) = pt(n, k).

We observe from our result that, for any fixed ¢, in the family of graphs

with universal vertex, there are graphs whose t-pebbling number is much
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lower than the bound given by Theorem 2, and also that there are graphs
reaching that bound: when k > 2t we have m,(n, k) = (n+4t—4)—2(t—1);
when k < 2t m(n, k) = (n+ 4t —4) — (k — 2).

It will be useful to take advantage of the following version of Menger’s
Theorem ([7], exercise 4.2.28).

Theorem 4. (Menger’s Theorem) [7] Let G be a k-connected graph
and S = {v1,...,v} be a multiset of vertices of G. For any r & S there

are k pairwise-internally-disjoint paths, one from each v; to r.

2 Technical Lemmas

We begin with a lemma that is used to prove lower bounds on the
pebbling number of a graph by helping to show that certain configurations
are unsolvable.

For a vertex v, define its open neighborhood N (v) to be the set of vertices
adjacent to v, and its closed neighborhood N[v] = N(v)U{v}. We say that
a vertex y is a junior sibling of a vertex x (or, more simply, junior to x)

if N(y) C N[x], and that y is a junior if it is junior to some vertex x.

Lemma 5. (Junior Removal Lemma) [1] Given the graph G with root
r and t-fold r-solvable configuration C, suppose that y # r is a junior with
C(y) =0. Then C (restricted to G —y) is t-fold r-solvable in G — y.

Given a configuration C of pebbles, we say that a path Q = (7, q1, . .., g;)
with 7 > 1 is a slide from ¢; to r if no ¢; is empty and ¢; has at least two
pebbles.

A potential move is a pair of pebbles sitting on the same vertex. To say
that C has j potential moves means that the j pairs are pairwise disjoint.
For example, any configuration on 5 vertices with values 0,1,1,2, and 7
has 4 potential moves. The potential of C, pot(C), is the maximum j for
which C has j potential moves; i.e., pot(C) = > /[ (C(v)/2)]. Because
every solution that requires a pebbling move uses a potential move, the

following fact is evident.
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Fact 6. If C is a configuration with C(r)+pot(C) < t then C is not t-fold

r-solvable.
Basic counting yields the following lemma.

Lemma 7. (Potential Lemma) Let G be a graph on n vertices. If
C is a configuration on G of size n +y (y > 0) having z zeros, then
pot(C) > [437].

A nice application of the Potential Lemma is the following result, which

we will use repeatedly in the arguments that follow.

Lemma 8. (Slide Lemma) Let r be a vertex of a k-connected graph
G. Let C be a configuration on G of sizen+vy (y > 0) with z zeros. If
[%SZ} < k then C is [X52]-fold r-solvable.

Proof. Set p = [y;z] By Lemma 7 we can choose a set P of p potential
moves. Note that the hypothesis implies that p < k — z. Delete all non-
root zeros to obtain G’. Since G is k-connected, G’ is p-connected. Thus
Menger’s Theorem 4 implies that there are p pair-wise disjoint slides in
G’ from P to r, which implies that C is p-fold r-solvable. O

3 Proof of Theorem 3

The proof will follow from Lemmas 9 and 10, below. Let u be a universal
vertex of a graph G € G(n, k). If C is a configuration of size n + 2t — 3
with C'(u) = 0 and every other vertex odd then pot(C) =t —1, and so C
is not t-fold u-solvable. Hence m(G,u) > n + 2t — 2. On the other hand,
if |C| > n + 2t — 2 then pot(C) > ¢ when u is empty, and pot(C) >t — 1
when w is not; either way C is t-fold u-solvable because u is universal.

Thus m(G,u) = n + 2t — 2, which is at most p(n, k) always.

3.1 Lower bound

Clearly, m(G) > m(G,u) = hy(n). Now let r be any non-universal

vertex of G, and let s be a vertex at distance 2 from r. Let X be any
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(r, s)-cutset of size k (in particular, v € X) and define the configuration

a2 345 ]6|7|s
20 4 8 12 16 20 2 2
3 o |G [ |w]23]27
a0 2le [10]a]is] 2]
500 2 9 1317 |21 |26
6 lolfi2 1 s 12]106]20]2
diEn e ERE
R 46101418 |2
9fof2]a 6 (@3] 17|21
w|ol2]4 6| 8312 16|20
ufof2]a]e]sia]is]o

Figure 1: The values m for which m(G) = |[V(G)| + m.

Fy(n, k) by placing 0 on r and on every vertex in X, 4¢ — 1 on s, and 1 on
each vertex of V(G) — (X U{r, s}); then |Fy(n, k)| = (4t—1)+(n—k—2) =
fi(n, k) — 1.

Since the vertices of X — {u} have 0 pebbles and all them are juniors
to u, Lemma 5 states that if ¢ pebbles can reach r then 2¢ pebbles can
reach u. But, with exactly 2¢ — 1 potential moves in F', by Fact 6, we can
place at most 2t — 1 pebbles on u. Therefore 7,(G,r) > fi(n, k), implying
m(G) = fi(n, k).

We record these results as

Lemma 9. For G € G(n, k) we have m(G) > pi(n, k).

3.2 Upper bound

We will prove that any configuration of size fi(n,k) when k < 2¢, and
of size hi(n) when k > 2t, is t-fold r-solvable for any r € V(G).

Lemma 10. For k > 2, let G € G(n, k) be a graph with a universal vertex
u, and let r be any root vertex. Then wi(G,r) < pi(n, k).
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Proof. First note that the lemma is true when ¢ = 1. Indeed, in this
case we have k > 2t, and so pi(n,k) = hy(n) = n+ 2t — 2 = n. On the
other hand, because no pyramidal graph has a universal vertex, we have
from Theorem 1 that 7(G) = n, hence 7(G,r) < n.

In addition, the lemma holds for kK = 2. Indeed, in this case we have
k < 2t, and so pi(n, k) = fi(n,k) =n—+4t —k —2 =n — 4t — 4. Also, we
have by Theorem 2 that m(G,r) < n + 4t — 4.

Hence, we may assume that ¢ > 2 and k > 3. Figure 1 shows the struc-
ture of this proof. As was noted above, the grey section has been proven
before. We continue by proving the dashed-bordered, lower left section
and diagonal circled entries together, and then the solid-bordered, upper

right section by induction.

Base case.

We will simultaneously address the case k = 2t — 1 (the circled entries),
for which |C| = fi(n,k) = n+ 2t — 1, and the case k > 2¢ (the dashed-
bordered section), for which |C| = hi(n) = n + 2t — 2, by writing k >
2t — 1 and considering a configuration of size |C| = n + 2t — 2 + ¢, where
¢ =1if 2t — 1 = k and 0 otherwise. The natural idea we leverage here
is repeating the argument that increased zeros force increased potential,
which, combined with connectivity, yields either more solutions or more
Z€eros.

Let x > 0 such that £ = 2¢t — 1 + . By Lemma 7, since we may
assume that C(r) = 0 (otherwise apply induction on t), we have at least
[(2t—2+1)/2] = t potential moves. Therefore, we have at least ¢ solutions
if there are at least ¢ different slides from them to r.

Thus we consider the case in which there are at most £ —1 slides; that is,
from some of the vertices in which a potential move is sitting, say v, there
is no path to r without an internal zero after considering the remaining
t — 1 slides. Since G is k-connected, that implies that C' has at least
k — (t — 1) zeros between v and r and so, because of r, C' has at least
k—(t—1)+1=1t+1+ x zeros.
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Assume that there are exactly z = t+ 145 zeros, for some j > x. Then,

by Lemma 7, C' has at least

[(%—2) +2(t+1+j)w s [t—;—hf‘

potential moves. If there are at least t— [#—‘ slides from them to r, then

we can use those slides for that many solutions. Then, the other {#w

t—1+j
p)

solutions can be obtained from the remaining 2 { —‘ potential moves,

putting 2 {#—‘ pebbles on the universal vertex u and then {#—‘ on
r.

Otherwise, there are at most t — {#-‘ — 1 slides, from which we find,
using k = 2t — 1 + z, at least

k—(t— P_;J“ﬂ —1>+1—t+m+r_12+]-‘+1

zeros. Clearly, this number cannot exceed the total number of zeros z =
t+ 1+ j; therefore j > x + [#—‘ > g S and so j >t — 1+ 2x.

2
Let j=t—1+4+2zx+iforsomei>0;thenz=t+1+j=t+1+1¢—

142z +i=2t+ 2x +i. Applying Lemma 7 again, there are at least

[(2t—2)+(2t+2x+i)

5 —‘:2t+x—1+[i/21

potential moves.

If either £ > 1 or ¢ > 1, then we can move 2¢ pebbles to the universal
vertex u, and then ¢ to r.

Hence, we consider the case for which x =i =0; i.e. k =2t —1, z = 2t,
and |C| =n+ 2t —1 (because ¢ = 1 in such a case). We let T be the star
centered on u, having leaves r and the nonzero vertices of G. Clearly, T is
a subgraph of G with n + 2t — 1 pebbles on it and with either 2 + (n — 2)
or 1+ (n — z) vertices, depending on whether u is empty or not. In either
case n(T) <2+ mn — z =2+ n — 2t. Therefore, since

m(T,r)=n(T)+4t-3<(2+n—-2t)+4t—-3=n+2t—1=|C(T)|,
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we see that C is r-solvable.

Induction step.

Finally, we consider the case k < 2¢t — 1 (the solid-bordered section); so
|IC| = fi(n,k) =n+4t —k —2. Since 2(t — 1) =2t — 1 — 1 > k, we have
m—1(Gy7r) = fici(n k) =n+4(t—1)—k—-2=n+4t—k—2—4=|C|—4.
Hence, if C' has a solution of cost at most 4, we are done. Otherwise,
there is at most one vertex v having two or more pebbles, and on such a
vertex there are at most 3 pebbles. This implies the contradiction |C| <
3+ (n — 2), which completes the proof. O

In future work we intend to study k-connected diameter 2 graphs with-
out a universal vertex, and use that work as a base step toward studying

graphs of larger diameter.
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