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Abstract

In this paper we review some recent results on orthogonal poly-

hedra. We give a characterization of the orthogonal polyhedra in R3

that minimize and maximize the sum of their internal solid angles.

To prove our result we generalize the well-known result that any

orthogonal polygon with n vertices has n+4
2 convex and n−4

2 reflex

vertices. We prove that an orthogonal polyhedron whose 1-skeleton

is a connected cubic graph has n+8
2 convex and n−8

2 reflex vertices.

A general bound for orthogonal polyhedra of arbitrary genus allow-

ing for disconnected 1-skeletons is also given. These results are then

used to obtain bounds on the number of edge lights used to guard

orthogonal polyhedra in R3.

1 Introduction

In this paper we deal with orthogonal polyhedra. A polyhedron in R3

is a compact set bounded by a piecewise linear manifold. A face of a
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polyhedron is a maximal planar subset of its boundary whose interior is

connected and non-empty. A polyhedron is orthogonal if all of its faces

are parallel to the xy-, xz- or yz-planes. Faces of a polyhedron can be

polygons with holes, and if the polyhedron is orthogonal, its faces and its

holes are orthogonal polygons. A vertex of a polyhedron is a vertex of any

of its faces. An edge is a minimal positive-length straight line segment

shared by two faces and joining two vertices of the polyhedron.

In the plane, to measure the size of an angle α at a vertex of a polygon

P , we consider a small enough circle C centered at v and not containing

any other vertices of the polygon; the size of α is the length of the portion

of the circle that lies inside the polygon divided by the radius of C. It has

been well-known since antiquity that the sum of the angles of a triangle

is π. Since a simple polygon of n vertices can be partitioned into exactly

n−2 triangles using diagonals joining pairs of vertices of the polygon, the

sum of the internal angles of a polygon is always (n− 2)π.

The natural generalization of the size of an angle to dimension three is

the following: Let P be a polyhedron in R3 and let v be a vertex of P.

The solid angle of P at v is defined as follows: Consider a small enough

sphere C centred at v. The size of the angle of P at v is the area of the

portion of the boundary of C that lies within P divided by the square of

the radius of C. Since the area of a unit sphere is 4π, it follows that the

maximum size of the solid angles at vertices of a polyhedron is at most

4π; see Figure 1.

It is not hard to see that the sum of the solid angles of a tetrahedron is

at most 2π. An easy way to see this is as follows: Consider a very small

tetrahedron T contained in a unit sphere S and containing the center of

C. If we think of an angle at a vertex v of T as a floodlight f illuminating

the cone generated by v and its opposite triangular face in T , it is easy

to see that for each point p on S illuminated by f , there is another point

q that is not illuminated; that is, the point opposite to p with respect to

to v; see Figure 2.

Some problems arise when we consider solid angles of a polyhedron in
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(a) (b)

Figure 1: (a) An angle in the plane (b) A solid angle in R3.

p

q

v

Figure 2: The point p is illuminated from v, while q is not.

R3. To start, it is not true that the sum of the solid angles of a tetrahedron

is constant. In fact for any 0 < α < 2π there is tetrahedron such that the

sum of its solid angles is α [9].

One proof of this follows from the well-known result that there are con-

vex polyhedra that can be decomposed into a linear and a quadratic num-

ber of tetrahedra. Well-known examples of this are the so-called neigh-

borly polytopes [10]. Another example of convex polytopes that can be

decomposed into a quadratic number of tetrahedra are what we call (n,m)-

seashells.

The vertices of a (1 × r)-seashell are the n vertices of a convex chain
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with r + 1 vertices contained in a plane P in R3, plus the vertices of a

segment not parallel to P , facing the convex chain, and far enough from

it. In Figure 3(a) we show a (1, 5)-seashell. Clearly a (1, r)-seashell has a

tetrahedralization with r tetrahedra. An (n×m)-seashell contains n+m+2

vertices, n on a convex chain and m on a second convex chain contained

in two orthogonal planes, facing each other, and far enough apart. In

Figure 3(b) we show a (3, 5)-seashell. Clearly an (n,m)-seashell can be

decomposed into n ×m tetrahedra; see Figure 3(b). But the sum of the

solid angles of these tetrahedra is the sum of the solid angles of the (n,m)-

seashell, which is at most 2(n + m + 2) × π (the size of the solid angle

at each vertex of a convex polytope is at most 2π), and thus for at least

one of them the sum of its solid angles is at most 2(n+1)(m−1)×π
n×m , which

approaches zero as n and m grow.

(a) A (1,5)-sea shell (b) A (3,5)-sea shell

Figure 3: Two (n,m)-seashells examples.

It is not hard to construct polyhedra with an arbitrarily large number

of vertices such that the sum of the solid angles at their vertices is as small

as possible. This is not, however, the case for orthogonal polyhedra; the

size of the solid angle at each of their vertices is at least π/2 and at most

7π/2, as each vertex of an orthogonal polyhedron covers one, three, four,

five, or seven octants; see Figure 6.

Thus a natural question that arises is the following: Can we characterize

orthogonal polyhedra with n vertices that minimize or maximize the sum
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of their solid angles? We prove that the sum of the solid angles of an

orthogonal polyhedron is at least (n−4+4g)π and at most (3n−24−4g)π,

where g is the genus of the polyhedron. Our bounds are tight. To prove

our main result, we will need to generalize to R3 the following well-known

result for orthogonal polygons in the plane:

Theorem 1. [12] Any orthogonal polygon in the plane R2 has (n+4)
2 con-

vex and (n−4)
2 reflex vertices.

Convex vertex

Reflex vertex

Figure 4: Reflex and convex vertices of an orthogonal polygon.

We define a vertex of a polyhedron P to be convex on the faces, convex

for short, if it is a convex vertex in all of the faces of P to which it

belongs, otherwise we call it a reflex vertex. We prove that the 1-skeleton

of an orthogonal polyhedron of genus g with n vertices, k of which have

degree greater than or equal to 4, has (n + 8 − 8g + 3k)/2 convex, and

(n− 8 + 8g − 3k)/2 reflex vertices.

We then use this result to address a variant of the Art Gallery Problem

in orthogonal polyhedra. Given an edge f of a polyhedron P, a point q ∈ P
is guarded by f if there is a point p ∈ f such that the line segment joining

p to q is contained in P. We prove that if the orthogonal polyhedron has k4

vertices of degree 4, k6 vertices of degree 6, e edges, genus g and hm holes

on its faces, then we can guard it using at most (11e−k4−3k6−12g−24hm+12)
72

π
2 -edge guards (i.e., guards that have a visibility angle of π

2 towards the

interior of the polyhedron), slightly refining the bound given in [4] for

open edge guards. Finally, we show a family of orthogonal polyhedra that

needs 4
45e

π
2 -edge guards to guard it.
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Most of the research on art gallery problems has been focused on poly-

gons on the plane. For example, it is well-known that every simple polygon

with n vertices can always be guarded with at most ⌊n3 ⌋ vertex guards; see

Chvátal [7]. For orthogonal polygons ⌊n4 ⌋ vertex guards are always suffi-

cient; see Khan, Klawe and Kleitman [11]. Estivill-Castro and Urrutia [8]

proved that every orthogonal polygon can be guarded with at most 3(n−1)
8

orthogonal floodlights; that is, vertex guards that have an angle of vision

of π
2 . Later in [1] it was proved that (3n+4(h−1))

8 orthogonal floodlights are

always sufficient to guard an orthogonal polygon with n vertices and h

holes.

The problem of determining bounds on the number of edge guards re-

quired to guard a polyhedron was introduced by Urrutia [14]. He con-

jectured that any polyhedra with e edges in R3 can always be guarded

with e
6 ± c edges, and for orthogonal polyhedra he conjectured that e

12 ± c

edges always suffice. These conjectures remain open. Benbernou et al. [4]

proved that every orthogonal polyhedron with n vertices of genus g can

always be guarded by 11e
72 − g

6 − 1 open edge guards (i.e., excluding their

endpoints). Cano et al. [6] proved that any polyhedron can always be

guarded by 27e
32 edge guards, and if the faces of the polyhedron are all

triangles the bound improves to 29e
36 .

2 Some definitions and preliminary results

Given a point p on the plane, an α-guard (also called an α-floodlight) is

a guard that surveils an area within an angular cone of size α whose apex

is at p; see [5]. We now extend the definition of α-guards to R3. A wedge

in R3 is the intersection, or the union, of two semispaces whose supporting

planes intersect. The line of intersection of the supporting planes is called

the axis of the wedge. A wedge is called small if it is the intersection of

two semispaces, and big if it is the union of two semispaces. Note that if a

wedge W is small, then the intersection of W with a plane orthogonal to

the axis of W determines an angular region A of size less than or equal to
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π. If W is a big wedge, then the size of the A is greater than π. The wedge

W will be called an α-wedge if the size of A is α. An orthogonal wedge

in R3 is the intersection or the union of two semispaces whose supporting

planes are orthogonal. If an orthogonal wedge is small, it is a π
2 -wedge; if

it is big it is a 3π
2 -wedge.

Let f be an edge of a polyhedron P. We call f an α-edge guard of

P if f guards all of the points of P visible from f and is contained in

an α-wedge whose axis contains f ; see Figure 5a. If α = π
2 we call f an

orthogonal edge guard. We note that α-guards and orthogonal edge guards

are natural generalizations of α-floodlights [5], and π
2 -floodlights on the

plane [8]. We assume that an α-edge guard f can be rotated around f

until it reaches a final orientation. In the rest of this paper we will assume

that orthogonal-edge guards are always placed in such a way that their

supporting planes are parallel to the xy-, xz- or yz-planes of R3. In our

language, the open edge guards used by Benbernou et al. are open 3π
2 -

edge guards in which the endpoints of the edges are not included. In our

paper we will prove a similar result to that proved by Benbernou et al.

but using π
2 -edge guards. In fact we will use ortho-π2 -edge guards f , where

f is an edge of a polyhedron. These guards surveil only points p within

a π
2 -wedge with the additional restriction that the shortest line segment

joining p to f is a line segment orthogonal to f ; see Figure 5b. For the

sake of simplicity, we will refer to these edge-guards as π
2 -edge guards.

(a) α-wedge (b) π/2-wedge

Figure 5: An illustration of an α-wedge and a π/2-wedge.
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3 The number of convex and reflex vertices of an

orthogonal polyhedron

In this section, we will assume that the 1-skeleton of the orthogonal

polyhedra considered here is a cubic connected graph. We now prove:

Theorem 2. Let P be an orthogonal polyhedron in R3 homeomorphic to

the sphere, with n = 2k vertices, and such that its 1-skeleton is a 3-regular

graph. Then P has (n+8)
2 convex vertices and (n−8)

2 reflex vertices.

Proof. Since each vertex has degree 3, the number of edges e of P is 3k.

By Euler’s formula, which asserts that for any planar graph with e edges,

f faces and v vertices f − e+ v = 2, it follows that the number of faces f

is k + 2.

Note that each face fi of P is an orthogonal polygon. If fi has ni

vertices, by Theorem 1 it has (ni − 4)/2 reflex vertices. Observe that any

vertex of P appears in three faces of P, and it is a reflex vertex of at most

one of these faces. Then the number of reflex vertices of P satisfies the

following equation:

r =

k+2∑
i=1

ni − 4

2
. (1)

Multiplying Equation (1) by 2, we have

2r =
k+2∑
i=1

ni −
k+2∑
i=1

4.

As each vertex belongs to three faces of P, it is counted three times when

we calculate the first sum; thus we have:

2r = 6k − 4(k + 2)

r = k − 4.

Since n = 2k, it follows that r = (n−8)
2 , and since n = c+r, c = (n+8)

2 .
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(a) 1-octant ver-

tex

(b) 3-octant ver-

tex

(c) 4-octant ver-

tex

(d) 4-octant ver-

tex

(e) 5-octant ver-

tex

(f) 7-octant ver-

tex

Figure 6: Vertex classification for orthogonal polyhedra.

3.1 Minimizing the angle sum for orthogonal polyhedra

whose 1-skeleton is a cubic connected graph.

Observe that the convex vertices of P are 1- or 7-octant vertices; see

Figure 6(a) and (f), while reflex vertices are 3- or 5-octant vertices; see

Figure 6(b) and (e).

Then by Theorem 2 if we can construct orthogonal polyhedra with

n = 2k vertices without 5- or 7-octant vertices, they will minimize their

sum of solid angles. These polyhedra can be constructed as follows:

Take an orthogonal polygon Q contained in the x−y plane in R3, and a

copy Q′ of Q obtained by translating Q vertically by one unit; see Figure 7.

Then the convex hull of Q ∪Q′ is an orthogonal polyhedron having only

1- and 3-octant vertices.

Since the size of the solid angle of an k-octant vertex is k× π
2 , the sum
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Figure 7: An orthogonal polyhedron with 16 vertices such that the sum

of its angles is the smallest possible.

of the solid angles of these polyhedra is:

π

2

[
n+ 8

2
+

3(n− 8)

2

]
,

which equals π(n− 4).

Thus we have proved:

Theorem 3. The sum of the solid angles of an orthogonal polyhedron

whose 1-skeleton is a connected cubic graph is at least π(n − 4). The

bound is tight.

The following result, given without proof, generalizes the previous result

to orthogonal polyhedra of arbitrary genus for which the vertices of their 1-

skeleton may contain vertices with degree 3, 4 and 6. Given an orthogonal

polyhedron P, let ki be the number of vertices of degree i in the 1-skeleton

of P. Vertices of degree 3 correspond to 1-, 3-, and 7-octant vertices.

Vertices with degree 4 correspond to some of the 4-octant vertices, and

vertices of degree 6 also correspond to some 4-octant vertices. See Figure 6.

Theorem 4. Let P be an orthogonal polyhedron in R3 with n = k3+k4+k6

vertices and arbitrary genus g. Then P has (n + 3(k4 + k6) − 8g + 8)/2

convex vertices and (n− 3(k4 + k6) + 8g − 8)/2 reflex vertices.

This result is proved using the Euler-Poincaire formula, which states

that for any polyhedron of genus g with f faces, e edges, v vertices and a

total of h holes on its faces, the following identity holds [13]:

v − e− h+ f = 2− 2g.
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The details of the proof can be found in [2].

4 Minimizing the sum of the solid angles of or-

thogonal polyhedra

To solve the problem of characterizing orthogonal polyhedra with genus

g that minimize the sum of their solid angles, we will use the Gauss-Bonnet

formula, which asserts that for a polyhedron P of genus g, the sum of the

deficiencies at its vertices equals 2π(2 − g). Let Vi be the number of

i-octant vertices, i = 1, 3, 4, 5, 7. Thus

V1 + V3 + V4 + V5 + V7 = n. (2)

Note that the sum of the solid angles of an orthogonal polyhedron is

S =
π

2
V1 +

3π

2
V3 + 2πV4 +

5π

2
V5 +

7π

2
V7. (3)

Since the defect of 1-octant and 7-octant vertices is π/2, the deficiency

of 3-octant and 5-octant vertices is −π/2 and the deficiency of 4-octant

vertices is −π. Applying the Gauss-Bonnet theorem, where g is the genus

of the polyhedron, we get

π

2
(V1 + V7)−

π

2
(V3 + 2V4 + V5) = 4π − 4πg. (4)

Multiplying (2) by π and subtracting (4) we obtain

π

2
V1 +

3π

2
V3 + 2πV4 +

3π

2
V5 +

π

2
V7 = nπ − 4π + 4πg. (5)

Adding πV5 + 3πV7 to both sides of (5) yields

π

2
V1 +

3π

2
V3 + 2πV4 +

5π

2
V5 +

7π

2
V7 = πn− 4π + 4πg + πV5 + 3πV7. (6)

The left side of (6) corresponds to the angle sum

S = π(n− 4 + 4g + V5 + 3V7). (7)

Thus (7) is minimized when V5 and V7 are both equal to zero. The next

result follows.
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Figure 8: Family of polyhedra that minimize their solid angle sum.

Theorem 5. The sum of the solid angles of an orthogonal polyhedron

with n vertices and genus g is at least (n− 4 + 4g)π. This bound is sharp

and it is achieved by polyhedra having only 1-octant, 3-octant, and possibly

4-octant vertices.

In Figure 8 we show polyhedra of arbitrary genus all of whose vertices

have degree 3.

The problem of characterizing orthogonal polyhedra that maximize their

solid angle sum can be easily obtained from Theorem 5. This is done by

taking an orthogonal polyhedron such that the sum of its angles is mini-

mized, and turning it inside-out by enclosing it in a cube, see Figure 9.

Theorem 6. The sum of the solid angles of orthogonal polyhedra with n

vertices and genus g is at most (3n− 24− 4g)π. The bound is sharp.

5 Guarding orthogonal polyhedra

In this section we will use the results of the previous section to obtain

bounds on the number of edge guards needed to guard an orthogonal

polyhedron with e edges. J. Urrutia [14] conjectured in 1996 that every

orthogonal polyhedron with e edges can can always be guarded using at

most e
12 ± c edge guards; see Figure 10.

He proved that e
6 edge guards always suffice. This is proved as follows:

Let P be an orthogonal polyhedron. An edge of P is called an x-edge if it

is parallel to the x-axis; y- and z-edges are defined in a similar way. Let
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Figure 9: Turning an orthogonal polyhedron inside-out by enclosing it in

a cube.

Figure 10: Family of orthogonal polyhedra that requires e
12−1 edge guards

to guard it.

Ex, Ey and Ez be the sets containing, respectively, all of the x-, the y-,

or the z-edges of P.

It is easy to see that the sets of edges Ex, Ey, and Ez guard P. Consider

Ex and a point p in the interior of P. Take the plane through p orthogonal

to the x-axis. The intersection of this plane with P is an orthogonal

polygon Rp, see Figure 11. It is clear that p is guarded by at least one

vertex v of Q (in fact by at least four of them), which implies that p is

guarded by the x-edge of P intersecting Rp at v. Since one of Ex, Ey, or

Ez contains at most e
3 edges, it follows that P can be guarded using at

most e
3 of its edges.

One might try to use the well-known result that that any orthogonal

polygon can be guarded with at most a quarter of its vertices [11], but this
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Figure 11: The intersection of a plane orthogonal to the x-axis and an

orthogonal polyhedron.

is not possible; the reason is the following: Suppose that for two points

p and q in the interior of P, the polygons Rp and Rq intersect an x-edge

f of P. This edge determines a vertex in each of the two polygons; call

these vertices vp and vq respectively. But it could happen that vp is in the

set with at most a quarter of the vertices of Rp that guard Rp, but vq is

not in the set of at most a quarter of the vertices of Rq that guard Rq!

Thus what we need is a consistent way to choose x-edges of P such that

if vp is chosen in Rp, then vq is also chosen in Rq. To achieve this we need

to review some results on guarding orthogonal polygons.

Consider an orthogonal polygon P . We split its edges into four classes;

top-, bottom-, left-, and right-edges as follows: A top-edge e of P is one

such that if we draw a small enough vertical segment ℓ through the mid

point of e, the portion of ℓ below e belongs to P ; bottom-, left-, and

right-edges are defined in a similar way; see Figure 12.

A vertex of P is called a top-left vertex if it is a vertex of a top-edge

and a left-edge of P . In a similar way we define top-right, bottom-left, and

bottom-right vertices. It is straightforward to see that the union of the

top-left and the bottom-right vertices of P are exactly half of the vertices

of P , and that the remaining points are the union of the top-right and the

bottom-left vertices. Furthermore, each of these sets of vertices guard P .

Consider now an orthogonal polyhedron P. We call a face h of P a top-

face if for a small enough vertical segment ℓ that intersects h at a point
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top

rightleft

bottom

right

top

bottom

left

Figure 12: The top-left and bottom-right vertices are colored blue, and

the top-right and the bottom-left vertices are colored black.

in the interior of h, the sector of ℓ below h belongs to P. In a similar

way we define bottom, right, left, front, and back -faces of P. Consider now

the faces of P not perpendicular to the x-axis; these are its top, bottom,

right, and left faces. An x-edge of P is called a top-left edge if it belongs

to a top and a left face of P. In a similar way we also define top-right,

bottom-left and bottom-right edges.

It now follows easily that the set containing all of the top-left and the

bottom-right edges of P guard it, as does the set containing all of its

top-right and the bottom-left edges. Thus we have:

Theorem 7. Any orthogonal polyhedron can be guarded using at most one

sixth of its edges.

Note that the proof of Theorem 7 holds for any orthogonal polyhedron

regardless of its genus or its 1-skeleton being connected or not.

5.1 Improving the bound of Theorem 7

We now show how to use the results of the previous section to obtain a

slight improvement on the e
6 bound we just proved. To do this we will need

the following result, proved in [8]. Let p be a point in the plane, and let

C1(p), C2(p), C3(p), and C4(p) be the translations of the four quadrants
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of the plane when the origin is translated to p. The top-left guarding rule

to guard an orthogonal polygon P is the following:

Top-left guarding rule: At each top-left vertex p of P place an orthogonal

guard that guards C4(p).

Theorem 8. [8] The floodlights used by the top-left guarding rule guard

P .

In a similar way we can define the top-right, bottom-right, and bottom-

left guarding rules, each of which guards P ; see Figure 13.

Bottom-left

illumination

rule:

Top-left illumination

rule:

Top-right 

illumination

rule:

Bottom-right 

illumination rule:

Figure 13: The top-left and the bottom right vertices are colored blue,

and the top-right and the bottom-left vertices are colored black.

Using the four guarding rules defined above, we place two orthogonal

edge guards at each reflex vertex of P , and we place one at each convex

vertex of P . It now follows that these four guarding rules for orthogo-

nal polygons induce four guarding rules on the x-edges of an orthogonal

polyhedron P. We would place two orthogonal edge guards on each reflex

x-edge of P, and one for each convex x-edge.

Applying a similar procedure to the y- and the z-edges of P we obtain

a set of twelve guarding rules, each of which guards P. Thus we have:

Lemma 1. Let P be an orthogonal polyhedron with e edges, c of which
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are convex, and r of which are reflex. Then we can guard P with c+2r
12

orthogonal edge guards.

To improve on the bounds of Theorem 7 we need to guarantee that we

have a large bound on the number of convex edges of P, for otherwise

the existence (which does not happen) of an orthogonal polyhedron P in

which most of its edges were reflex edges would yield close to e
6 edge guards

in Lemma 1. The bounds we need are those obtained in Theorem 4.

Theorem 9. Let P be an orthogonal polyhedron with n vertices, k4 of

degree 4 and k6 of degree 6; e edges, genus g and hm holes in the faces of

P. Then (11e−k4− 3k6− 12g− 24hm+12)/72 is the number of π/2-edge

guards that are always sufficient to guard the interior of P.

Proof. First we look at the types of vertices of the polyhedron P, and

describe the number of convex and reflex edges that each kind of vertex

is incident to.

Each 1-octant vertex is incident to three convex edges. Each 3-octant

vertex is incident to two convex edges and one reflex edge. Each 4-octant

vertex with degree four is incident to two convex edges and two reflex

edges. Each 4-octant vertex with degree six is incident to three convex

edges and three reflex edges. Each 5-octant vertex is incident to one

convex edge and two reflex edges. Finally, each 7-octant vertex is incident

to three reflex edges.

By Theorem 4, P has c = (n + 3(k4 + k6) − 8g + 8)/2 convex vertices

and r = (n− 3(k4 + k6) + 8g − 8)/2 reflex vertices. Recall that according

to our definition, 4-octant vertices, whether they have degree four or six,

are convex. Then P has c′ = (n + k4 + k6 − 8g + 8)/2 convex vertices of

degree three, k4 4-octant vertices of degree four, k6 4-octant vertices of

degree six, and r = (n− 3(k4 + k6) + 8g − 8)/2 reflex vertices.

In the worst case every convex vertex is adjacent to three reflex edges,

every 4-octant vertex of degree four is adjacent to two reflex edges and

two convex edges, every 4-octant vertex of degree six is adjacent to three
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reflex edges and three convex edges, and every reflex vertex is incident to

two reflex edges and one convex edge.

Place π/2-edge guards on all of the x-edges using the top-left, top-

right, bottom-left and bottom-right rules. In a similar way, place π/2-

edge guards in all of the y- and z-edges of P. This uses in total (6c +

6k4+9k6+5r)/2 π/2-edge guards. Suppose that P has fewer than or the

same number of x-edges as y- or z-edges. Then choose among the top-left,

top-right, bottom-left and bottom-right guarding rules the one that places

the fewest π/2-edge guards.

It follows that (6c′ + 6k4 + 9k6 + 5r)/24 π/2-edge guards are always

sufficient to guard P. Substituting c′ and r in the equation above, we

have a total of (11n+ 3k4 + 9k6 − 8g + 8)/48 π/2-edge guards.

As P has hm holes on its faces, and for each of them we save four

edge guards, we conclude that the total number of π/2-edge guards in P
is (11n+3k4+9k6−8g−16hm+8)/48. If we substitute n = (2e−k4−3k6)/3

into the number of π/2-edge guards, then we obtain that (11e−k4−3k6−
12g − 24hm + 12)/72 π/2-edge guards are always sufficient to guard the

interior of P.

We finish this paper by obtaining lower bounds on the number of or-

thogonal edge guards needed to guard orthogonal polyhedra. Consider

the polyhedron P1 illustrated in Figure 14a. It is formed by a cube each

of whose vertices is replaced by an L-shaped polyhedron. Each L shape

is formed by 21 edges and 14 vertices. These L-shapes together with 12

edges of the original cube result in a polyhedron with a total of 180 edges.

Let A be the set of red and black points in the interior of P1 shown in

Figure 14. It can be shown that no π
2 -edge guard of P guards more than

one point of A, and that it can be guarded with 16 π
2 -edge guards.

By pasting together k copies of P1 as shown in Figure 15, we get a

family of polygons with 180k edges that requires 16k π
2 -edge guard to

guard them. Thus we have:
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(a) (b)

Figure 14: The orthogonal polyhedron shown in (a) requires 16 edge

guards. Any orthogonal edge guard can see at most one of the colored

points in (b).

Theorem 10. There exist orthogonal polyhedra with e edges such that the

number of π/2-edge guards necessary to guard them is at least 4
45e.

Figure 15: Family of orthogonal polyhedra that need 4
45e guards to surveil

the polyhedron.

Note that in Urrutia’s original conjecture for guarding orthogonal poly-

hedra with e edges using edge guards, he conjectures that e
12 edges are

always sufficient to guard them. Theorem 10 tells us that if we use π/2-

edge guards, e
12 guards are not sufficient.
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[6] Javier Cano, Csaba D Tóth, and Jorge Urrutia. Edge guards for

polyhedra in 3-space. In 24th Canadian Conference on Computa-

tional Geometry, Charlottetown, PEI, Canada, pages 155–160, Au-

gust 2012.
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