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Some novelties on intersecting families of

subsets

Gyula O. H. Katona

Abstract

A family F of subsets of an n-element set [n] is called intersecting

if any two members have a non-empty intersection. The theorem of

Erdős, Ko and Rado claims that an intersecting family of k-element

subsets of [n] has at most
(
n−1
k−1

)
members if 2k ≤ n. That is, the

best is to choose all sets containing a fixed element. Such a family

is called trivially intersecting. An old generalization of this theorem

is due to Frankl where [n] is partitioned into two disjoint parts:

[n] = X1 ∪X2 and the members of the family have k elements in X1

and ℓ elements in X2, respectively. The largest intersecting family

is trivially intersecting, again. We show a further generalization,

where a set of pairs of integers, (ki, ℓi) is given and the members of

the family have ki elements inX1 and ℓi elements inX2, respectively,

for some i. The shadow σ(F) of a family F of k-element subsets is a

family of all k− 1-element sets obtained by deleting single elements

from the members. A sharp lower bound was known for |σ(F)| in
terms of |F| under the condition that the family is t-intersecting, that

is, when any two members have at least t elements in common. The

extremal construction, however, has a small number of members,
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depending only on k and t. We show improvements for the case

when the number of members is a polynomial function of n.

1 Introduction

The underlying set will be {1, 2, . . . , n}. The family of all k-element

subsets of [n] is denoted by
([n]
k

)
. Its subfamilies are called uniform. A

family F of some subsets of [n] is called intersecting if F ∩G ̸= ∅ holds for

every pair F,G ∈ F . Erdős, Ko and Rado started to look for the largest

intersecting families on n elements in 1936. They did not publish it until

1961 since they thought it was not interesting for the general public. Now

this paper [4] is one of the most cited papers of Erdős, although there

is a strong competition. Their first observation was that if all sizes are

allowed then one can choose at most 2n−1 subsets, since a set and its

complement cannot be simultaneously chosen. The family containing a

fixed element shows that this estimate is sharp. However, the main result

of [4] determines the largest intersecting family consisting of subsets of

size exactly k, that is the case of uniform families. The problem is trivial

when k > n
2 : all k-element subsets can be chosen. It is not so trivial at

all when k ≤ n
2 .

Theorem 1. (Erdős, Ko, Rado [4]) If F ⊂
([n]
k

)
is intersecting where

k ≤ n
2 then

|F| ≤
(
n− 1

k − 1

)
.

Does this result belong to the main direction of the conference? Where

are the cliques?

The Kneser graph K(n, k) is a graph with vertex set V =
([n]
k

)
, two

vertices A,B ∈ V are adjacent iff A ∩ B = ∅. Using this terminology we

can restate Theorem 1:

Theorem 2. (Erdős, Ko, Rado [4]) Suppose k ≤ n
2 . Then the indepen-

dence number α(K(n, k)) (that is the size of the largest empty subgraph)
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is (
n− 1

k − 1

)
.

Of course, the clique number of the complement of K(n, k) is the same.

A small example is K(5, 2), the Petersen graph: α(K(5, 2)) =
(
4
1

)
= 4.

While the size of the largest clique in K(5, 2) is ω(K(5, 2)) =
(
4
1

)
= 4.

The original proof of the Erdős-Ko-Rado theorem uses the so called

shifting method. There is a shorter proof based on the cycle method in

[12]. It can also be found in the books [1] and [2]. If k < n
2 there is only

one extremal construction.

Construction 1. Take all subsets of [n] having size k and containing the

element 1.

In the case when k = n
2 there are many extremal constructions.

Construction 2. If k = n
2 one can choose one from each complementing

pair, freely.

We say that a family F is trivially intersecting if there is an element

a ∈ [n] such that all members of F contain a. Construction 1 is trivially

intersecting, Construction 2 not necessarily. Paper [4] posed the problem

of finding the largest k-uniform non-trivially intersecting family. It was

found by Hilton and Milner.

Theorem 3. [9] If F is an intersecting but not a trivially intersecting

family, F ⊂
([n]
k

)
(2k ≤ n) then

|F| ≤ 1 +

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
.

The construction giving equality is the following.

Construction 3. Let K = {2, 3, . . . , k + 1}. The extremal family will

consist of K and all k-element sets containing 1 and intersecting K.

Let me call the reader’s attention to the new book of Gerbner and

Patkós [8], containg many related results.
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2 Two-part intersecting families

Now we will consider the problem when the underlying set is partitioned

into two parts X1, X2 and the sets F ∈ F have fixed sizes in both parts.

For some motivation see [13] (Section 4). More precisely let X1 and X2

be disjoint sets of n1, respectively n2 elements. Paper [6] considered such

subsets of X = X1 ∪ X2 which had k elements in X1 and ℓ elements in

X2. The family of all such sets is denoted by(
X1, X2

k, ℓ

)
=

(
X1

k

)⊎(
X2

ℓ

)
= {F ⊂ X1∪X2 : |F∩X1| = k, |F∩X2| = ℓ}.

(1)

The construction above, taking all possible sets containing a fixed element

also works here. If the fixed element is in X1 then the number of these

sets is (
n1 − 1

k − 1

)(
n2

ℓ

)
,

otherwise it is (
n1

k

)(
n2 − 1

ℓ− 1

)
.

The following theorem of Frankl [6] claims that the larger one of these is

the best.

Theorem 4. [6] Let X1, X2 be two disjoint sets of n1 and n2 elements,

respectively. The positive integers k, ℓ satisfy the inequalities 2k ≤ n1, 2ℓ ≤
n2. If F is an intersecting subfamily of

(
X1,X2

k,ℓ

)
then

|F| ≤ max

{(
n1 − 1

k − 1

)(
n2

ℓ

)
,

(
n1

k

)(
n2 − 1

ℓ− 1

)}
.

Actually his theorem is formulated for an arbitrary number of parts.

Theorem 4 could be formulated in such a way that the largest subfamily

of (1) is one of the trivially intersecting families. It is natural to ask what

is the largest non-trivially intersecting subfamily.
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Take a Hilton-Milner family (Construction 3) inX1, denote it by HM(X1, k).

Extend its members in all possible ways by ℓ-element subsets chosen from

X2:

HM1(X1, k;X2, ℓ) = {F ∪G : F ∈ HM(X1, k), G ⊂ X2, |G| = ℓ}.

Define, similarly,

HM2(X1, k;X2, ℓ) = {F ∪G : F ⊂ X1, |F | = k,G ∈ HM(X2, ℓ)}.

It was conjectured in [13] that either HM1(X1, k;X2, ℓ) or HM2(X1, k;X2, ℓ)

is the largest nontrivially intersecting subfamily of
(
X1,X2

k,ℓ

)
. Kwan, Su-

dakov and Vieira [16] showed that this is not true: there are other, “mixed”

Hilton-Milner families which are better in some cases.

Fix an element a ∈ X1, a set A ⊂ X1 such that a ̸∈ A, |A| = k and a

set B ⊂ X2 such that |B| = ℓ and define

HMmix
1 (X1, k;X2, ℓ) = {F : |F∩X1| = k, |F∩X2| = ℓ, a ∈ F, F∩(A∪B) ̸= ∅}.

HMmix
2 (X1, k;X2, ℓ) is the symmetric construction.

Theorem 5. (Kwan, Sudakov, Vieira [16]) If both |X1| and |X2| are large

enough then the largest non-trivially intersecting subfamily of
(
X1,X2

k,ℓ

)
is

one of

HM1(X1, k;X2, ℓ),HM2(X1, k;X2, ℓ),HM
mix
1 (X1, k;X2, ℓ) and

HMmix
2 (X1, k;X2, ℓ).

Their result actually claims the analogous statement for more parts.

The proof uses the shifting method.

Suppose now the case when two sizes are also allowed in both parts

(but not independently!) that is the family consists of sets satisfying

|F ∩ X1| = k, |F ∩ X2| = ℓ or |F ∩ X1| = r, |F ∩ X2| = s. Using the

notation above, we will consider intersecting subfamilies of(
X1, X2

k, ℓ

)⋃(
X1, X2

r, s

)
.
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In Theorem 3 (
n1 − 1

k − 1

)(
n2

ℓ

)
≥

(
n1

k

)(
n2 − 1

ℓ− 1

)
holds if and only if

k

n1

(
n1

k

)(
n2

ℓ

)
≥ ℓ

n2

(
n1

k

)(
n2

ℓ

)
that is when

k

ℓ
≥ n1

n2
.

In this case the best is a trivially intersecting family with fixing one point

on the left hand side. Otherwise the point should be fixed on the right

hand side. Of course the same holds for the pair r, s therefore if

k

ℓ
,
r

s
≥ n1

n2

then the best, for both kinds of sets, is to fix one point on the left hand

side.

But what happens if
k

ℓ
>

n1

n2
>

r

s
?

For the family of sets having k and ℓ elements in the two sizes, respectively,

the best construction chooses the fixed element on the left hand side, for

the other family on the right hand side. These two families together are

not intersecting. The answer to our question is that one of them wins!

That is if both n1 and n2 are large then the largest intersecting family is

trivially intersecting, either on the left or on the right hand side.

Let us consider now the more general case when other sizes are also

allowed, that is, the family consists of sets satisfying |F ∩X1| = ki, |F ∩
X2| = ℓi for certain pairs (ki, ℓi) of positive integers. Using the notation

above, we will consider subfamilies of

m⋃
i=1

(
X1, X2

ki, ℓi

)
.
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The generalization is however a little weaker at one point. In Theorem 4

the thresholds 2k ≤ n1, 2ℓ ≤ n2 for validity are natural. If either n1 or n2

is smaller then the problem becomes trivial, all such sets can be selected in

F . In the generalization below there is no such natural threshold. There

will be another difference in the formulation. We give the construction of

the extremal family rather than the maximum number of sets.

Theorem 6. [13] Let X1, X2 be two disjoint sets of n1 and n2 elements,

respectively. Some positive integers ki, ℓi(1 ≤ i ≤ m) are given. Define

b = maxi{ki, ℓi}. Suppose that 9b2 ≤ n1, n2. If F is an intersecting

subfamily of
m⋃
i=1

(
X1, X2

ki, ℓi

)
then |F| cannot exceed the size of the largest trivially intersecting subfam-

ily.

Sketch of the proof. The proof uses the so called cycle method used

in a simple proof of Theorem 1 (see [12]). Its basic idea is to find the

largest family of intersecting intervals of length k along a cycle of length n

and then a simple double counting leads to the statement of the theorem.

It is convenient to consider the cycle as Zn and an interval as a set {i, i+
1, . . . , i + k − 1} mod k. It is easy to prove that the largest intersecting

family of such intervals is trivially intersecting.

In the present proof cyclic permutation will be replaced by a product of

two cyclic permutations. In notation: Zn1 × Zn2 . Of course intervals will

be replaced by direct products of intervals of length ki and ℓi, that is by

ki × ℓi rectangles.The “intersecting condition” is that any two rectangles

must meet in one of the coordinates. More precisely, if the two rectangles

are {i1, i1 + 1, . . . , i1 + ku − 1} × {i2, i2 + 1, . . . , i2 + ℓu − 1} and {j1, j1 +
1, . . . , j1+kv−1}×{j2, j2+1, . . . , j2+ℓv−1} then either {i1, i1+1, . . . , i1+

ku−1}∩{j1, j1+1, . . . , j1+kv−1} or {i2, i2+1, . . . , i2+ℓu−1}∩{j2, j2+
1, . . . , j2 + ℓv − 1} is non-empty. We call a pair of rectangles having this

property proj-intersecting.
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Let Ri be a family of ki × ℓi rectangles in Zn1 × Zn2(1 ≤ i ≤ m). We

say that R =
⋃m

i=1Ri is a proj-intersecting family if, any two members

are proj-intersecting.

One can prove the statement analogous to the theorem for the rectan-

gles, that is, the largest R is trivially intersecting (if n1 and n2 are large)

either in the projections in Zn1 or in the projections in Zn2 .

In other words
m∑
i=1

|Ri| ≤ max

{
n1

m∑
i=1

ℓi, n2

m∑
i=1

ki

}
holds. However this is not sufficient for the proof of the theorem. A

weighted version is needed.

Lemma 1. Suppose that the positive integers ki, ℓi, b, n1, n2 satisfy the

inequalities ki, ℓi ≤ b(1 ≤ i ≤ m), 9b2 < n1, n2. Let Ri be a family of

ki × ℓi rectangles in Zn1 × Zn2(1 ≤ i ≤ m). Suppose that R =
⋃m

i=1Ri is

a proj-intersecting family. Let λi > 0(1 ≤ i ≤ m) be real numbers. Then

m∑
i=1

λi|Ri| ≤ max

{
n1

m∑
i=1

λiℓi, n2

m∑
i=1

λiki

}
holds.

Define the families

Fi = {F ∈ F : |F ∩X1| = ki, |F ∩X2| = ℓi}.

We use double counting for the sum∑
F,C1,C2

s(F )

where Cj is a cyclic permutation of Znj (j = 1, 2), F ∈ F and it forms a

rectangle for the product of these two cyclic permutations and the weight

s(F ) is defined in the following way:

s(F ) = si(F ) =
1

n1!
· 1

n2!

(
n1

ki

)(
n2

ℓi

)
if F ∈ Fi.

Some tedious calculations and the usage of the lemma leads to the proof

of the theorem.
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3 A small detour: shadows

Let F ⊂
([n]
k

)
be a family of k-element subsets of [n]. Its shadow is

defined as

σ(F) = {G : |G| = k − 1, G ⊂ F for some F ∈ F}.

The shadow problem is the following: given n, k and |F|, minimize |σ(F)|.
It is obvious to believe that if we are lucky and |F| =

(
a
k

)
holds for an

integer a then the best construction is “to push all these k-element subsets

into the corner” that is to take all k-element subsets of an a-element set

A. Then the size of the shadow will be
(

a
k−1

)
.

This is really true and this pattern can be continued using the following

lemma.

Lemma 2. [15], [11] If 0 < k,m are integers then one can find integers

ak > ak−1 > . . . > at ≥ t ≥ 1 such that

m =

(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
at
t

)
and they are unique.

This is called the canonical form of m. Now we can formulate the

solution to the shadow problem.

Theorem 7. (Shadow Theorem) [15], [11] If n, k and |F| are given,

the canonical form of |F| is

|F| =
(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
at
t

)
then

|σ(F)| ≥
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ . . .+

(
at

t− 1

)
and this bound is sharp.

We might also want to minimize the “deeper” shadow, the so called

s-shadow: σs(F) = {G : |G| = k − s,G ⊂ F for some F ∈ F}. Theorem

6 can be formulated in this general form.
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Theorem 8. (Shadow Theorem) [15], [11] If n, k and |F| are given,

the canonical form of |F| is

|F| =
(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
at
t

)
then

|σs(F)| ≥
(

ak
k − s

)
+

(
ak−s

k − 1− s

)
+ . . .+

(
at

t− s

)
and this bound is sharp.

Lovász [17] found an estimate which is not sharp in most cases but is

easier to handle. We need to generalize the binomial coefficients for real

numbers. If x is a real number,
(
x
k

)
= x(x−1)...(x−k+1)

k!
.

Theorem 9. (Lovász’ version of the Shadow theorem) [17] If A is

a family of k-element sets,

|A| =
(
x

k

)
then

|σs(A)| ≥
(

x

k − s

)
.

This estimate is sharp only when x is an integer.

Daykin [3] noticed that the shadow theorem implies the Erdős-Ko-Rado

theorem.

Proof. Let F ⊂
([n]
k

)
be intersecting (2k ≤ n). Define the comple-

menting family F− = {[n] − F : F ∈ F} ⊂
( [n]
n−k

)
where k ≤ n − k.

If A ∈ F then A ∈ F− has n − k elements. Deleting s = n − 2k ele-

ments from the n − k-element set A we obtain a k-element shadow set.

Hence σn−2k(F−) ⊂
([n]
k

)
. The members of σn−2k(F−) are all disjoint to

A therefore they cannot be in F . We obtained

F ∩ σn−2k(F−) = ∅ (2)

Suppose |F−| = |F| >
(
n−1
k−1

)
=

(
n−1
n−k

)
. Then by Theorem 7 |σn−2k(F−)| ≥(

n−1
k

)
and by (2), the number of k-element subsets is at least |F| +

|σn−2k(F−)| >
(
n−1
k−1

)
+

(
n−1
k

)
=

(
n
k

)
. This contradiction proves the state-

ment. 2
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4 Shadows of intersecting families

Suppose F is intersecting and |F| =
(
a
k

)
where 2k < a < n. If we want

to find the minimum of |σ(F)| under these conditions, then it is easy to

see that the old construction does not work here since one cannot choose

all k-element sets of the a-element set, since there are disjoint ones among

them.

Let us consider the following more general case. F is t-intersecting if

F,G ∈ F implies |F ∩G| ≥ t. Our question is, again what is the minimum

of |σs(F)| under the condition that F is t-intersecting?

The disappointing answer is that we do not know! This is why we must

ask a more modest question. What is the minimum of

|σs(F)|
|F|

under the condition that F is t-intersecting?

Theorem 10. (Intersecting shadow theorem) [10] If F ⊂
([n]
k

)
is a

t-intersecting family, s ≤ t then

|σs(F)|
|F|

≥
(
2k−t
k−s

)(
2k−t
k

) .
The family F =

(
2k−t
k

)
gives equality in the theorem.

Now we will show that the Intersecting shadow theorem implies EKR.

This has an importance because it is a less difficult theorem than the

Shadow theorem, yet it has the same implication at this place.

Proof ([10]). We will start in the same way as in the proof of Daykin.

(Observe that [10] was published earlier than [3].) As before let F ⊂
([n]
k

)
be intersecting (2k ≤ n) and F− = {[n] − F : F ∈ F} ⊂

( [n]
n−k

)
where

k ≤ n− k. We saw that (∗) holds.
F is intersecting therefore F− = {[n]−F : F ∈ F} ⊂

( [n]
n−k

)
is n−2k+1-

intersecting. Here 2(n− k)− (n− 2k+1) = n− 1 and by the intersecting

shadow theorem we obtain

|σs(F−)|
|F−|

≥
(
n−1
k

)(
n−1
n−k

) =
n− k

k
.
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Hence by (∗):(
n

k

)
≥ |σs(F−)|+ |F| ≥ |F|

(
n− k

k
+ 1

)
= |F|n

k
,

which implies EKR. 2

Return now to Theorem 10. The problem answered by it is not just for

itself. The solution of the maximization of the non-uniform t-intersecting

family was based on that (see [10]). Repeat the result of Theorem 10 for

the case s = 1.
|σ(F)|
|F|

≥
(
2k−t
k−1

)(
2k−t
k

) =
k − 1

k − t+ 1
.

It was mentioned above that this estimate is sharp. If F consists of all

k-element subsets of a 2k − t-element set then the size of the shadow is(
2k−t
k−1

)
, the ratio is exactly the above one. In this construction however the

size |F| of the family is “small”, does not depend on n. What happens if

we suppose that |F| is large? We have a slight improvement in this case.

Theorem 11. [7]. If F ⊂
([n]
k

)
is a t-intersecting family, 1 ≤ t then

|σ(F)| ≥ |F|k − 1

k − t
− c(k, t)

where c(k, t) does not depend on n and |F|.

This is an improvement only when t > 1. A better multiplicative con-

stant cannot be expected as the following example shows.

Divide [n] into two parts, X1, X2 where |X1| = 2k − t − 2, |X2| = n −
2k + t + 2 and define F as the family of all k-element sets F such that

|F ∩X1| = k−1, |F ∩X2| = 1. Here |F| =
(
2k−t−2
k−1

)
(n−2k+t+2), |σ(F)| =(

2k−t−2
k−2

)
(n− 2k + t+ 2) +

(
2k−t−2
k−1

)
. Their ratio tends to k−1

k−t .

Let us remark that a similar statement can be found in the survey paper

[5].

Remark 1. The constant in Theorem 11 can be explicitly given:

c(k, t) =
t− 1

(k − t)(k − t+ 1)

(
2k − t

k

)
.
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Our example above shows that a better multiplicative constant cannot

be expected in Theorem 11. However, observe that the size of the family

in the example is linear as a function of n. What happens if the size of the

family grows faster? This question is answered in the following theorem.

Theorem 12. Suppose that 1 ≤ t ≤ k ≤ n and choose an integer param-

eter 1 ≤ u ≤ k − t. If F ⊂
([n]
k

)
is a t-intersecting family, then

|σ(F)| ≥ |F| k − u

k − u− t+ 1
−
(

n

u− 1

)
t− 1

(k − u− t+ 1)(k − u− t+ 2)

(
2k − t

k − u+ 1

)
−
(

n

u− 2

)
2(t− 1)

(k − u− t+ 1)(k − u− t+ 3)

(
2k − t

k − u+ 2

)
...

−
(
n

1

)
(u− 1)(t− 1)

(k − u− t+ 1)(k − t)

(
2k − t

k − 1

)
−
(
n

0

)
u(t− 1)

(k − u− t+ 1)(k − t+ 1)

(
2k − t

k

)
.

The order of magnitude of the “error terms” is nu−1 therefore the state-

ment is interesting only if |F| is larger. But then the limit of |σ(F)|
|F| is

k−u
k−u−t+1 as n tends to infinity.

The two extreme cases are of special interest. For u = 1 Theorem 12

gives back Theorem 11. The case u = k − t is formulated as a separate

statement.

Corollary 1. If F ⊂
([n]
k

)
is a t-intersecting family, 1 ≤ t then

|σ(F)| ≥ t|F| −O(nk−t−1).

This statement is true for any size of F , but it is void when its order of

magnitude is not more than nt−k−1.

Theorem 10 was actually stated for these s-shadows in [10], similarly,

our Theorem 12 can be extended for this case, too. It is a really horrible

formula, see [7].
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