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Abstract

LetH = {Hv : v ∈ V (G)} be a family of complete graphs indexed

by the vertex set of a graph G. The clique corona graph G ◦H of G

and H is the disjoint union of G and Hv, v ∈ V (G), with additional

edges joining each vertex v ∈ V (G) to all the vertices of Hv. In

this paper, we survey interconnections between clique coronas, well-

covered graphs and independence polynomials.

1 Introduction

Throughout this paper G = (V,E) is a simple (i.e., a finite, undirected,

loopless and without multiple edges) graph with vertex set V = V (G) and

edge set E = E(G). If X ⊂ V , then G[X] is the subgraph of G spanned

by X. By G−W we mean the subgraph G[V −W ], for W ⊂ V (G). We

denote by G− F the subgraph of G obtained by deleting the edges of F ,

for F ⊂ E(G), and we write shortly G − e, whenever F = {e}. A vertex

v is a leaf if |N(v)| = 1. We let Cn,Kn, Pn,Kp,q denote respectively, the

cycle on n ≥ 3 vertices, the complete graph on n ≥ 1 vertices, the path
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on n ≥ 1 vertices, and the complete bipartite graph with the bipartition

of size (p, q). An independent set in G is a set of pairwise non-adjacent

vertices. An independent set of the largest size is a maximum independent

set. Its cardinality is denoted by α(G).

The disjoint union of the graphs G1, G2 is the graph G1∪G2 having the

disjoint unions V (G1)∪V (G2) and E(G1)∪E(G2) as a vertex set and an

edge set, respectively. In particular, qG denotes the disjoint union of q > 1

copies of the graph G. If G1, G2 are vertex disjoint graphs, then their join

(or Zykov sum) is the graph G = G1 + G2 with V (G) = V (G1) ∪ V (G2)

and E(G) = E(G1) ∪ E(G2) ∪ {vivj : vi ∈ V (G1), vj ∈ V (G2)}. Let

H = {Hv : v ∈ V (G)} be a family of graphs indexed by the vertex set of

a graph G. The corona G ◦ H of G and H is the disjoint union of G and

Hv, v ∈ V (G), with additional edges joining each vertex v ∈ V (G) to all

the vertices of Hv. If Hv = H for every v ∈ V (G), then we write G ◦H
instead of G ◦ H [10]. This graph compound operation attracts a lot of

attention from people dealing with vertex coloring [30], Szeged index and

Zagreb indices [35], Merrifield-Simmons index [36], adjacency spectrum

and Laplacian spectrum [2, 32] etc.

If all Hv are complete graphs, then G ◦ H is a clique corona graph. In

this paper we discuss the clique coronas that are essentially involved in

the context of well-covered graphs and independence polynomials.

2 Clique corona and well-covered graphs

A graph is well-covered if all its maximal independent sets are of the

same size [29]. If, in addition, G has no isolated vertices and |V (G)| =
2α (G), then G is a very well-covered graph [7].

Recall that the girth of a graph G is the length of a shortest cycle

contained in G, and it is defined as plus infinity for every forest. Using

the clique corona operation one can build well-covered graphs of any girth

as follows.

Theorem 2.1. [34] The corona G ◦ H of G and H = {Hv : v ∈ V (G)}
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is well-covered if and only if each Hv ∈ H is a complete graph on at least

one vertex, i.e., G ◦ H is a clique corona graph.

For instance, all the graphs in Figure 1 are of the form G ◦H, but only

G1 is not well-covered.
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Figure 1: G1 = P2 ◦ {K1, 2K1}, G2 = P2 ◦ {K1,K2}, G3 = P2 ◦ {K2,K3}.

It is worth mentioning that there are well-covered graphs different from

clique corona graphs; e.g., C3, C4, C5 and C7. However, starting from

some value, the girth becomes essential in characterizing well-covered

graphs.

Theorem 2.2. [8] Let G be a connected graph of girth ≥ 6, which is

isomorphic to neither C7 nor K1. Then G is well-covered if and only if

G = H ◦K1 for some graph H.

Notice that C4 is the unique very well-covered cycle.

Theorem 2.3. [20] Let G be a connected graph of girth ≥ 5. Then G is

very well-covered if and only if G = H ◦K1 for some graph H.

As a consequence of Theorems 2.2 and 2.3, a tree on at least two vertices

is (very) well-covered if and only if it can be represented as the clique

corona H ◦K1 for some tree H.

A graph G belongs to the class Wn, n ≥ 1, if every n disjoint indepen-

dent sets in G are contained in n disjoint maximum independent sets [33].

Clearly, Wn ̸= ∅, because Kn ∈ Wn, for all n. For instance, K2 belongs

to class W2, while P4 is very well-covered, but not in the class W2. A

number of ways to build graphs in the class Wn are presented in [33].

Theorem 2.4. (i) [14] Let L be a connected graph without 4-cycles and

of order at least two. Then L ∈ W2 if and only if L is isomorphic to K2,

C5 or L = G ◦K2, for some graph G.
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(ii) [25] Let L = G ◦ H, where H = {Hv : v ∈ V (G)} and G has no

isolated vertices. Then L ∈ W2 if and only if L is a clique corona graph

such that every Hv ∈ H is a nontrivial complete graph.

3 Independence polynomials of clique coronas

Let sk be the number of independent sets of size k in a graph G. The

polynomial I(G;x) =
α(G)∑
k=0

skx
k is called the independence polynomial of

G [13]. For a survey on independence polynomials of graphs see [18].

Computing the independence polynomial is NP-hard, since the evaluating

of α (G) is NP-hard [11]. Moreover, it is intractable to calculate the

value of the independence polynomial at any non-zero number [4]. More

recent research concerning the independence polynomial computational

complexity may be found in [15].

Theorem 3.1. (i) [13] I(G1 ∪G2;x) = I(G1;x) · I(G2;x);

(ii) [13] I(G1 +G2;x) = I(G1;x) + I(G2;x)− 1;

(iii) [12] I(G ◦H;x) = (I(H;x))n · I(G; x
I(H;x)), where n = |V (G)|.

Using Theorem 3.1, one can efficiently compute the independence poly-

nomial for various recursive families of graphs, for example, see [16, 21,

23, 37].

A polynomial P (x) =
q∑

k=0

akx
k with real coefficients is called:

(i) unimodal if there exists an index k ∈ {0, 1, ..., q} (called the mode)

such that a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ aq;

(ii) log-concave if a2i ≥ ai−1 · ai+1 for all i ∈ {1, ..., q − 1}.
(iii) palindromic (or self-reciprocal) if ai = aq−i, i ∈ {0, ..., ⌊q/2⌋}.
It is known that if a polynomial P with positive coefficients has only real

roots, then it is log-concave, and if P is log-concave, then it is unimodal

as well.

For instance, the independence polynomial:
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� I(K127 + 3K7;x) = 1 + 148x+ 147x2 + 343x3 is non-unimodal and

non-palindromic;

� I(K43 + 3K7;x) = 1 + 64x + 147x2 + 343x3 is unimodal, non-log-

concave and non-palindromic;

� I(K18 + 3K3 + 4K1;x) = 1 + 31x+ 33x2 + 31x3 + x4 is unimodal,

log-concave and palindromic;

� I(K52+3K4+4K1;x) = 1+68x+54x2+68x3+x4 is non-unimodal

and palindromic.

There are infinite families of graphs, in general [1], and well-covered

graphs, in particular [19, 28], whose independence polynomials are not

unimodal. It was proved in [1] that for each permutation σ of {1, 2, ..., α}
there is a graph G with α(G) = α such that I(G;x) satisfies sσ(1) <

sσ(2) < · · · < sσ(α) [1].

Conjecture 3.2. [1] I (T ;x) is unimodal for every tree T .

The following results give partial support to Conjecture 3.2. It was

shown in [17] that the inequality α (G) ≤ 4 ensures the unimodality of

I(G ◦K1;x). Further it was improved up to α (G) ≤ 8 [5].

Conjecture 3.3. I(G ◦K1;x) is unimodal for every graph G.

An observation due to [17] claims that I(K1,q ◦ K1;x) is log-concave.

Further, it was shown that the same is true for I (K2,q ◦K1;x), and con-

jectured that log-concavity holds for each I (Kp,q ◦K1;x) [5].

Theorem 3.4. [38] If G ∈ {Kp,q : p, q ≥ 1}, then I(G ◦ K1;x) is log-

concave.

There are some more cases of clique coronas with log-concave indepen-

dence polynomials.

Theorem 3.5. [17] If α (G) ≤ 3 or G = Pn, then I(G ◦ K1;x) is log-

concave.
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A graph G with |V (G)| ≥ 2 with exactly two vertices of the same degree

is known as antiregular.

Theorem 3.6. [23] If G is an antiregular graph, then I (G;x) is log-

concave, and has at most two real roots.

Theorem 3.7. [24] If H = Kr−e, r ≥ 2, then the polynomial I(G◦H;x)

is unimodal and palindromic for every graph G. Moreover, the mode of

I(G ◦H;x) is unique and equal to the order of G.

Unlike the matching polynomial, the independence polynomial may

have non-real roots. Clearly, the real roots of independence polynomi-

als are negative.

Theorem 3.8. [24] If G has a non-empty edge set and all the roots of

I(G ◦H;x) are real, then the same is true for both I(G;x) and I(H;x).

The converse of Theorem 3.8 is not necessarily true.

Theorem 3.9. [22] Let G be a connected well-covered graph of girth ≥ 6,

which is not isomorphic to C7,K1,K2. Then the real roots of its indepen-

dence polynomial are in [−1,−1/n), where n = 2α(G).

It is known that a root of smallest modulus of I(G;x) is real [9].

Theorem 3.10. [6] If G is a claw-free graph (i.e., G has no subgraph

isomorphic to K1,3), then all the roots of I(G;x) are real.

For clique corona graphs, we have the following.

Theorem 3.11. [27] For every graph G of order n that has at least one

edge, there exists a bijection between the set of roots of I(G◦Kp;x) different

from −1/p and the set of roots of I(G;x), respecting the multiplicities of

the roots. Moreover, the rational roots in I(G◦Kp;x) but −1/p correspond

to the rational roots in I(G;x), and the same happens with the real roots.

The case p = 1 in Theorem 3.11 was established in [22]. The roots of the

independence polynomial of well-covered graphs were first investigated in

[3].

Combining Theorems 3.11, 3.8, and 3.10 we get the following.
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Corollary 3.12. (i) If G is claw-free, then I(G ◦ Kp;x) has only real

roots.

(ii) I(G ◦Kp;x) has only real roots if and only if the same is true for

I(G;x).

4 Conclusions

This paper is not meant to be a comprehensive survey, but rather a

bird’s-eye view on some advances and developments in the rich area of

research concerning clique corona graphs. Nevertheless, even during this

short journey around clique coronas, one may feel their mathematical

beauty and depth. Surprisingly, it turns out that recursive clique corona

graphs ((G ◦Kp1) ◦Kp2 · · · ) ◦Kpr compete to be adequate tools in mod-

elling so-called small-world networks [26, 31].
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