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Abstract

A connection tree T of a graph G for a terminal set W ⊆ V (G)

is a tree subgraph of G, such that W ⊆ V (T ) and every leaf of T

belongs to W . A non-terminal vertex v ∈ V (T )\W is called linker if

its degree in T is exactly 2, and it is called router if its degree in T is

at least 3. Given a graph G, a terminal set W ⊆ V (G) and two non-

negative integers ℓ and r, the Terminal connection problem

(TCP) asks whether G admits a connection tree for W with at most

ℓ linkers and at most r routers. The Strict TCP (S-TCP) further

requires that every terminal is a leaf of the connection tree. In the

present extended abstract, we prove that S-TCP is polynomial-time

solvable if r ∈ {0, 1}, contrasting with the complexity of TCP, which

is known to be NP-complete for all r ≥ 0.

1 Introduction

Problems concerning to network design are usually challenging com-

binatorial questions of great practical and theoretical interest. In the
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present extended abstract, we analyse the computational complexity of

a recently proposed network design problem, called the Terminal con-

nection problem (TCP). More specifically, we consider a particular

case of its strict variant, S-TCP, where the maximum number of routers

is bounded by a constant.

Let G = (V (G), E(G)) be a graph, and let W be a non-empty subset

of V (G). We say that a subgraph T of G is a connection tree of G for W

if the following conditions are satisfied: T is a tree, W ⊆ V (T ) and every

leaf of T belongs to W . In a connection tree T for W , the vertices in W

are called terminals and the vertices in V (T )\W are called non-terminals,

which are classified into two types according to their respective degrees in

T , namely: the vertices in V (T )\W with degree exactly 2 in T are called

linkers and the vertices in V (T )\W with degree at least 3 in T are called

routers. Therefore, there exists a partition V (T ) = W ∪L(T )∪R(T ) of the

vertex set of T into terminals, linkers and routers, where L(T ) denotes the

linker set of T and R(T ) denotes the router set of T . Figure 1 exemplifies

a connection tree T of a graph G for a given terminal set W ⊆ V (G), as

well as illustrates the partition of V (T ) into terminals, linkers and routers,

where the squared vertices (in blue) define the terminal set W , the black

filled vertex is a router of T and the remaining vertices (in red) are the

linkers of T .

(a) (b) (c)

Figure 1: (a) A graph G and a terminal set W ⊆ V (G). (b) A connection

tree T of G for W . (c) Partition of V (T ) into terminals, linkers and

routers.

Next, we formally define the Terminal connection problem, which

was proposed by Dourado et al. [1] motivated by applications in informa-

tion security and network routing (additionally, there also are applications
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related to the problem in the implementation of protocols for the Internet

of Things).

Terminal connection problem (TCP)

Instance: A connected graph G, a non-empty subset W ⊆ V (G) and

two non-negative integers ℓ and r.

Question: Does G admit a connection tree T for W such that |L(T )| ≤
ℓ and |R(T )| ≤ r?

In [1], Dourado et al. showed that TCP is closely related to the classical

network design problems Minimum spanning tree and Steiner tree.

Furthermore, they formulated three variants of TCP by bounding the

parameters ℓ or r by constants, as follows: TCP(ℓ) refers to the variant

of TCP where ℓ is bounded by a constant; TCP(r) refers to the variant

of TCP where r is bounded by a constant; and TCP(ℓ, r) refers to the

variant of TCP where ℓ and r are both bounded by constants.

The authors [1] proved that TCP(ℓ) is NP-complete, for all fixed ℓ ≥ 0,

by a polynomial-time reduction from 3-SAT. Moreover, they proved that

TCP(r) is NP-complete, for all fixed r ≥ 0, by a polynomial-time reduc-

tion from Hamiltonian path. Nevertheless, they showed that TCP(ℓ, r)

is polynomial-time solvable, for all fixed ℓ ≥ 0 and r ≥ 0. Their algo-

rithm consists in an exhaustive search for a connection tree with at most

ℓ linkers and at most r routers, which considers every possible linker set

L ⊆ V (G) \ W and every possible router set R ⊆ V (G) \ W such that

|L| ≤ ℓ, |R| ≤ r and L ∩R = ∅.

The strict version of TCP. Note that, although every leaf of a connec-

tion tree for W belongs to W (by definition), possibly there are terminals

in W which are not leaves of T . In such a case, these terminals may work

as either a linker or a router, which can be undesirable in some real appli-

cations [2, 4]. Given that, Dourado et al. [2] proposed in 2014 the strict

variant of TCP, called the Strict terminal connection problem,

where it is further required that the connection tree is strict, i.e. the leaf
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set of the connection tree must be equal to the terminal set W .

Strict terminal connection problem (S-TCP)

Instance: A connected graph G, a non-empty subset W ⊆ V (G) and

two non-negative integers ℓ and r.

Question: Does G admit a strict connection tree for W such that

|L(T )| ≤ ℓ and |R(T )| ≤ r?

Similarly to TCP(ℓ) and to TCP(ℓ, r), respectively, Dourado et al. [2]

proved that S-TCP(ℓ) is NP-complete, for all fixed ℓ ≥ 0, and proved that

S-TCP(ℓ, r) is polynomial-time solvable, for all fixed ℓ ≥ 0 and r ≥ 0.

Furthermore, they presented a polynomial-time reduction from TCP(ℓ)

to S-TCP(ℓ). However, the computational complexity of S-TCP(r) was

left open, for all fixed r ≥ 0. The main goal of this extended abstract

is to prove that, for r ∈ {0, 1}, S-TCP(r) is polynomial-time solvable,

contrasting with the complexity of TCP(r), which is NP-complete, for all

fixed r ≥ 0.

2 Main results

In this section, we present the contributions of this work. Firstly, note

that if we consider a terminal setW with just one element, then the answer

for the question of S-TCP is always No, regardless of the input graph and

the parameters ℓ and r. Thus, we may suppose without loss of generality

that there are at least two terminals in W . The next lemma provides

a necessary and sufficient condition for an instance I = (G,W, ℓ, r) with

|W | = 2 of S-TCP (and of TCP) to be a Yes instance.

Lema 2.1. Let I = (G,W, ℓ, r) be an instance of S-TCP such that |W | =
2. If W = {w1, w2}, then I is a Yes instance if and only if the distance

in G between w1 and w2 is at most ℓ+ 1.

Proof. Suppose that I is a Yes instance of S-TCP. Hence, G admits a

strict connection tree T for W such that |L(T )| ≤ ℓ and |R(T )| ≤ r. Since
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T is a tree, for every two vertices u, v ∈ V (T ), there exists exactly one

path in T whose endpoints are u and v. So, let P be the path in T between

w1 and w2. We know by hypothesis that |L(T )| ≤ ℓ, therefore the length

of P is at most ℓ + 1, and so the distance in G between w1 and w2 is at

most ℓ+ 1.

Conversely, if the distance in G between w1 and w2 is at most ℓ + 1,

then G contains a path P between w1 and w2 whose length is at most

ℓ + 1. Note that, P is a strict connection tree T for W = {w1, w2} such

that |L(T )| ≤ ℓ and |R(T )| = 0 ≤ r. Therefore, I is a Yes instance of

S-TCP. ■

Lema 2.2. Let T be a tree. If T has at least three leaves, then ∆(T ) ≥ 3.

Proof. Suppose that ∆(T ) ≤ 2. Since T is a tree, either |V (T )| = 1 or T

consists in a path with at least two vertices. If |V (T )| = 1, then clearly T

has no leaf. On the other hand, if T is a path with at least two vertices,

then T has exactly two leaves, which are its two endpoints. Therefore, if

T has at least three leaves, then ∆(T ) ≥ 3. ■

Corollary 2.3. S-TCP(r = 0) is polynomial-time solvable.

Proof. Let I = (G,W, ℓ) be an instance of S-TCP(r = 0). If |W | = 2, then

we obtain by Lemma 2.1 that S-TCP(r = 0) can be solved in polynomial-

time simply by using a polynomial-time algorithm for the Shortest path

problem. On the other hand, if |W | ≥ 3, then it follows from Lemma 2.2

that every strict connection tree for W must contain at least one non-

terminal vertex with degree greater than or equal to 3, which implies the

existence of a router in T . Thus, if |W | ≥ 3, then I is certainly a No

instance of S-TCP(r = 0). ■

We now analyse the computational complexity of S-TCP(r) with r =

1. Let G be a graph, s, t ∈ V (G) and P 1, P 2, . . . , P k be k paths in

G between s and t. We say that P 1, P 2, . . . , P k are internally vertex-

disjoints (or simply, vertex-disjoints) if V (P i)∩V (P j) \{s, t} = ∅, for all
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i, j ∈ {1, . . . , k} with i ̸= j. Based on this concept of disjoint paths, we

prove that S-TCP(r = 1) is polynomial-time solvable. Our proof consists

in a Turing reduction1 to the so-calledMin-sum st-disjoint paths (Min-

sum st-DP) problem.

Min-sum st-disjoint paths (Min-sum st-DP)

Instance: A graph G, two vertices s, t ∈ V (G) and two non-negative

integers k and x.

Question: Does there exist k vertex-disjoint paths between s and t in

G, such that the sum of their lengths is at most x?

Min-sum st-DP is a classical disjoint path problem, proved to be polyno-

mial-time solvable by Suurballe in 1974, as stated in the following theorem.

Theorem 2.4 (Suurballe [5]). Min-sum st-DP is polynomial-time solv-

able.

First, observe that, as S-TCP(r = 0) admits a polynomial-time al-

gorithm, we may suppose without loss of generality that an instance

I = (G,W, ℓ) of S-TCP(r = 1) is a No instance of S-TCP(r = 0), since

a first natural strategy to solve I as an instance of S-TCP(r = 1) is to

verify (in polynomial time) whether G admits a strict connection tree

for W which has at most ℓ linkers and has no router. Note also that, if

|W | ≤ 2 and I is a Yes instance of S-TCP(r = 1), then I is certainly a

Yes instance of S-TCP(r = 0). Thus, we may also suppose that |W | ≥ 3.

Given an instance I = (G,W, ℓ) of S-TCP(r = 1) and a vertex ρ ∈
V (G)\W such that dG(ρ) ≥ |W |, we define an instance f(I, ρ) = (G′, s, t, k, x)

of Min-sum st-DP corresponding to I as follows: V (G′) = V (G) ∪ {t},
where t is a new vertex, E(G′) = E(G) ∪ {wt | w ∈ W}, s = ρ, k = |W |
and x = ℓ+ 2k. Figure 2a illustrates an instance I of S-TCP(r = 1) and

the instance f(I, ρ) of Min-sum st-DP corresponding to I.

1A Turing reduction from a problem Π to a problem Π′ is an algorithm A that solves

Π by using a hypothetical subroutine S for solving Π′ such that, if S is a polynomial-

time algorithm for Π′, then A is a polynomial-time algorithm for Π [3].
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(a) (b)

Figure 2: (a) Instance f(I, ρ) ofMin-sum st-DP. (b) Vertex-disjoint paths

between s and t in G′ and strict connection tree of G for W .

Lema 2.5. An instance I = (G,W, ℓ) is a Yes instance of S-TCP(r = 1)

if and only if there exists a non-terminal vertex ρ ∈ V (G) \ W , with

dG(ρ) ≥ |W |, such that f(I, ρ) is a Yes instance of Min-sum st-DP.

Proof. Suppose that I is a Yes instance of S-TCP(r = 1). Let T be a

strict connection tree of G for W such that |L(T )| ≤ ℓ and |R(T )| = 1,

and let ρ ∈ R(T ) be the (unique) router of T . Since T is a tree and

W ⊆ V (T ), we have that, for each terminal w ∈ W , there exists exactly

one path in T whose endpoints are ρ and w. Furthermore, note that, those

paths are vertex-disjoints, since by hypothesis every vertex in V (T ) \ {ρ}
has degree at most 2 in T . Hence, we can construct a solution P (or more

formally, a Yes certificate) for the instance f(I, ρ) of Min-sum st−DP

by the union of such paths between ρ and the terminals w ∈ W , along

with the addition of the edges wt ∈ E(G′), i.e. P =
⋃

w∈W (Pρ,w ∪ {wt}),
where Pρ,w is the path between ρ and w in T . It is easy to see that, P
consists in |W | = k vertex-disjoint paths of G′ between ρ = s and t such

that the sum of their lengths is at most ℓ+2|W | = ℓ+2k = x. Therefore,

f(I, ρ) = (G′, s, t, k, x) is a Yes instance of Min-sum st-DP.

On the other hand, suppose that there exists a non-terminal vertex

ρ ∈ V (G) \W , with dG(ρ) ≥ |W |, such that f(I, ρ) is a Yes instance

of Min-sum st-DP. Thus, G′ contains k = |W | vertex-disjoint paths

P 1, P 2, . . . , P k between s and t whose sum of their lengths is at most

x = ℓ + 2k. So, consider the subgraph T of G′ induced by the edge set
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E′ =
(⋃

1≤i≤k E(P i − t)
)
. Clearly, T is a tree subgraph of G. Note also

that, for 1 ≤ i ≤ k = |W |, the endpoints of the paths P i − t constitute

exactly the set W ∪{s}. Hence, the leaf set of T is equal to W . Moreover,

since the paths P 1− t, P 2− t, . . . , P k− t are internally vertex-disjoints, all

vertices in V (T ) \ ({s} ∪W ) have degree 2 in T . Thus, the unique vertex

which has degree greater than or equal to 3 in T is s. Finally, note that,

since
∑

1≤i≤k

(
|E(P i − t)| − 1

)
≤ x − 2k = ℓ, T has at most ℓ vertices

with degree 2. So, T is a strict connection tree of G for W with at most

ℓ linkers and exactly one router (see Figure 2b). Therefore, I = (G,W, ℓ)

is a Yes instance of S-TCP(r = 1). ■

Corollary 2.6. S-TCP(r = 1) is polynomial-time solvable.

Proof. Let I be an instance of S-TCP(r = 1). For each non-terminal

vertex ρ ∈ V (G) \W with dG(ρ) ≥ |W |, we construct the instance f(I, ρ)

of Min-sum st-DP, as previously defined, and we verify in polynomial-

time (based on Theorem 2.4) whether f(I, ρ) is aYes instance ofMin-sum

st-DP. If this is true for some ρ ∈ V (G) \W , then we return that I is a

Yes instance of S-TCP(r = 1); otherwise (i.e. if, for all ρ ∈ V (G)\W with

dG(ρ) ≥ |W |, f(I, ρ) is No instance of Min-sum st-DP), we return that

I is a No instance of S-TCP(r = 1). The correctness of this algorithm

follows from Lemma 2.5. ■

3 Conclusion

In the present extended abstract, we have considered S-TCP restricted

to the case in which r ∈ {0, 1}. More precisely, we have shown that, for

r = 0, the problem can be solved in polynomial time simply by analysing

the cardinality of the terminal set W and using a polynomial-time algo-

rithm for Shortest path; and, for r = 1, we have presented a Turing

reduction toMin-sum st-DP, a classical polynomial-time solvable disjoint

path problem. As future works, we intend to determine the computational

complexity of S-TCP for all fixed r ≥ 2.
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