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Abstract

Fulleroid-(3, 4, 6) graphs are planar, cubic, 3-connected graphs

with faces of size 3, 4 or 6. Let G be a graph. Determining τodd(G)

- the smallest number of edges to be deleted from G in order to

obtain a bipartite spanning subgraph - is known in the literature

as bipartite edge frustration problem. We studied the bi-

partite edge frustration and the maximum independent set

problems on fulleroid-(3, 4, 6) graphs, obtaining the tight bounds

τodd(G) ≤
√

4
3n and α(G) ≥ n/2 −

√
n/3, where α(G) is the inde-

pendence number of G. In order to prove these bounds we use some

combinatorial optimization tools.

1 Introduction

In 1985 the scientific community witnessed the discovery of a new

molecule formed exclusively by carbon atoms, called fullerene molecules.
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The high stability and symmetry of these molecules boosted the study of

its chemical, physical and consequently mathematical properties. Each

fullerene molecule is modeled by a graph as follows: the atoms of the

molecule are represented by the vertices of the graph and the bonds be-

tween the atoms correspond to the edges of the graph. This graph mod-

elling the fullerene molecule, is called fullerene graph. A fullerene graph

is planar, cubic, 3-connected, such that each face has size 5 or 6.

According to Došlić e Vukičević [2], if G = (V,E) is a graph, then an

edge e ∈ E is frustrated with respect to a given bipartition (V1, V2) of V if

both endpoints of e belong to the same set of the bipartition. Let G be a

graph. Determining τodd(G) - the smallest number of edges to be deleted

from a graph G in order to obtain a resulting bipartite spanning subgraph

- is known in the literature as bipartite edge frustration problem.

The fulleroid-(3, 4, 6) graphs extend fullerene graphs. A fulleroid-(3, 4, 6)

graph (or simply fulleroid-(3, 4, 6)) is a planar, cubic, 3-connected graph

with all faces of size 3, 4, or 6. From the equation of Euler it is known that

every fulleroid-(3, 4, 6) graph has at most 4 triangular faces (faces of size

3). The central result of this work, Theorem 1.1, provides an upper bound

for the bipartite edge frustration problem on fulleroid-(3, 4, 6) graphs.

Theorem 1.1. If G is a fulleroid-(3, 4, 6) graph on n vertices, then τodd(G) ≤√
4
3n with equality if and only if all faces have size 3, n = 12k2 for some

k ∈ N, and Aut(G) ∼= Td.

The rest of the paper is organized as follows. In Section 2, we discuss

specific concepts for the bipartite edge frustration problem and in-

troduce the concept of moats. In Section 3, we prove a dual version

for bipartite edge frustration problem, after we introduce the The-

orem 1.1 and as a consequence we get a result for independent set

problem to fulleroid-(3, 4, 6) graphs.
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2 Preliminary and Moat Concept

All definitions used in this paper are standard and can be found at [3].

According to Bondy and Murty [3], given a plane graph G the dual

graph of G, denoted by G, is a graph defined as follows: to each face f of

G there is a vertex f∗ of G∗ and to each edge e of G there is an edge e∗ of

G∗ such that two vertices f∗ and g∗ are joined by the edge e∗ in G∗ if and

only if their corresponding faces f and g are separated by the edge e in

G. As consequence of this definition, the dual graph of a fulleroid-(3, 4, 6)

graph is a planar triangulation with no loop or multiple edge, and all its

vertices have degree 3, 4 or 6. In the dual of a fulleroid-(3, 4, 6) those

vertices of degree 3 or 4 are called by defective vertices.

Let G be a planar triangulation with all vertices of degree 3, 4 or 6 and

T ⊆ V (G) a set of vertices such that |T | is even. A T -join of G is a subset

J ⊆ E(G) such that T is the set of odd degree vertices in G[J ]. It is easy

to see that if T is the set of odd degree vertices in G and J is a T -join of

G then |T | is even and each vertex belonging to G − J has even degree.

The size of the smallest T -join of G is denoted by τ(G,T ).

Let G be a planar triangulation with all vertices of degree 3, 4 or 6 and

let δG(X) be the set of edges with exactly one vertex in X ⊆ V (G). A set

C of edges of G is an edge cut of G if C = δG(X), for some X ⊆ V (G).

Let X ⊆ V (G) and T be the set of odd degree vertices of G. A T -cut is

an edge cut δ(X) such that |T ∩X| is odd.
A packing of T -cuts of G is a disjoint collection δ(F) = {δ(X) | X ∈ F}

of T -cuts ofG. If T is the set of odd degree vertices inG, then we denote by

ν(G,T ) the maximum size of a packing of T -cuts of G. An inclusion-wise

minimal is a set obtained from a collection of sets that does not contain

any set of this collection. Given a packing of T -cuts, a T -cut δG(X) is

an inclusion wise minimal when δG(X) contains no T -cut of packing of

T -cuts. A family of sets F is said to be laminar if for every pair X,Y ∈ F ,

we have X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅.
Let X ⊂ V (G) and G[X] be a subgraph 2-connected of G such that all
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faces of G[X], except possibly the outer face, are triangular faces. A moat

of width k in G surrounding G[X] is a subset of E(G) defined as:

δkG(X) =
⋃k−1

i=0 δG
(
N i[X]

)
Note that, δ1G(X) = δG(X). If

∑
v∈X(6 − d(v)) = d, then δkG(X) is a

d-moat of width k, see Figure 1.

Figure 1: In both figures the thick edges represent G[X]. On the left,

dashed edges represent a 3-moat of width 1, and on the right, dashed

edges represent a 3-moat of widht 2.

Note that for each moat δkG(X) there exists a set |δkG(X)| of triangular
faces, it means that there exists a one-to-one correspondence between the

number of edges in a moat and the number of faces belonging to this moat.

We say that the incident faces to at least one edge of δkG(X) are spanned

by the moat δkG(X). If G is a fulleroid-(3, 4, 6), then the number of edges

in a 3-moat of G∗ is easily determined by the Lemma 2.1.

Lemma 2.1. Let G be a fulleroid-(3, 4, 6) graph, G∗ its dual and D the

set of defective vertices of G∗. If dG∗(u) = 3, and no edge of δk−1(u) is

incident to a vertex of the set D − {u}, then
∣∣δkG∗(u)

∣∣ = 3k2.



44 D. S. Nicodemos, L. Faria and S. Klein

Proof. Note that
∣∣δ(N i[u])

∣∣ = 3(2i+ 1). Therefore,

∣∣∣δk(u)∣∣∣ = k−1∑
i=0

∣∣δ(N i[u])
∣∣ = 3

k−1∑
i=0

(2i+ 1) = 3k2.

3 Main Results

Let G be the dual of a fulleroid-(3, 4, 6) graph. The graph G is not

bipartite, because all its faces are triangular. The graph G′, obtained

subdividing the edges of G, is bipartite, because all its faces have size 6.

Consider G△ the graph obtained from G′, adding three new edges inside

each faces of G′, incident to each pair of the 3 vertices of degree 2. The

graph G△ is said a refinament of G. All vertices in V (G△) − V (G) have

degree 6 in G△, so if D is the set of defective vertices in G, then D is

also the set of defective vertices in G△. Moreover note that in G there

exist only packings of 3-moats for the following reasons: the packings of

5-moats of G would be generated by one vertex of degree 3 and by one

vertex of degree 4. Since we want to generate fulleroid-(3, 4, 6) graphs

with arbitrary number of vertices, we should ensure that the vertices of

degree 3 are closer together than their distance to any vertex of degree 4.

In this way, there is no packing of 5-moats in G.

The Lemma 3.1 has been proved by Klein, Faria and Stehľik [4].

Lemma 3.1. For all planar triangulation G and each subset T ⊆ V (G)

such that |T | is even, τ(G,T ) = 1
2ν(G

△, T ). Moreover, there exists an

optimal laminar packing of inclusion-wise minimal of T -cuts in G△.

Initially we will study the dual version of the bipatite edge frustration

problem for fulleroid-(3, 4, 6) graphs.

Lemma 3.2. Let G be a planar triangulation whose vertices have degrees

3, 4 or 6. If f is the number of faces of G and T is the set of odd
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degree vertices of G, then τ(G,T ) ≤
√

4f/3. Equality holds if and only if

f = 12k2, for some k ∈ N, and Aut(G) ∼= Td.

Proof. Let G△ be the refinament of G. So G△ is a planar triangulation on

4f faces and all its vertices have degree 3, 4 or 6. By Lemma 3.1, there

exists an optimal laminar packing of inclusion-wise minimal of T -cuts in

G△. Let m3 be the number of edges in a 3-moat of δG△(F). The incidence

vector s⃗ ∈ R|T | is defined as follows: for each vertex u ∈ T the width of a

3-moat surrounding u is denoted by su.

We define the inner product in R|T | by
〈
a⃗, b⃗

〉
=

∑
u∈T aubu and this

inner product induces the norm ∥ · ∥ given by ∥a⃗∥2 = ⟨⃗a, a⃗⟩.
It is not difficult to see that τ(G∗, T ) = 1

2

〈
r⃗, 1⃗

〉
, where the vector

1⃗ ∈ R|T | has all coordinates equal to 1.

By Lemma 2.1,
∣∣δsuG△(u)

∣∣ = 3s2u. Adding over all 3-moats,

m3 = 3
∑
u∈T

s2u = 3∥s⃗∥2. (1)

The graph G△ has 4f triangular faces and the 3-moats of G△ are

spanned by m3 triangular faces in G△. These faces are mutually disjoints.

Using (1), we obtain,

4f ≥ m3 ≥ 3∥s⃗∥2.

Thus, √
4f
3 ≥ ∥s⃗∥ . (2)

Therefore, by (2) and Cauchy-Schwarz inequality,

τ(G∗, T ) = 1
2 ⟨s⃗, 1⟩ ≤

1
2 ∥s⃗∥ ∥1∥. (3)

Since 1⃗ = (1, .., 1, 1), then ∥⃗1∥ ≤
√
4 = 2 and,
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τ(G∗, T ) ≤ 1
2 ∥s⃗∥ ∥1∥ = ∥s⃗∥ .

Finally,

τ(G∗, T ) ≤
√

4f
3 .

To the last part of Lemma 3.2, supose that τ(G,T ) =
√

4
3f . Conse-

quently the entries of the vector s⃗ must all be equal, let’s say equal to su,

for all u ∈ T and
√

4f
3 = ||s⃗||. Therefore, 4f = 3||s⃗||2 and 4f = 3 · 4s2u.

Since f is even, then su = 2k and f = 12k2, for some k ∈ N. To see that

Aut(G) ∼= Td, note that the graph G can be obtained from the regular

tetrahedron by inserting into each face of a 3-patch of the form G[Nk[u]].

Conversely, if G is a plane triangulation with f = 12k2 faces, all vertices

of degree 3, 4 or 6, and Aut(G) ∼= Td, then G may be constructed from

the regular tetrahedron by inserting into each face a 3-patch of the form

G∗[Nk[u]]. Therefore, dist(u, v) ≥ 2k, for each pair of distinct vertices in

T , so τ(G,T ) ≥ 4k =
√

4
3f .

Theorem 3.1 provides an upper bound to bipartite edge frustration prob-

lem for fulleroids-(3, 4, 6) and is a consequence from Lemma 3.2.

Theorem 3.1. If G is a fulleroid-(3, 4, 6) graph on n vertices, then τodd(G) ≤√
4
3n. Equality holds if and only if n = 12k2, for some k ∈ N, e Aut(G) ∼=

Td.

As a consequence of Theorem 3.1 we have the following corollary.

Corollary 3.2. If G is a fulleroid-(3, 4, 6) on n vertices, then α(G) ≥
n/2 −

√
n/3. Equality holds if and only if n = 12k2, for some k ∈ N, e

Aut(G) ∼= Td.

Figure 3 shows a sharp example for bipartite edge frustration and max-

imum independent set on a fulleroid-(3, 6).
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Figure 2: A fulleroid-(3, 4, 6) G, such that τodd(G) = 4, α(G) = 4.

4 Conclusion

We establish bounds for bipartite edge frustration and maximum inde-

pendent set on fulleroid-(3, 4, 6) graphs and we provide an example of a

fulleroid-(3, 4, 6) that is sharp for both bounds..

In future works, we intend to find a solution for bipartite edge frustra-

tion and maximum independent set problems for more general fulleroid

graphs.
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