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On equitable total coloring of complete

r-partite graphs

A. G. da Silva S. Dantas D. Sasaki

Abstract

In 2002, Wang conjectured that the equitable total chromatic

number of a graph is either ∆+1 or ∆+2, where ∆ is the maximum

degree of a graph. In this work, we investigate the equitable total

coloring of complete r-partite graphs and verify the conjecture for

some of these graphs.

1 Introduction

Let G = (V,E) be a simple connected graph. A k-total coloring of G is

an assignment of k colors to the vertices and edges of G so that adjacent or

incident elements have different colors. The total chromatic number of G,

denoted by χ′′, is the least k for which G has a k-total coloring. The Total

Coloring Conjecture (TCC) states that ∆ + 1 ≤ χ′′ ≤ ∆+ 2 [1, 6]. If the

difference between the cardinalities of any two color classes is either 0 or 1,

then the total coloring is said to be equitable. The equitable total chromatic

number of G, denoted by χ′′
e , is the least k for which G has an equitable
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k-total coloring. Similarly to the total colorings, it was conjectured in

2002 by Wang [7] that ∆ + 1 ≤ χ′′
e ≤ ∆ + 2 (Equitable Total Coloring

Conjecture (ETCC)). In 2016, Dantas et al. [3] proved that the problem

of determining the equitable total chromatic number of a cubic bipartite

graph is NP-complete.

A graph is said to be r-partite if there exists a partition of its ver-

tex set X1 = {x11, x12, · · · , x1p1}, X2 = {x21, x22, · · · , x2p2}, · · · , Xr =

{xr1, xr2, · · · , xrpr} such that no two vertices within the same part are

adjacent. In some cases, we replace the notation xij by xi,j for the benefit

of the reader. A complete r-partite graph is an r-partite graph in which

there is an edge between any two vertices of different parts of the partition.

We denote a complete r-partite graph having pi, i = 1, . . . , r, vertices in

each independent set by Kp1,p2,...,pr . If p = pi = pj for all 1 ≤ i < j ≤ r,

then the r-partite graph is said to be p-balanced. In this case, we denote

the graph by Kr×p.

We adopt the following convention throughout the text concerning the

graph Kr×s: the vertices are displayed as in a matrix with r columns and

p rows, where each column corresponds to a part Xi of the partition of

the vertex set. Therefore, the vertex xij is the j-th vertex of the part Xi,

and it corresponds to the j-th row and in the i-th column.

In 1974, Bermond determined the total chromatic number of all com-

plete r-partite p-balanced graphs [2]. In 1994, Fu [4] investigated the eq-

uitable total coloring of complete bipartite graphs and complete r-partite

graphs of odd order. In fact, for complete bipartite graphs, Fu proved

that χ′′
e = χ′′. Furthermore, considering complete r-partite graphs of odd

order, Fu proved that there exist equitable (∆ + 2)-total colorings for all

of these graphs. In this work, we investigate the equitable total coloring

of complete r-partite graphs by verifying the ETCC for the following class

of graphs:

1. K2×p, has χ
′′
e = ∆+ 2;

2. Kp1,p2 , with p1 ̸= p2, has χ
′′
e = ∆+ 1;

3. Kr×p, with r even and p odd, has χ′′
e = ∆+ 2;
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4. Kr×p, with r odd and p even, has χ′′
e = ∆+ 1 if r ≥ p

2
.

2 Equitable total coloring of K2×p

Fu [4] determined that χ′′
e = ∆+ 2 for K2×p. We provide an algorithm

to color such graphs. Edge-coloring matrices are matrices whose entries

represent the colors assigned to the edges of a graph. Let AX1X2 = [aij ]

be a p× p edge-coloring matrix in which the entry aij represents the color

assigned to the edge that has x1i and x2j as its ends. To the entry aij ,

assign i + j − 1 mod (p) if i + j − 1 ̸≡ 0 mod (p); and p, otherwise. To

the vertices of X1, assign the color p+ 1 and to the vertices of X2, assign

p+ 2. For results taken modulo i, if such result is congruent 0 modulo i,

then use i instead of 0. See the example when p = 3:

AX1X2 =

1 2 3

2 3 1

3 1 2


Theorem 1. The algorithm describes an equitable (∆+ 2)-total coloring

of K2×p.

Ideia of the proof. We need to show that adjacent and incident elements

are assigned to different colors and that the difference between the cardi-

nalities of two different color classes is at most 1. Indeed, the vertices of

X1 are nonadjacent, since the graph is bipartite, as well as the vertices of

X2. Since the cardinality of each one of those sets is p, this means that

the colors p+1 and p+2 are used exactly p times each. Since those colors

are not used in the edges, no edge receives the same colors as their ends.

Moreover, it is possible to prove that every element of {1, 2 · · · , p} appears

precisely once in each row (column) and they are not in a conflict. Since

AX1X2 has p rows and each color of {1, 2, · · · , p} appears exactly once per

row, we conclude that each one of those p colors are used p times in the

coloring of the edges of K2×p. This proves that the difference between

the cardinalities of any two distinct color classes is 0. Hence, the total

coloring is equitable, as desired. ■
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3 Equitable total coloring of Kp1,p2, with p1 ̸= p2

Here, we present equitable (∆+1)-total colorings for complete bipartite

nonbalanced graphs by applying the same technique used in the previous

section. It was established by Fu in [4] that χ′′
e = ∆+ 1 for Kp1,p2 (with

p1 ̸= p2).

Let Kp1,p2 with p1 ̸= p2 be a bipartite complete nonbalanced graph.

Assume, without loss of generality, that p1 < p2 and let A = [aij ] be a

(p1+1)×p2 matrix, in which the entry aij is the color assigned to the edge

that has x1i and x2j as its ends if 1 ≤ i ≤ p1; and the color assigned to the

vertex x2j if i = p1+1. Similarly to the complete bipartite balanced case,

to the element aij of A, assign the color i+ j−1 mod (p2) if i+ j−1 ̸≡ 0

mod (p2) and the color p2, otherwise. To the vertices of X1, assign the

color p2+1. It is easy to see that the proposed algorithm gives an equitable

(∆+1)-total coloring of these graphs. Observe the following example when

p1 = 3 and p2 = 4:

A =


1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3


Theorem 2. The algorithm gives an equitable (∆ + 1)-total coloring of

Kp1,p2 ( p1 ̸= p2).

4 Equitable total coloring of Kr×p in which r is

even (with r ≥ 4) and p is odd

We begin this section by claiming that for these graphs, χ′′
e ̸= ∆ + 1.

Due to space restrictions, the proof is ommited. After, we provide an

algorithm to show that χ′′
e = ∆+ 2, contributing to the ETCC.

Claim 1. There exists no equitable total coloring with ∆ + 1 colors for

Kr×p in which r is even (with r ≥ 4) and p is odd.
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Claim 2 (Soifer, 2008 [5]). Let Kn be the complete graph on n even

(n ≥ 4) vertices. Since this graph has a ∆-edge coloring, there exist n−1

disjoint perfect matchings in Kn. Let Kn be the complete graph on n

odd (n ≥ 3) vertices. Since this graph has a (∆ + 1)-edge coloring, there

exist n disjoint matchings in Kn.

The graph Kr is the complete graph having r vertices, in which r rep-

resents the number of parts of Kr×p. We denote its matchings by Ri.

Similarly, the graph Kp is the complete graph having p vertices, in which

p represents the number of vertices in each part of Kr×p. We denote its

matchings by Pi.

Theorem 3. The graph Kr×p with r even ( r ≥ 4) and p odd has χ′′
e =

∆+ 2.

Proof. Using Claim 2 it is possible to organize all edge-coloring matrices

as follows. If Ri = {vavb, · · · , vcvd} is a perfect matching of Kr (there are

r−1 disjoint perfect matchings in Kr), then let Si = {AXaXb
, · · · , AXcXd

}
be a set of edge-coloring matrices. Then, |Si| = |Ri|.

To each set of matrices Si, assign numbers from 1 to p(r−1) as follows:

the entries of the matrices in S1 are the elements of the set {1, 2, 3, · · · , p};
in S2, elements of the set {p+1, p+2, · · · , 2p}, and so on. In general, the

matrices in Si are elements of the set {(i− 1)p+ 1, (i− 1)p+ 2, · · · , ip}.
Note that each one of the sets of edge-coloring matrices has p elements

and that if they are taken modulo p, the sets become {1, 2, · · · , p− 1, 0}.
Based on that, the distribution of elements in the edge-coloring matrices

is done similarly to the distribution in the case of complete bipartite bal-

anced graphs. Since |Si| = |Ri| = r
2 , each color from 1 to p(r − 1) was

used rp
2 times in edges.

When we divide the matrices into r− 1 groups, in each of those groups,

part Xi appears precisely once. Therefore, when the same set of colors

is assigned to one of the sets of edge-coloring matrices, no adjacent edges

receive the same color.
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We replace the secondary diagonal entries of r−2
2 matrices by the color

(r−1)p+1 and r−2
2 matrices by the color (r−1)p+2, which have not been

used yet. The replacement is done as follows: AX1X2 , AX2X3 , · · · , AXr−2Xr−1

(note that these matrices are related to S1, S2, · · · , Sr−2, respectively)

have the entries in their secondary diagonals replaced alternately by (r−
1)p+ 1 and (r− 2)p+ 2. Note that by the algorithm to divide the matri-

ces into sets, all the ones that have their entries changed are elements of

S1, S2, · · · , Sr−2, so their secondary diagonals received previously different

colors.

Note that an element aij of AXkXl
is in the secondary diagonal if it is

such that i + j = p + 1. Therefore, all entries in the secondary diagonal

of one matrix receive the same color since i + j − 1 = p + 1 − 1 = p.

In each group of edge-coloring matrices, the secondary diagonal will be

p, 2p, 3p, · · · , (r − 2)p by the coloring of edge-coloring matrices presented

in the beginning of this proof.

The colors of the vertices will be the colors (r−1)p+1, (r−1)p+2 and the

colors that have been changed in some of the secondary diagonals, which

are p, 2p, 3p, · · · , (r−2)p since these colors must be represented in vertices

that are ends of edges that are colored by AX1X2 , AX2X3 , · · · , AXr−2Xr−1 .

To the vertices of Xi, for all 1 ≤ i ≤ r − 2, assign the color ip, to the

vertices of Xr−1, assign the color (r − 1)p + 1 and to the vertices of Xr,

assign the color (r − 1)p+ 2.

The color (r − 1)p+ 1 is used (r−2)p
2 times in edges and p times in the

coloring of vertices, totalizing rp
2 times. The result is analogous for the

color (r − 1)p+ 2.

The colors that were originally in the secondary diagonal of some matri-

ces and were replaced, were originally used p times in r
2 matrices. Then,

they were replaced by a new color in p entries of a matrix. On the other

side, those colors are used to color the p vertices of one of the parts of

the partition of V . So, those colors are used rp
2 − p + p = rp

2 in total.

Each color is used precisely rp
2 times. Hence, the difference between the

cardinalities of two color classes is 0 and this concludes the proof of the
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fact that the described algorithm gives an equitable (∆+2)-total coloring

of Kr×p with r even (r ≥ 4) and p odd. ■

5 Equitable total coloring of a part of graphs

Kr×p in which r is odd and p is even

In this section, we provide an algorithm to show that χ′′
e = ∆ + 1 if

r ≥ p
2 . Let Kr×p be a graph. We define matching of distance i as the set

of edges {xjax(j+i),b} linking vertices of rows a and b (1 ≤ a, b ≤ p, a ̸= b),

for all 1 ≤ j ≤ r and j + i is taken modulo r.

See an example of a matchings of distance 1 and 2 in the graph K3×2

presented in Figure 1.

Figure 1: Matchings of distance 1 and 2 in the graph K3×2

Since j + i is taken modulo r, we have j + i ≤ r, which implies that

i ≤ r−1 (since j ≥ 1). Note that each matching of distance i has r edges.

We define horizontal edges as the edges of the form xijxkj , 1 ≤ i, k ≤ r

and 1 ≤ j ≤ p

Theorem 4. The graph Kr×p with r odd and p even has χ′′
e = ∆ + 1

if r ≥ p
2 .

Proof. If p = 2, assign the color i to the vertices xi1 ∈ Xi and xi2 ∈ Xi, for

all i : 1, · · · , r. So, no adjacent vertices receive the same color. If a vertex

xij received color i, take the matching Rl of Kr (Claim 2) in which vi is

the remaining vertex. Such matching has the form Rl = {vavb, · · · , vcvd}.
So, assign color i to the horizontal edges xajxbj , · · · , xcjxdj . Since vi is

not an end of any edge of Rl and the edges xajxbj , · · · , xcjxdj are related



150 A. G. da Silva, S. Dantas and D. Sasaki

to the matching Rl, this means that incident elements receive different

colors.

Each color i that has been used in vertices was used twice (xi1 and xi2).

We have |Rl| = r−1
2 . So, the color i has been used in 2 r−1

2 edges, totalizing

r + 1 elements.

Note that, so far, we have colored the horizontal edges and the vertices

with rp
2 colors. Now, using different colors than the ones that have been

already used, take r−1 colors to color matchings of distance i = 1, · · · , r−1

of graph Kr×2. Since the cardinality of those matchings is r, each one

of those r − 1 colors are used r times and the difference between the

cardinalities of two color classes is at most 1, as desired.

Now, consider the case p ≥ 4 and r ≥ p
2 , in order to color the vertices

of Kr×p, since there are p−1 disjoint perfect matchings in Kp, in order to

know how many times each matching Pi will be used to color the r parts

of vertices of Kr×p, divide r by p − 1. By Euclidean division, there exist

positive integers s and q such that q(p− 1) + s = r. This means that we

should use s matchings of Kp to color q + 1 parts of the partition each

and p− 1− s matchings to color q parts each.

The coloring of the vertices is done as follows: if P1 = {vavb, · · · , vcvd}
and if we use it to color the vertices of X1 then each of the following pairs

of vertices receives a different color: x1a and x1b, · · · , x1c and x1d. The

coloring of the horizontal edges is done similarly to the coloring of the

horizontal edges in the case Kr×p with r and p being odd. After coloring

the horizontal edges, we guarantee that if a color was used in a vertex of a

certain row, than it was represented in all the vertices of that row. Now,

this color needs to be represented in the vertices of the other rows.

To color the edges that are not horizontal, we begin with the colors that

were used in vertices. If P1 = {vavb, vcvd, · · · , vgvh} and we used color i in

the vertices x1a and x1b (admitting that P1 was used to color the vertices

in X1), then we represent color i in the complement of P1 with respect

to vavb, which we are going to denote by P1 − {vavb} = {vcvd, · · · , vgvh}.
Color i must be represented in the vertices of rows c and d, and so on,
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being represented in the rows determined by {vcvd, · · · , vgvh} above, until

being used in the vertices of rows g and h. Color i is used in matchings of

distance 1. We repeat the process to every color used in vertices always

using the next available matching of distance. The other colors, that

is, the ones not used in vertices, are assigned according to the available

matchings of distances in each perfect matching Pi of Kp. The number of

colors used only in edges of the graph is ∆ + 1− rp

2
. Indeed, since there

are (p− 1) P ′
is and there are r − 1 matchings of distance for each Pi, the

number of matchings of distance is (r − 1)(p− 1). From this number, we

remove the matchings of distance colored with the colors of the vertices

[s(q + 1) + (p − 1 − s)q]
(p
2
− 1

)
. As explained above, s matchings are

used in the coloring of q+1 parts and p− 1− s matchings are used in the

coloring of q parts. It is easy to check that each time we use a matching Pi

to color a part, we use
p

2
− 1 matchings of distance when applying a color

of a pair of vertices to the complement of Pi: (r − 1)(p− 1)− [s(q + 1) +

(p− 1− s)q]
(p
2
− 1

)
= rp− r− p+1+ (−sq− s− pq+ q+ sq)

(p
2
− 1

)
=

rp − r − p + 1 − (q(p − 1) + s)
(p
2
− 1

)
= rp − r − p + 1 − r

(p
2
− 1

)
=

rp− r − p+ 1− rp

2
+ r =

rp

2
− p+ 1 = ∆+ 1− rp

2
.

Note that there are r − 1 matchings of distance j and |Pi| = p
2 . So,

the complement of Pi has size
p
2 − 1. In order to have available matchings

of distance to complete the coloring, we must have p
2 − 1 ≤ r − 1, which

implies that r ≥ p
2 .

By construction we get that no adjacent or incident elements receive

the same color. Also, we have that rp
2 colors are used in 2 vertices and

then, represented in the other vertices through edges that have them as

ends. Since each edge has 2 ends, we get that those colors are used in rp−2
2

edges, totalizing rp
2 + 1 elements. The other rp

2 − p+ 1 colors are used in{
rp2(r−1)

2 −
(
rp−2
2

)
rp
2

}
÷ rp

2 = rp
2 − p+ 1 perfect matchings of the graph

Kr×p, that is, in rp
2 elements. We conclude that the difference between

two different color classes is at most 1, as desired. ■

Observe the equitable (∆ + 1)-total coloring of K3×4 exhibited below.
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We have matchings P1 = {v1v2, v3v4}, P2 = {v2v3, v1v4} and P3 = {v3v4,
v1v2} of Kp=4. The coloring of the vertices of X1 is related to P1, the

vertices of X2 to P2, and the vertices of X3 to P3. Observe the coloring

of vertices and horizontal edges in Figure 2.

Figure 2: Coloring of vertices and horizontal edges of K3×4

Colors 1 to 6 are also used in the following edges: color 1 in the matching

of distance 1 linking vertices of rows 3 and 4; color 2 in the matching of

distance 1 linking vertices of rows 1 and 2; color 3 in the matching of

distance 1 linking vertices of rows 1 and 4; color 4 in the matching of

distance 1 linking vertices of rows 2 and 3; color 5 in the matching of

distance 1 linking vertices of rows 2 and 4; color 6 in the matching of

distance 1 linking vertices of rows 1 and 3. Colors 7, 8 and 9 are used in

the following edges: 7 → P1 dist 2, 8 → P2 dist 2 and 9 → P3 dist 2.
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