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Lúıs F. I. Cunha Vińıcius F. dos Santos

Luis A. B. Kowada Celina M. H. de Figueiredo

Abstract

The Closest Object Problem aims to find one object in the

center of all others. It was studied for strings with respect to the

Hamming distance, where the Hamming Closest String Prob-

lem was settled to be NP-complete. The Closest Permutation

Problem (CPP) was also studied, since permutations are the nat-

ural restrictions of general strings, and we have settled that the

Block interchange–CPP and the Breakpoint–CPP are NP-

complete.

We consider a restricted form of block-interchange, called short

block-move, defined by exchanging two contiguous blocks of elements

of total length at most 3, for which the computational complexity of

the distance problem is still open. We provide sufficient conditions to

determine the short block-move distance by showing that the optimal

sorting sequence of short block-moves of a given permutation can be

obtained by sorting each connected component separately on the

permutation graph, and we prove that Short Block Move–CPP

is NP-complete.
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1 Introduction

The Closest Permutation Problem (CPP) is a combinatorial chal-

lenge with applications in computational biology [4], where an input per-

mutation set models a set of genomes, and we want to find a solution

genome that is closely related to all others, i.e. a permutation minimizing

the radius of the input permutation set. Several metrics corresponding to

genome rearrangements such as Cayley, transposition, block-interchange,

breakpoint, and reversal have been studied [4]. Popov [7] studied the

CPP regarding the Cayley metric and proved that the Cayley–CPP is

NP-complete. We have studied the CPP regarding the block interchange

and the breakpoint metrics, and proved that the Block interchange–

CPP and Breakpoint–CPP are NP-complete [3]. The CPP has not

been studied regarding other metrics to compute distances, for instance

with respect to short block-move, for which the distance problem is open

so far [5].

This extended abstract is organized as follows: in Section 2 we present

the definitions of the Hamming Closest String Problem, the Clos-

est Permutation Problem, and the metrics we deal with; in Section 3

we show that an optimal sorting sequence of short block-moves can be

found by sorting each connected component separately on the permu-

tation graph; in Section 4 we show that Short Block Move–CPP is

NP-complete; in Section 5 we discuss some open questions for further work

about complexity of other related metrics.

2 Closest problem and short block-move distance

An alphabet Σ is a non empty set of letters, and a string over Σ is a

sequence of letters of Σ. The Hamming distance between two strings si

and σ denoted dH(si, σ) is defined as the number of mismatched positions

between si and σ. We call the Hamming distance of a string the number

of mismatched positions between si and ι = 0m, such that si has length m.
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TheHamming Closest String Problem (H–CSP in brief) is defined as

follows: given a set {s1, s2, . . . , sℓ} of strings of length m over the alphabet

Σ and a non-negative integer f , decide the existence of a string σ of length

m such that max
i=1,...,ℓ

dH(si, σ) ≤ f . A solution of H–CSP is any string σ

that satisfies max
i=1,...,ℓ

dH(si, σ) ≤ f . Lanctot et al. [6] proved that H–CSP

is NP-complete for a binary alphabet.

A permutation π of length n is a string with a unique occurrence of each

letter, since the function π : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection.

We define π = [π(1)π(2) · · · π(n)].
Given a metric M and dM (pi, π) the minimum number of operations re-

garding the metric M to transform pi into π, the Closest Permutation

Problem is defined as follows:

Metric M Closest Permutation Problem (M–CPP)

INPUT: Set of permutations {p1, p2, . . . , pk} of length n and a non-

negative integer d.

QUESTION: Is there a permutation π of length n such that

max
i=1,...,k

dM (pi, π) ≤ d?

In case of a positive answer for M–CPP, we call a solution of M–CPP

any permutation π that satisfies max
i=1,...,k

dM (pi, π) ≤ d.

Given a set of permutations, the Closest Permutation Problem

aims to find a solution permutation that minimizes the maximum distance

between the solution and all other input permutations. The metric to

compute distances depends on the context of the problem.

We call the distance between two permutations the minimum number of

the corresponding operations to transform one permutation into another

one. The distance of a permutation is the minimum number of operations

to transform the permutation into the identity permutation ι = [1 2 · · · n].
In this work, we deal with short block-moves, a particular form of block-

interchange, which is an operation that transforms one permutation into

another one by exchanging two blocks.
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Note that regarding the distance problem, general operations do not im-

ply the same complexity with respect to the complexity of more particular

operations. For instance, the block-interchange distance can be computed

in polynomial time (see [2]), while in contrast, the transposition distance,

a block-interchange of two consecutive blocks, is an NP-complete problem

as proved in [1]. On the other hand, if a distance problem is NP-complete,

then the closest problem for the same operation is also NP-complete.

A p-bounded block-move is a transposition for which the sum of the

number of elements is bounded by p. The restricted 3-bounded block-move

is called a short block-move, a problem proposed by Heath and Vergara

in [5].

Hence, a short block-move may equivalently be seen as a move of either

some element past one element, called a skip, or past two elements, called

a hop. The short block-move distance dsbm(π) is the minimum number of

short block-moves needed to transform π into ι.

Now, we review how to obtain bounds for the SBM distance, based on

the permutation graph.

The short block-move distance To estimate the SBM distance, Heath

and Vergara in [5] used the permutation graph PG(π) = (V p
π , E

p
π), where

V p
π = {1, 2, . . . , n} and Ep

π = {(i, j) | πi > πj , i < j} (that is, every

edge of PG(π) is an inversion). They proved that the number of inver-

sions gives bounds for the distances, since each short block-move decreases

the number of inversions by at least one unit, and by at most two units.

Hence:
⌈
|Ep

π |
2

⌉
≤ dsbm(π) ≤ |Ep

π|.
Given a permutation, our goal is to minimize the number of operations

that decrease only one inversion. Examples of permutations for which

the distances achieve the lower and the upper bound are [2 4 3 5 1] and

[2 1 4 3], respectively.

A short block-move is a correcting move if it eliminates one or two in-

versions. Otherwise, the short block-move is called non-correcting. Heath

and Vergara [5] proved that each sorting sequence can be performed by
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using just correcting moves. Table 1 shows the replacements from non-

correcting moves to correcting moves in an optimal sorting sequence (in

all cases, e < f and x is arbitrary).

case π π′ = πβi π′′ = πβ′
i

1 · · · ef · · · · · · fe · · · · · · ef · · ·
2 · · · exf · · · · · ·xfe · · · · · ·xef · · ·
3 · · · exf · · · · · · fex · · · · · · efx · · ·
4 · · ·xef · · · · · · fxe · · · · · · exf · · ·
5 · · · efx · · · · · · fxe · · · · · · exf · · ·

Table 1: How to replace a non-correcting move βi with a correcting move

β′
i (see [5]).

Next, we prove that sorting each connected component of the permuta-

tion graph PG separately is an optimal strategy.

3 Sorting connected components separately

We sometimes use graph-theoretic terminology directly on permutations

instead of their permutation graphs. For instance, we say that π is con-

nected (meaning that its permutation graph is), or that a permutation σ

is a connected component of a permutation π (meaning that the permu-

tation graph of σ is a connected component of the permutation graph of

π).

Let us refer to moves that introduce elements in connected components

of the permutation as merging moves. For instance, [2 3 1 6 4 5] →
[2 3 4 1 6 5] is a merging move.

Theorem 1. For every permutation π, sorting each connected component

of π separately is optimal.

Proof (sketch). We allow ourselves to use merging moves, which can be

replaced by the correcting moves given in Table 1. The modified sequence

is not longer than the original, and we observe that these new moves never

merge components.
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Amerging move must act on contiguous components of π. Let us assume

that in the leftmost component, the move acts on the ends with elements

a and b, and that the component at the right starts with elements c and

d.

a b c d

It implies that a < c, a < d, b < c and b < d. Now, we replace any

merging move involving those component’s extremities with correcting

moves. There are five cases to consider: a b c d → b c a d, a b c d → c a b d,

a b c d → a c b d, a b c d → a c d b and a b c d → a d b c.

None of the correcting moves that we use to replace the non-correcting

moves in those five cases is a merging move, and no such replacement

increases the length of our sorting sequence. Given any sorting sequence,

we repeatedly apply the above transformation to the merging move with

the smallest index until no such move remains. In particular, the trans-

formation applies to optimal sequences as well, and the proof is complete.

2

Note that there exist cases where allowing merging moves still yields an

optimal solution. This is the case for [2 1 4 3], which can be optimally

sorted as follows: [2 1 4 3] → [2 3 1 4] → ι.

It is natural to wonder whether Theorem 1 generalizes to p-bounded

block-move, for p > 3. However, the following counterexample shows

that it is not the case, even for a bound of 4: sorting each component of

[3 2 1 6 5 4] separately yields a sequence of length four, but one can do

better by merging components as follows: [3 2 1 6 5 4] → [3 2 5 4 1 6] →
[3 4 1 2 5 6] → ι. ptimal sorting sequence.

Next, we consider the closest permutation problem. We apply trans-

formations from a generic instance of the H–CSP to particular instances

of the SBM–CPP. We establish a relationship between the Hamming dis-

tance of binary strings and the permutation distance of the corresponding

short block-move distance.
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4 Short Block Move–CPP is NP-complete

Firstly, we apply Algorithm 1 that transforms an arbitrary binary string

s of length m into a particular permutation λs of length 2m.

Algorithm 1: PermutBI(s)

input : Binary string s of length m

output: Permutation λs

1 Each occurrence of 0 in position i corresponds to the elements

2i− 1 and 2i in positions 2i− 1 and 2i, respectively.

2 Each occurrence of 1 in position i corresponds to the elements

2i− 1 and 2i in positions 2i and 2i− 1, respectively.

Next, we establish the key equality between the Hamming distance of an

input string s and the short block-move distance of its output permutation

λs obtained from Algorithm 1.

Lemma 1. Given a string s ̸= 0m of length m and a permutation λs of

length 2m obtained by Algorithm 1, the short block-move distance of λs is

dsbm(λs) = dH(s).

Proof. By Theorem 1, each connected component can be sorted separately

and each bit 1 corresponds exactly to an inversion.

Now, we show how a solution for the H–CSP implies a solution for the

Short block move–CPP, and vice versa.

Lemma 2. Given a set of k permutations obtained by Algorithm 1, there

is a Short block move closest permutation with maximum distance at most

d if and only if there is a Hamming closest string with maximum distance

equal to d.

Proof (sketch). (⇒) Given a solution permutation λ′, if λ′ can be built

by Algorithm 1 for some input string s′, then, by Lemma 1, s′ is a closest

string. Otherwise, we search the permutation from the left to the right in
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order to find the first position i where the corresponding element is distinct

from the one given by Algorithm 1. After, we continue searching to the

right until we find an element j agreeing with the algorithm output to be

placed at position i. Therefore, we obtain a new permutation with a longer

prefix agreeing with the algorithm output by placing such element j at

position i, without increasing the distance to any input permutation, since

we do not increase the number of inversions. Repeating this procedure, a

string agreeing with the algorithm output can be found. By Lemma 1, a

string of maximum distance equal to d can be constructed.

(⇐) Given a solution string s, we obtain the associated permutation

λs given by Algorithm 1. By Lemma 1, we have the solution s regarding

the H–CSP corresponding to the permutation λs with the same value of

maximum distance d. 2

Theorem 2. The Short Block Move–CPP is NP-complete.

5 Further work

Note that the Short Block Move–CPP is NP-complete regarding

other instances. An example of this fact is obtained by associating each

bit 0 to the identity permutation and each bit 1 to any permutation π such

that its short block-move distance is known. In this case, we generalize

the result of Lemma 1 to the equality dsbm(λs) = dsbm(π)dH(s).

Since we show that the Short Block Move–CPP is NP-complete,

the following question arises: is the p-Bounded Block Move–CPP

NP-complete? As we discussed in Section 3, Theorem 1 does not hold for

p-bounded block moves, for p ≥ 4. Consequently, new ideas are necessary

to establish the complexity of p-bounded Block Move–CPP.
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UFF, Niterói, Brazil

lfignacio@ic.uff.br
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Lúıs A. B. Kowada

UFF, Niterói, Brazil
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